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Abstract Working memory (WM) is the ability to maintain
and manipulate task-relevant information in the absence of
sensory input. While its improvement through training is of
great interest, the degree to which WM training transfers to
untrained WM tasks (near transfer) and other untrained cog-
nitive skills (far transfer) remains debated and the mecha-
nism(s) underlying transfer are unclear. Here we hypothesized
that a critical feature of dual n-back training is its reliance on
maintaining relational information in WM. In experiment 1,
using an individual differences approach, we found evidence
that performance on an n-back task was predicted by perfor-
mance on a measure of relational WM (i.e., WM for vertical
spatial relationships independent of absolute spatial loca-
tions), whereas the same was not true for a complex span
WM task. In experiment 2, we tested the idea that reliance
on relational WM is critical to produce transfer from n-back

but not complex span task training. Participants completed
adaptive training on either a dual n-back task, a symmetry
span task, or on a non-WM active control task. We found
evidence of near transfer for the dual n-back group; however,
far transfer to a measure of fluid intelligence did not emerge.
Recording EEG during a separate WM transfer task, we ex-
amined group-specific, training-related changes in alpha pow-
er, which are proposed to be sensitive to WM demands and
top-down modulation of WM. Results indicated that the dual
n-back group showed significantly greater frontal alpha power
after training compared to before training, more so than both
other groups. However, we found no evidence of improve-
ment onmeasures of relationalWM for the dual n-back group,
suggesting that near transfer may not be dependent on rela-
tional WM. These results suggest that dual n-back and com-
plex span task trainingmay differ in their effectiveness to elicit
near transfer as well as in the underlying neural changes they
facilitate.
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In the past 15 years, a body of research on the effects of
cognitive training has amassed. The overarching goal of cog-
nitive training is to improve specific or broad-ranging cogni-
tive skills, and numerous approaches have been examined
with this goal in mind, such as video game training (Green
et al. 2016; Powers et al. 2013), working memory (WM)
training (Au et al. 2015; Morrison and Chein 2011;
Shipstead et al. 2012), meditation training (Chiesa et al.
2011; Lutz et al. 2008; Tang et al. 2015), non-invasive brain
stimulation (Berryhill et al. 2014; Parkin et al. 2015), aerobic
exercise (Hillman et al. 2008), and many others (for a
comprehensive review see, Simons et al. 2016). Of these

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s41465-017-0044-1) contains supplementary
material, which is available to authorized users.

* Kara J. Blacker
kblacker4@gmail.com

1 Department of Psychological & Brain Sciences, Johns Hopkins
University, 143 Ames Hall, 3400 N Charles St,
Baltimore, MD 21218, USA

2 Neurology and Developmental Medicine, Kennedy Krieger Institute,
Baltimore, MD, USA

3 Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA

4 Department of Neuroscience, Johns Hopkins University School of
Medicine, Baltimore, MD, USA

5 F.M. Kirby Center for Functional Neuroimaging, Kennedy Krieger
Institute, Baltimore, MD, USA

J Cogn Enhanc (2017) 1:434–454
https://doi.org/10.1007/s41465-017-0044-1

https://doi.org/10.1007/s41465-017-0044-1
mailto:kblacker4@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s41465-017-0044-1&domain=pdf


approaches, WM training has, arguably, received the most
attention and investigation, but also been surrounded by the
most controversy.

The seminal study by Jaeggi et al. (2008) demonstrated that
training on a WM task yielded improvement on a measure of
fluid intelligence (Gf). While this result has been replicated
many times (e.g., Jaeggi et al. 2014; Jausovec and Jausovec
2012; Rudebeck et al. 2012; Stephenson and Halpern 2013;
for a meta-analysis see Au et al. 2015), others have failed to
replicate this effect (e.g., Redick et al. 2013; Thompson et al.
2013; for a review see Shipstead et al. 2012). Specifically, this
area of investigation has focused on Bfar^ transfer, whereby
transfer represents the degree of similarity between the trained
task (e.g., dual n-back) and untrained tasks (e.g., matrix rea-
soning tasks). Some of the debate in the WM training litera-
ture has surrounded the methods used to draw conclusions
about transfer. For example, many early WM training studies,
like Jaeggi et al. (2008), utilized passive control groups that
did not engage in any training and were simply tested on the
transfer measures twice. It is nowwidely accepted that making
any firm conclusion about transfer effects requires an active
control group, which controls for expectations, contact with
experimenters, and other factors (see Simons et al. 2016 for a
review of best practices). Another early criticism of the cog-
nitive training field was the issue of inadequate baselines,
whereby transfer might be concluded in the face of the control
group performing worse after training (for a detailed
consideration of this issue see, Boot et al. 2013).
Furthermore, a critical feature of effective training that has
evolved with the field is the use of adaptive training programs.
For example, Lövdén et al. (2010) argue that a fundamental
prerequisite for successful cognitive training is a mismatch or
imbalance between environmental demands and actual brain
supply. To create this prolonged mismatch, training tasks must
be challenging but manageable with a high degree of effort.
This balance between keeping a task difficult enough to en-
sure the participant is not bored while easy enough to ensure
the participant does not get frustrated is typically achieved
through adaptive paradigms that keep the effort and feasibility
level consistent for each individual participant.

Further, a source of heterogeneity in this literature that
may account for some of the inconsistent results is the di-
verse set of WM tasks that have been used for training
purposes. The most commonly used training task is a variant
of the single or dual n-back task, but others have used com-
plex span WM tasks (Kane et al. 2004; Redick et al. 2012),
or commercialized programs like Cogmed (e.g., Holmes
et al. 2009; Klingberg et al. 2005). Indeed, in our review
of the literature, we assessed that far transfer to Gf was
present most often in response to dual n-back training
(Colom et al. 2013; Jaeggi et al. 2008, 2010b, 2014;
Jausovec and Jausovec 2012), but there is no evidence of
far transfer to Gf from complex span tasks (Chein and

Morrison 2010; Richmond et al. 2011). While there are ex-
amples of dual n-back training not resulting in far transfer to
Gf, this type of training has shown the most promise in
effectively improving Gf with training. Therefore, we sought
to identify the Bactive ingredient^ in the dual n-back that
may make it more efficacious. Specifically, we aimed to
directly compare two of the most commonly used tasks for
both assessment and training of WM, namely an n-back task
and a complex span task. N-back and complex span tasks,
while both used to measure WM, have been shown to be
only weakly correlated with one another (for a meta-analysis
see, Redick and Lindsey 2013). To the best of our knowl-
edge, no previous study has directly compared n-back and
complex span WM training in the same study.

Here we hypothesized that a critical difference between n-
back and complex span tasks is their reliance on maintaining
and updating relational information in WM (Jonides et al.
1997; Miyake et al. 2000). Matrix reasoning tasks that are
typically used to assess Gf also involve extracting relational
information between stimuli (Carpenter et al. 1990). Previous
work from our group has demonstrated a neural dissociation
between maintaining concrete and relational information in
WM (Ackerman and Courtney 2012; Blacker and Courtney
2016; Blacker et al. 2016; Ikkai et al. 2014). Specifically, these
studies have shown that maintaining a concrete piece of sen-
sory information, such as a spatial location, is supported by
distinct neural substrates as compared to maintaining a spatial
relationship that is independent of the original sensory loca-
tion. Other groups have also shown dissociable neural sub-
strates for processing or maintaining relational information
from other types of concrete stimuli (Badre 2008; Bahlmann
et al. 2014; Libby et al. 2014). Based on this previous work,
we hypothesized that the n-back task relies more on relational
information than a complex span task does due to the constant
need for spatiotemporal updating of information. It can be
reasoned that n-back tasks may involve multiple forms of
relational information depending on the task stimuli. For ex-
ample, in a spatial n-back task, participants are asked to re-
member both the spatial relationship between a current and
previously presented item, but also must remember the
Btemporal^ relationship with respect to how many items have
passed between any given two stimuli. While most n-back
tasks likely involve some form of relational information, here
we focused on visuospatial versions that seem to have multi-
ple relations to maintain.

We first tested this hypothesis in a cross-sectional study
examining individual differences in WM for spatial relations
versus locations and performance on n-back and complex
span tasks, as well as a measure of Gf. Next, we sought to test
whether this differential reliance on relational information
could explain the differences in training efficacy found be-
tween n-back and complex span tasks in the literature by ex-
amining near and far transfer effects in groups trained on
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either one task or the other. Further, the current study aimed to
investigate the neural underpinnings of effective WM training
by comparing the effects of these two training tasks on neural
activity during performance of a spatial relation and location
WM task using EEG. In particular, we hypothesized that n-
back training would have a greater effect on neural activity
during relational WM than would complex span training.

In particular, we examined alpha power (8–13 Hz) be-
cause a body of research has emerged suggesting oscilla-
tions in this range are involved in the maintenance of
information in WM and have been linked to individual
differences in WM performance (for a review see, Roux
and Uhlhaas 2013). Alpha band oscillations have been
observed in a number of sensory modalities during WM
maintenance (Haegens et al. 2010; Herrmann et al. 2004;
Kaiser et al. 2007). For example, it has recently been
demonstrated that the topography of alpha tracks the spa-
tial location of to-be-remembered items in WM (Foster
et al. 2016). The majority of work has focused on alpha
over posterior brain regions, which are thought to reflect
the inhibition of task-irrelevant brain regions in an effort
to prioritize processing of task-relevant information
(Jensen et al. 2002; Jokisch and Jensen 2007; Kelly
et al. 2006; Klimesch et al. 2007). Moreover, WM perfor-
mance has also been linked to alpha over frontal brain
regions (Sadaghiani et al. 2012; Sauseng et al. 2005a,
b). Specifically, there is evidence that synchronization of
alpha oscillations in posterior and frontal brain regions
serves to pro tec t i t ems cur ren t ly he ld in WM
(Bonnefond and Jensen 2012). In fact, Zanto et al.
(2011) found that modulating this anterior-posterior alpha
synchronization via rapid transcranial magnetic stimula-
tion (rTMS) impaired WM performance, which suggests
a causal role for prefrontal cortex (PFC) in modulating
posterior brain regions. Taken together, this previous evi-
dence suggests that alpha may represent a putative mech-
anism by which WM training may exert its effect on en-
hanced performance.

More specifically, in two related studies, our group has
found that when participants maintain a spatial relation in
WM, compared to a spatial location, there is an increase in
posterior alpha power (Blacker et al. 2016; Ikkai et al.
2014). This increase in posterior alpha power has been
interpreted as representing suppression of sensory brain
regions because the sensory information (i.e., the spatial
locations) is no longer task-relevant. In addition to differ-
ences in posterior alpha, our previous work has also shown
that there is greater frontal alpha power when a relationship
is being maintained in WM compared to a location, as well
as increased frontal-posterior phase synchrony (Blacker
et al. 2016). Therefore, if dual n-back and complex span
differentially rely on relational WM, and if dual n-back
training strengthens relational WM, then changes in alpha

power may represent a neural marker of improvement that
would be greater for dual n-back training. Thus, in the
current study, we investigated changes in alpha power dur-
ing this same type of spatial relations and locations WM
tasks before and after dual n-back and complex span WM
training.

Here we describe the results of two experiments.
Experiment 1 is a behavioral study testing our hypothesis
that the n-back task relies more on relational WM as com-
pared to complex span tasks. The results of that study sup-
ported the idea that the reliance on relational processing in
the n-back task could account for differences in transfer
following training that have been reported in the literature.
In experiment 2, we aimed to directly compare the efficacy
of dual n-back and complex span training to elicit near and
far transfer and we aimed to investigate a potential neural
basis of these training-induced changes in WM perfor-
mance: changes in alpha power as measured by EEG.

Experiment 1: Individual Differences Study

Method

Participants

Twenty-four healthy adults (age: M = 19.50, SD = 1.2; 8
males) participated for course credit. All participants had
normal or corrected-to-normal vision and reported no cur-
rent and past neurological or psychological conditions
(e.g., traumatic brain injury, major depression, epilep-
sy…etc), and gave written informed consent approved
by the Institutional Review Board of Johns Hopkins
University.

Tasks and Procedures

Experimental stimuli were controlled by MATLAB (The
MathWorks, Natick, MA) using Psychophysics Toolbox ex-
tensions (Brainard 1997; Pelli 1997), and displayed on a 21″
Apple iMac monitor. Participants were seated approximately
60 cm from the monitor.

Participants completed one session, which included perfor-
mance of the following tasks in one of two orders,
counterbalanced across participants: Order (1) Spatial
Locations and Relations WM task, Symmetry Span, single
spatial n-back task, and BOMAT; Order (2) BOMAT, Spatial
Locations and Relations WM task, single spatial n-back task,
Symmetry Span.

Symmetry Span Participants completed the automated
Symmetry Span task (Kane et al. 2004). Participants recalled
sequences of 2–5 red square locations while performing an
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interleaved symmetry judgment task. The dependent measure
for Symmetry Span was the partial score,1 which is the sum of
red squares recalled in the correct location and serial order,
regardless of whether the entire trial was recalled correctly.
This score will henceforth be referred to as the Symmetry
Span Score.

Spatial n-back Participants were shown a sequence of spatial
locations indicated by black squares and were asked to re-
spond each time the current stimulus was in the same location
as the one presented n positions back in the sequence. The
black squares were presented in eight possible locations orga-
nized in an imaginary circle around fixation. The squares were
presented on a gray background for 500 ms each, followed by
a 2500 ms interstimulus interval (ISI). Participants were re-
quired to press the SPACE bar for targets, and their response
window lasted from the onset of the stimulus until the presen-
tation of the next stimulus (3000 ms); no response was re-
quired for non-targets. Participants were tested on 1-, 2-, 3-,
4-, and 5-back levels in that order. A level consisted of 20 + n
stimuli and contained 6 targets and 14 + n non-targets each.
For each n-level, we calculated d’ as a measure of sensitivity
(d’ = Z(hit rate) – Z(false alarm rate)), which is a useful metric
for an n-back task because it measures hit rate while penaliz-
ing for false alarms (e.g., Haatveit et al. 2010). We used the
average d’ across all five levels as the dependent measure of
performance.

Bochumer Matrices TestWe assessed fluid intelligence (Gf)
using the Bochumer Matrices Test (BOMAT) (Hossiep et al.
1999). The BOMAT is a matrix reasoning test that contains 29
problems and has two full versions, A and B. All participants
in experiment 1 completed version B. The standard time limit
of 45 min was used here. The number of correct solutions was
used as the dependent measure.

Spatial Locations and Relations Task Participants also com-
pleted a novel WM task that required participants to either
maintain spatial relations or spatial locations (Fig. 1). This task
was modeled after the tasks used in previous studies
(Ackerman and Courtney 2012; Blacker and Courtney 2016;
Ikkai et al. 2014).

All stimuli were presented on a 50% gray background. A
trial began with a 500-ms fixation cross, presented in the mid-
dle of the screen. Next, a 500-ms verbal cue indicated whether
the trial would be a BRelation^ or a BLocation^ trial. A sample
array was then presented for 500 ms, which contained two or
three colored circles (each subtending 0.67° × 0.49° of visual

angle). The color of each circle was chosen randomly without
replacement from red, green, yellow, and blue. The circles in
an array were presented between 2.0 and 2.9° of visual angle
apart both horizontally and vertically, but within the same
quadrant of visual space. After a 2000 ms delay period, a test
array was displayed for 500 ms. Participants had a maximum
of 1500 ms to enter their response, which meant that the
1000 ms following the offset of the test array was also con-
sidered the response period. Finally, a 300 ms feedback dis-
play was presented where the fixation cross turned green for a
correct response, red for an incorrect response, and blue if the
response was slower than 1500 ms.

For both trial types, there was a low load (i.e., sample array
contained two colored circles) and a high load (i.e., sample
array contained three colored circles) condition.

For Location trials (Fig. 1), under low load, participants
were instructed to imagine a line segment connecting the
two sample circles and maintain the location of that line in
memory across the delay period. These instructions were used
to encourage participants to encode the exact spatial coordi-
nates of one concrete object (i.e., the imaginary line segment),
while the same number of circles (i.e., two) was presented on
the screen for both Location and Relation trials. At test, par-
ticipants were asked to decide whether or not the black test
circle fell on that imaginary line segment. For match trials, the
black test circle fell in the exact center between the two pre-
viously presented sample circles (i.e., in the center of the re-
membered imaginary line segment). For non-match trials, the
black test circle fell between 1.6 × 2.2° and 2.1 × 2.9° of visual
angle from the position of that center point in any direction
between the sample circles.

For Location trials, under high load, participants were
instructed to remember the absolute locations of the three sam-
ple circles. At test, participants were asked to decide whether or
not the black test circle was in one of the three sample locations
or in a completely new location. For match trials, the black test
circle fell in the identical location as one of the sample circles
and for non-match trials it fell between 1.6 × 2.2° and 2.1 × 2.9°
of visual angle from any of the three sample locations.

While the low and high load Location trials consisted of
different instructions to the participant, the key factor is that
under low load participants were asked to maintain one spatial
location (i.e., the location of the imaginary line segment) and
under high load participants were asked to maintain three spatial
locations (i.e., the locations of the three sample circles). The
imaginary line manipulation in the low load trials was necessary
to equate the number of sample circles displayed for Location
and Relation trials. Further, previous work using this task has
shown that the load manipulation for Location trials activates
brain regions that are typically found with load increases in other
types of visuospatial WM (Blacker and Courtney 2016), such as
posterior parietal cortex (e.g., Todd andMarois 2004) and frontal
eye fields (e.g., Leung et al. 2004).

1 The Symmetry Span task traditionally yields two scores: Bpartial^ and
Babsolute.^ Here we focused on partial scores as these have been shown to
have higher internal consistency than absolute scores (e.g., Conway et al.
2005).
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For Relation trials (Fig. 1), under low load, participants
were instructed to encode and maintain the relative vertical
positions of the two sample circles (e.g., red is above blue).
Upon test, participants indicated whether or not the circles in
the test array had the same relative vertical positions as the
sample circles. For Relation trials, under high load, partici-
pants were instructed to encode and maintain the three possi-
ble vertical relationships between the sample circles (e.g.,
green is above yellow, yellow is above red, red is below
green). As with low load, at test, participants indicated wheth-
er or not the circles in the test array had the same relative
vertical positions as the sample circles. Note, which of the
three relationships was tested was unpredictable, which forced
participants to maintain all three relationships during the delay
period. The horizontal relationship was never task-relevant in
Relation trials.

There are a few crucial aspects of the task design worth
elaborating on. First, regardless of trial type, under low load,
participants were asked to encode and maintain one piece of
information: either one spatial location (Location trials) or one
spatial relation (Relation trials) and under high load, partici-
pants were asked to encode and maintain three pieces of in-
formation: either three spatial locations or three spatial rela-
tions. Second, trial type was pseudorandomly presented so
participants could not predict what trial type they would see
until the cue. Load was uncued, so the participants were un-
aware of the load until the sample array appeared. Third, the

sample array circles were always presented in one quadrant of
the display and the test array circles were always presented in
the same quadrant as the sample circles, although in the
Relation task the test circles were never in the exact same
locations as the sample circles. For all trial types, participants
pressed one button for a Bmatch^ response and another for a
Bnon-match^ response and these response key mappings were
counterbalanced across participants. Participants completed a
total of 256 trials.

Data Analysis

The goal of this initial experiment was to investigate individ-
ual differences in WM for spatial relations versus locations
and how those differences predicted n-back, complex span,
and Gf performance. To do so, we tested partial correlations
between Relation WM accuracy, while controlling for
Location WM accuracy, and n-back, Symmetry Span, and
BOMAT. We also tested for partial correlations between
Location WM accuracy, while controlling for Relation WM
accuracy, and n-back, Symmetry Span, and BOMAT. For the
Location and Relation task, we focused our analysis on high
load trials, because previous work has shown that individual
differences inWMperformance are more evident when load is
high (Cusack et al. 2009; Linke et al. 2011). However, we
report parallel analyses for the low load condition in the
Supplementary Online Material.

Fig. 1 Trial examples for the Spatial Locations and Relations task. Under
low load, Location trials required participants to imagine a line between
two sample circles, hold the location of that line in memory across a delay
and then decide if a test circle fell in that location or not. Under high load,
Location trials required participants to maintain the locations of three
circles in memory and then decide if a test circle fell in one of those
locations or in a completely new location. Under low load, Relation

trials required participants to maintain the vertical relationship (above/
below) of two sample circles and then decide if two test circles were in
the same relationship. Under high load, Relation trials required
participants to maintain the three vertical relationships between three
sample circles and then decide if one of those pairs were presented in
the same relationship at test
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Results

One participant had below chance level accuracy (< 50%) on
the Locations/Relations task and was not included in any anal-
yses. To report complete results for the Locations/Relations
task, we tested a 2 (trial type: Location vs. Relation) × 2 (load:
low vs. high) repeated-measures ANOVA. A main effect of
load emerged, F(1,23) = 66.61, p < 0.001, partial η2 = 0.74,
with accuracy being higher for low load compared to high
load. However, neither the main effect of trial type,
F(1,23) = 1.04, p = 0.32, nor the trial type × load interaction,
F(1,23) = 1.72, p = 0.20, reached significance. Table 1 in-
cludes descriptive statistics for each level of the task.

Next, we examined whether Relation WM accuracy was cor-
related with average d’ on the spatial n-back task, while control-
ling for Location WM accuracy. A significant correlation
emerged, R(21) = 0.59, p = 0.003, whereby higher Relation
WM accuracy was associated with higher n-back d’ values.
Conversely, Location WM accuracy was not significantly corre-
lated with n-back performance, when controlling for Relation
WM accuracy, R(21) = 0.30, p = 0.16. Next, we examined
how these two types of WM related to Symmetry Span perfor-
mance. Neither RelationWM nor LocationWM accuracy, while
controlling for the other, was significantly correlated with
Symmetry Span Score, ps ≥ 0.064. Moreover, Relation WM
accuracy was significantly correlated with n-back d’ even after
controlling for Symmetry Span Score, R(21) = 0.49, p = 0.018,
which demonstrates that n-back performance, above and beyond
Symmetry Span performance, is related to RelationWM. Finally,
we examined correlations with BOMAT score. Relation WM
accuracy, controlling for Location accuracy, was significantly
correlated with BOMATscore, R(21) = 0.44, p = 0.034, whereby
better Relation WM performance was associated with better
BOMAT performance. Conversely, Location WM accuracy
was not significantly correlated with BOMAT score, when con-
trolling for RelationWMaccuracy,R(21) = 0.16, p = 0.47. These
results are illustrated in Fig. 2. Here it was possible to test wheth-
er these above partial correlation coefficients were significantly
different from one another for the BOMATanalyses. The differ-
ence here indeed did not reach significance, p= 0.33 (two-tailed).
However, our goal was to determine if Relation and Location
WM predict BOMAT performance while controlling for the oth-
er type of WM. We have used this approach elsewhere (Blacker
et al. 2017) and argue that these partial correlations are evidence
for a stronger relationship between Relation WM and BOMAT
performance compared to Location WM and the BOMAT.

Given that Relation WM was significantly correlated with
n-back and BOMAT performance, it would be expected that
n-back and BOMAT performance would also be highly cor-
related. In line with previous work demonstrating the robust
relationship between WM and Gf performance (e.g., Engle
et al. 1999), here we did find a significant positive correlation
between BOMAT score and n-back d’, R = 0.58, p = 0.003.

Discussion

The results of experiment 1 represent a proof of concept that
performance on a relational WM task is predictive of perfor-
mance on both an n-back task and a measure of Gf. This
supports our initial hypothesis that the n-back task relies more
heavily on relational processing than complex span tasks do. It
also demonstrates that a measure ofGf, the BOMAT, is related
to relational WM performance. Therefore, we next examined
whether this reliance on relational WM could explain differ-
ences in transfer between these two tasks in a training study, as
well as whether n-back and complex span training would re-
sult in significantly different changes in alpha power follow-
ing training. If n-back training were to have a greater effect
than complex span training on an EEG measure related to
relational WM, then it would provide support for the idea that
the involvement of relational WM might underlie its greater
effectiveness for cognitive training and transfer.

Experiment 2: Training Study

Method

Participants

One hundred thirty-six neurologically healthy adults (age:
M = 21.18, SD = 3.12; 44 males) participated for monetary
compensation. All participants were recruited through flyers
and online university announcements. Recruitment materials
stated BParticipants needed for research on cognitive
training.^ No participants from experiment 1 participated in
the training study. Participants who completed the study re-
ceived an average of $215 (SD = 11).2 All participants had
normal or corrected-to-normal vision, and gave written in-
formed consent approved by the Institutional Review Boards
of both Johns Hopkins University and the Johns Hopkins
Medical Institutions.

Table 1 Descriptive statistics for accuracy in the Locations/Relations
WM task in experiment 1

Descriptive statistics Location trials Relation trials

Low load M = 93.8% (SD = 6.1) M = 93.6% (SD = 4.7)

High load M = 82.9% (SD = 9.7) M = 86.5% (SD = 11.2)

2 Variation in payment arose from participants receiving a completion bonus
of $15 upon completing all study sessions andmaintaining above chance level
performance during training (e.g., two consecutive sessions of average perfor-
mance below chance for each training task resulted in the participant not
receiving the bonus). Participants were aware of the contingencies of this
bonus.
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General Study Procedures

The general study structure is illustrated in Fig. 3. Upon en-
rollment in the study, participants were randomly assigned to a
training group as noted above and then completed a 2.5 h pre-
training assessment session. This initial session consisted of
the informed consent, demographic questionnaire completion,
training program installation onto their personal laptop, com-
pletion of six assessment tasks, instructions and practice trials
for the EEG task, and instructions and practice trials for their
respective training task. All of these tasks are described in
detail below. The second session was a 2 h pre-training EEG
session, which included completion of several questionnaires
and a separate WM task while EEG was recorded. After the
pre-training EEG session, participants were instructed to be-
gin their at-home training sessions immediately and to com-
plete five sessions per week for 4 weeks. Upon completion of
the 20 training sessions, participants completed a 2 h post-
training EEG session where they completed the same WM
task while EEG was recorded. Finally, participants completed
a 1.5 h post-training assessment session where they completed
the six assessment tasks again and completed a study exit
survey.

Training Groups and Tasks

Participants were randomly assigned to one of three training
groups upon enrolling in the study: dual n-back training
(DNBT), symmetry span training (SST), or permuted rule
operations (PRO). During the initial study session, we
installed MATLAB (The MathWorks, Natick, MA) and
Psychtoolbox (Brainard 1997; Pelli 1997) onto each partici-
pant’s personal laptop, along with the scripts for their assigned
training program. Each training session was set to last 30 min.
Participants emailed their data files to the laboratory after ev-
ery session.

Dual n-back Training Similar to Jaeggi et al. (2008), one
group of participants performed a dual auditory and

visuospatial n-back task simultaneously (Fig. 4a).
Participants saw a blue square on a gray background in one
of eight spatial locations on a computer screen and at the same
time heard one of eight letter sounds (i.e., consonants). These
stimulus pairs were presented every 3 s. Participants were
asked to judge whether each stimulus was in the same location
or the same letter as the stimuli n before. Participants
responded by pressing: the Bf^ key if the location was the
same as the location n-back, the Bj^ key if the letter was the
same as the letter n-back, and both Bf^ and Bj^ if both the
location and letter were the same as n-back. Participants began
training at the 1-back level. A sequence of 20 + n stimuli was
presented in a given block, where there were four location-
only targets, four letter-only targets, and two dual targets in
each block. The training was adaptive, whereby participants
were given feedback on their accuracy at the end of each
block. If accuracy was > 85%, the next level would increase
by 1 (i.e., a 2-back), whereas if accuracy was < 70%, the next
level would decrease by 1 (or stay the same if they were on a
1-back), and in all other instances, the level would remain
unchanged.3 While experiment 1 provided evidence of a rela-
tionship between single n-back performance and Gf and
Relation WM, here we used a dual n-back task for training
because it is more common in the literature to use dual n-back
tasks for training purposes and there is evidence that dual and
single n-back task performance are roughly equally correlated
with performance on measures of Gf (Jaeggi et al. 2010a, b).

3 Our adaptivity criteria for the DNBT is a departure from that used by Jaeggi
et al. (2008) and many subsequent studies using this paradigm for training. In
Jaeggi et al. (2008), with 12 targets per block (same as used here), if partici-
pants made fewer than three mistakes per modality they advanced to the next
n-level. Thus, accuracy was considered separately for each modality. Here, we
considered accuracy across both modalities for our cutoff values. In the present
study, participants had to perform above 85% on both modalities considered
together to move up an n-level. This more stringent criteria likely explains why
our participants on average did not advance as far up the n-levels as some
previous studies (see Fig. 8) as it would have beenmore difficult to advance up
a level and easier to fall back down a level with this criteria.

Fig. 2 Partial correlations between Location and RelationWM accuracy and the n-back and BOMAT. RelationWM accuracy significantly predicted n-
back and BOMAT performance, while controlling for Location WM accuracy
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Symmetry Span Training An adaptive version of the auto-
mated symmetry span task (Kane et al. 2004) was used here,
similar to that used by (Richmond et al. 2011). Participants
recalled sequences of red square locations within a matrix
against a background symmetry judgment task (Fig. 4b).
The participant’s task was to remember the order and locations
of red squares presented in a 4 × 4 grid. Each red square was
presented for 650 ms. Interleaved between each red square, a
white 8 × 8 matrix was presented, with some squares filled in
black and participants were asked to decide if the image was
symmetrical along its vertical axis. A total of 96 symmetry
images were utilized (50% symmetrical, 50% asymmetrical).
Participants responded by clicking a box labeled Byes^ or
Bno^ with the mouse. After all red squares and symmetry
judgments were presented, a blank 4 × 4 grid was presented
and the participant recalled the red square locations in the
temporal order they were presented by clicking in the blank
grid with the mouse. This training task was made adaptive in
two ways. Training began with 2 memory items and 1 sym-
metry judgment following each memory item. The next level

would contain 2 memory items and 2 symmetry judgments
following each memory item, then 3 symmetry judgments.
After 3 symmetry judgments, the number of memory items
would increase to 3, but the symmetry judgments would be 1
following each memory item, then 3 memory items and 2
symmetry judgments and so on. If memory accuracy was
> 85% and symmetry accuracy was > 75%, the next level
would increase by 1, whereas if memory accuracy was
< 70% or symmetry accuracy was < 60% the next level would
decrease by 1 (or stay the same if they were on level 1), and in
all other instances the level would remain unchanged.

Permuted Rule Operations The PRO training group served
as an active control group as the training did not involve a
WM task, but was a cognitively challenging and adaptive
training program. The task was adapted from the task used
by Cole et al. (2010). Participants were presented a set of three
rules and then asked to apply those rules to two word stimuli
as quickly as possible (Fig. 4c). Four semantic rules, four
decision rules, and four response rules were used. The

Fig. 3 General study procedures
including sample size and attrition
rate by group
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semantic rule consisted of sensory semantic decisions (i.e., Bis
it sweet?^). The four possible semantic rules were as follows:
SWEET, GREEN, SOFT, and LOUD. The decision rule spec-
ified (using logical relations) how to respond based on the
semantic decision outcome(s) for each trial. The SAME rule
required that the semantic answer was the same (Byes^ and
Byes^ or Bno^ and Bno^) for both words, the DIFFERENT
rule required that the answer was different for the two words,
the SECOND rule required that the answer was Byes^ for the
second word, while the NOT SECOND rule required that the
answer was Bno^ for the second word. The motor response
rules specified what button to press based on the decision
outcome. The task instructions made explicit reference to the
correct response for a Btrue^ outcome, while participants
knew (from the practice session) to use the other finger on
the same hand for a Bfalse^ outcome. For all participants the
Bf^ and Bd^ keys corresponded to left index and middle finger
responses, respectively, whereas the Bj^ and Bk^ keys
corresponded to the right index and middle finger responses,
respectively. As shown in Fig. 4c as an example trial, if the
participant was presented with the rules: SWEET, SAME,
LEFT MIDDLE and the words were CHOCOLATE and
GRASS then the participant would press the Bf^ key (i.e.,
the left index key) to indicate that the outcome was false
(i.e., chocolate and grass are not the same on the attribute of
sweetness).

As with DNBT and SST, the PRO training was adaptive.
Participants started with only one combination of rules and
with self-paced timing. Self-paced meant that participants
could spend as much time as they needed encoding the rules,
then they initiated the trial by pressing the space bar, which
would bring up the two words they had to apply the rules to. In
the beginning, participants had 1500 ms to respond. The next
level would include a time-limited encoding duration of
1500 ms. As participants progressed through the levels the
encoding time was shortened to 500 ms and then eventually
to 300 ms. Once participants were able to perform the task
with the 500 ms encoding duration, the number of rule com-
binations would increase. As all 64 of the rule combinations
were mixed in, then the time in which the participant had to
respond was shortened from 1500 ms to 1000 ms to 750 ms to
500 ms. These different manipulations all served to increase
the difficulty of the task as participants progressed through the
various levels. Participants performed 32 trials per block. If
accuracy was > 85% in a given block, the next level would
increase by 1, whereas if accuracy was < 60% the next level
would decrease by 1 (or stay the same if they were on level 1),
and in all other instances the level would remain unchanged.

Attrition A total of 73 participants completed the study.
Sixty-three participants failed to complete the study. Nine par-
ticipants did not have a computer that would run the study-
related software required for the at-home training sessions,

which classified these participants as failures in pre-
enrollment screening. Additional reasons for dropping out in-
cluded a change in exclusion criteria status, loss of interest,
being too busy with schoolwork, inability to perform above
chance on the Relation/Location WM task, or simply ceasing
to answer emails from the experimenters. A detailed break-
down of these reasons and the number of corresponding par-
ticipants is listed in Table S1 in the Supplemental Online
Material. Participants were equally likely to drop out from
each of the 3 training groups (see Fig. 3). Considering indi-
viduals who dropped out either without contact or reason and
those that did provide a reason for dropping out, we had an
unusually high drop-out rate of 46 participants (34% of the
initial sample). Given the large proportion of participants who
did not provide us with a rationale for their withdrawal from
the study, we can only speculate about the high attrition rate
seen here. Our participants were students from the Johns
Hopkins community and this population has a reputation for
being very focused on coursework and academic outcomes.
Our speculation is that many students opted to drop out of our
time-intensive study in order to prioritize coursework.

Assessment Tasks and Procedures

Experimental stimuli were controlled by MATLAB (The
MathWorks, Natick, MA) using Psychophysics Toolbox ex-
tensions (Brainard 1997; Pelli 1997), and displayed on a 21″
Apple iMac monitor. Participants were seated approximately
60 cm from the monitor.

Object n-back Participants were shown a sequence of object
stimuli and they had to respond each time the current stimulus
was identical in shape to the one presented n positions back in
the sequence (Fig. 5a). The stimuli consisted of 10 random
shapes (Vanderplas and Garvin 1959), which have been used
in an n-back task previously (Jaeggi et al. 2003). The shapes
were presented in one of four colors and participants were told
that color was irrelevant. The timing, n-levels used, and de-
pendent measure were identical to that reported in experiment
1 for the spatial n-back.

Operation SpanWe used the Operation Span (Ospan) task as
a complex span measure ofWM (Kane et al. 2004). As shown
in Fig. 5b, the task requires participants to recall a sequence of
letter stimuli in the correct order in addition to completing a
distracting processing task. We presented three sets of stimuli
per set size (i.e., number of stimuli to be recalled) and the set
sizes ranged from 4 to 8. The processing task involved quickly
responding to whether a math problem was accurate or not
(e.g., 4 + 7 = 11). The score was measured as the sum of letters
recalled correctly in the correct order, regardless of whether
the entire trial was recalled correctly.
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Task Switching Participants completed a task switching par-
adigm (Fig. 5c) similar to that developed by (Rogers and
Monsell 1995). We chose to include this task in our assess-
ment battery because we predicted that it would represent a
near transfer measure for the PRO training group, which
trained on a rapid rule learning and switching paradigm. A
trial began with a 1000 ms fixation period followed by a cue
presented for 200 ms. The cue either read BLETTER^ or
BNUMBER.^ The cue was followed by a 226 ms delay period
and then an alphanumeric pair of stimuli centrally presented.
If cued LETTER, participants had to respond whether the
letter was a vowel or consonant (e.g., left button for vowel,
right button for consonant). If cued NUMBER, participants
had to respond whether the number was even or odd (e.g., left
button for even, right button for odd). Response mapping was
counterbalanced across participants. Participants were
instructed to respond as quickly as possible without losing
accuracy. After a response, a 950 ms intertrial interval (ITI)
was presented. Response time (RT) was the dependent mea-
sure and was considered separately for repeat trials (i.e., trials
where the previous trial was the same cue) and switch trials
(i.e., trials where the previous trial was the other cue).
Participants completed a total of 240 trials where 60% were
repeat trials. The critical dependent measure was switch cost
(switch RT–repeat RT).

BOMAT Before and after training we assessed Gf using the
BOMAT, as described in experiment 1. Here, all participants
completed Form A before training and Form B after training.

A 20-min time limit was enforced here, which has been
used previously in training studies (Jaeggi et al. 2008). The
time restriction was used to avoid ceiling level performance
and to keep the total testing time as short as possible for all
assessments.

Additional Assessment Tasks Participants also completed
two additional tasks before and after training: a change detec-
tion task (Luck and Vogel 1997) and the Attentional Network
Test (Fan et al. 2002). The task procedures and results are
reported in the Supplemental Online Material. While the
focus here was on near transfer and far transfer to Gf only,
we report all measures in an effort to adhere to the
methodological suggestions of Boot et al. (2011) for cognitive
training studies.

Motivation and Engagement Measures Participants provid-
ed self-report ratings of motivation and engagement for each
task and also completed an exit survey at the end of the study,
which assessed how well they liked training and whether they
thought they improved on the training task and/or the assess-
ment tasks. Additional description and results of these mea-
sures can be found in the Supplemental Online Material.

Fig. 4 Task schematics for each
of the three training tasks: a dual
n-back training, b symmetry span
training, and c permuted rule
operations
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EEG Task and Procedures

Experimental stimuli were controlled by MATLAB (The
MathWorks, Natick, MA) using Psychophysics Toolbox ex-
tensions (Brainard 1997; Pelli 1997), and displayed on a 19″
Dell LCD monitor. Participants were seated 92 cm away from
the monitor, and given a Logitech game controller to enter
responses.

Spatial Locations and Relations Task This task was identi-
cal to the one described above in experiment 1 with the fol-
lowing exceptions. The fixation cross here appeared for
900 ms and the feedback display appeared for 100 ms. Also,
each circle subtended 0.42° × 0.31° of visual angle. Memory
array circles were presented between 1.5 and 1.8° of visual
angle apart both horizontally and vertically, but again within
the same quadrant of visual space. For non-match trials, the
black test circle in Location trials fell between 1.1 × 1.5° and
1.4 × 1.8° of visual angle from the position of that center point
in any direction between the sample circles. Finally, partici-
pants completed 88 practice trials during their initial pre-
assessment visit without EEG being recorded in order to learn
the task. Then during the EEG session, participants completed
a total 512 trials.

EEG Data Acquisition and Analysis

EEGRecording EEG data were recorded at 47 sites covering
the whole scalp with approximately uniform density using an
elastic electrode cap referenced to the average of all electrodes
during recording (WaveGuard cap with 47-channel Duke,
equidistant electrode placement, layout: Advanced Neuro
Technology, The Netherlands). Electrode impedance was kept

below 15 kΩ. All EEG electrodes were recorded continuously
in DCmode at a sampling rate of 512 Hz using an anti-aliasing
filter with a 138-Hz cutoff and a high-impedance ANT
WaveGuard amplifier.

Preprocessing Data were analyzed using the Fieldtrip soft-
ware package (Oostenveld et al. 2011). Data were first
high-pass filtered at 0.5 Hz, and then segmented into
epochs covering the time from 2.0 s before to 5.5 s after
the onset of the fixation display in each trial. Independent
components analysis (ICA) was performed on the epoched
data, and the eye blink component was identified and re-
moved for each participant’s data. After eye blink correc-
tion, EEG waveforms from frontal electrodes (i.e., RE1/
LE1) were visually inspected to identify voltage fluctua-
tions (i.e., fluctuations greater than 18.75 μV or less than
− 18.75 μV) typical of eye movements or gross motor
movements. Ocular artifacts are characterized by high,
> 15 μV amplitude, step-like potentials of opposite polar-
ity. Here we used 18.75 μVas the cutoff to be slightly more
conservative, as well as to be consistent with our groups’
previous EEG work with variants of this task. Our group
has empirically learned that this is the most sensitive
threshold for eye blink detection, based on multiple
datasets using this electrode configuration and equipment.
Trials containing these movement artifacts were rejected
entirely. EEG data were analyzed only for correct trials.

To maintain sufficient statistical power for each session,
participants with more than 40% trial rejection due to any
combination of artifacts or behavioral errors were excluded
(N = 11). Both pre- and post-training EEG data were excluded
for those 11 participants. One additional participant’s pre-
training EEG data was excluded because they failed to

Fig. 5 Near transfer assessment tasks. a Trial schematic for the object n-
back task illustrating example 2- and 4-back target scenarios. Participants
completed separate blocks of each n-level (1–5). b Trial schematic for the

Ospan task. Participants completed set sizes 4–8. c Trial schematics for
the Task Switching task illustrating example Brepeat^ and Bswitch^ trials
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complete the post-training EEG session. The final sample of
analyzed EEG data consisted of 2 sessions for 61 participants
(DNBT: N = 20, SST: N = 22, and PRO: N = 19).

Spectral Analysis Power spectra were calculated using a
time-frequency transformation based on multiplication in the
frequency domain from 1 to 30 Hz with 0.5 Hz increments
using a hanning taper applied to short sliding time windows
(Percival and Walden 1993) every 100 ms. An adaptive time
window of five cycles for each frequency (ΔT = 5/f) was
applied.

Statistical Analysis To obtain statistics corrected for multiple
comparisons we used nonparametric permutation tests (Maris
and Oostenveld 2007; Nichols and Holmes 2002). This pro-
cedure controls for type I error by calculating the cluster-level
statistics by randomizing trial labels at each iteration. First,
spectral data from each of the 47 electrodes across the scalp
were averaged over the time and frequency range of interest.
Our frequency range of interest was alpha (8–13 Hz) based on
previous work described above in the Introduction. Our time
range of interest was theWMdelay period (i.e., 1.9–3.9 s after
the onset of fixation), but we excluded the first 500 ms of the
delay period because this time period likely contained
sensory-evoked response activity from the memory array
(e.g., van Gerven et al. 2009; for a more detailed discussion
of this topic, also see Bastiaansen et al. 2012). This timeframe
left 1500 ms of delay period activity to analyze and given the
need to have a minimum of ~ 10 cycles to achieve a reliable
measure of power, we could not break this time period down
any further when examining 8–13 Hz activity. Next, a t-value
was calculated at each electrode. For each iteration randomiz-
ing trial labels, clusters of electrodes where the alpha-level
was < 0.05 were identified, and their t-values were summed.
The largest sum of t-values was used as a t-statistic. This
procedure was repeated 5000 times to create the null distribu-
tion. The p-value was estimated according to the proportion of
the null distributions exceeding the observed cluster-level t-
statistic. It is convention with this analysis approach to report
only the p-value for each cluster of electrodes.

Here our main analysis of interest was a group (DNBT,
SST, PRO) × session (pre-, post-training) interaction. This
was done by first calculating the post–pre difference and then
testing for differences between pairs of groups (i.e., DNBT vs.
SST, DNBT vs. PRO, SST vs. PRO). Fieldtrip does not allow
for a three-level interaction permutation test; therefore, we
imposed a Bonferroni multiple comparison correction for the
three comparisons (i.e., interaction tests with a p-value less
than 0.017 were considered statistically significant).
Significant group × session interactions were followed up
with post hoc contrasts by group and session.

Results

Behavioral Results

For each assessment task, we were interested in whether any
group improved significantly more after training compared to
before training compared to the other two groups. Therefore,
we tested 3 (group: DNBT, SST, PRO) × 2 (session: pre, post)
repeated-measures ANOVAs on the dependent measure for
each assessment task. Our primary assessment measures were
the object n-back task, Ospan, task switching, and the
BOMAT and reliability for each of these measures can be
found in Table 2.

Object n-back For the object n-back task, our dependent
measure was the average d’ score across all five n-back levels.
Any participant with performance > 2SD below the mean for
either session was excluded from any analyses (N = 4). These
exclusions resulted in a total of 69 participants remaining in
the analysis . A main effect of session emerged,
F(1,66) = 21.64, p < 0.001, partial η2 = 0.25, where partici-
pants improved significantly from pre- to post-training. The
main effect of group also reached significance, F(2,66) = 3.87,
p = 0.026, partial η2 = 0.11, with the DNBT showing the
highest performance followed by SST and PRO, respectively.
Critically, the group × session interaction was significant,
F(2,66) = 5.28, p = 0.007, partial η2 = 0.14. Figure 6a shows
the performance gains for all three training groups illustrating
the largest gains for the DNBT group.

Planned contrasts demonstrated that the DNBT group
showed significantly higher performance after training com-
pared to before training, t(22) = 5.82, p < 0.001, as did the SST
group, t(23) = 2.29, p = 0.031, whereas the PRO group’s
performance did not differ from pre- to post-training,
t(21) = 0.50, p = 0.62. Moreover, the DNBT group showed
significantly more improvement from pre- to post-training
than both the SST group, t(45) = 2.02, p = 0.049, and the
PRO group, t(43) = 3.34, p = 0.002. The SST group did not
improve more so than the PRO group, t(44) = 1.24, p = 0.22.
Together, these results reveal significant near transfer for the
DNBT group to the object n-back task.

Ospan The dependent measure was the Ospan score, which is
the sum of correctly recalled letters in the correct order. Two
participants did not complete the pre-training Ospan task.
Following previous work, we excluded any participant with
accuracy on the processing task < 75% for either session
(N = 13). The high rate of participants with poor accuracy
was driven by several participants not understanding the task
during the pre-training session due to experimenter error.
Further, any participant with memory performance > 2SD be-
low the mean for either session was also excluded from any
analyses (N = 3). These exclusions resulted in a total of 55
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participants remaining in the analysis. Processing task accura-
cy for the remaining 55 participants was 93.4% (SD = 4.9). A
main effect of session emerged, F(1,52) = 29.10, p < 0.001,
partial η2 = 0.36, where participants improved significantly
from pre- to post-training. The main effect of group was not
significant, F(2,52) = 0.47, p = 0.63. The group × session
interaction did not reach significance, F(2,52) = 0.75,
p = 0.48. Figure 6b shows the performance gains for all three
training groups, illustrating that there was no significant dif-
ference in pre-training performance between the three groups
and that the two WM training groups, SST and DNBT, did
show numerically greater gains compared to the PRO group.

Task Switching The dependent measure for Task Switching
was the switch cost RT, i.e., switch trial RT—repeat trial RT,
which means that greater values correspond to a larger cost in
RT for switching rules. RTwas only analyzed for correct trials.
Three participants did not complete the pre-training Task
Switching measure. Participants with task accuracy < 75%
for either session were excluded (N = 5) or with mean RT
> 2SD above the mean were also excluded (N = 1). These
exclusions resulted in a total of 64 participants remaining in
the analysis. Task accuracy for the remaining 64 participants
was 95.5% (SD = 3.6). A main effect of session emerged,
F(1,61) = 5.90, p = 0.018, partial η2 = 0.09, where participants
improved significantly from pre- to post-training, meaning
they had smaller switch costs after training compared to before
training. The main effect of group was not significant,

F(2,61) = 0.64, p = 0.53. Critically, the group × session inter-
action was significant, F(2,61) = 3.23, p = 0.046, partial
η2 = 0.10. Figure 6c shows the performance gains for all three
training groups, illustrating the largest gains (i.e., a decrease in
switch cost) for the PRO group.

Planned contrasts demonstrated that the PRO group
showed significantly smaller switch costs after training com-
pared to before training, t(19) = 2.85, p = 0.01, whereas nei-
ther the DNBT group’s performance, t(20) = −0.34, p = 0.74,
nor the SST group’s performance, t(22) = 1.44, p = 0.16, dif-
fered from pre- to post-training. Moreover, the PRO group
showed significantly greater improvement from pre- to post-
training than the DNBT group, t(39) = 2.40, p = 0.021, and a
trend toward greater improvement compared to the SST
group, t(41) = 1.46, p = 0.1. The DNBT group did not improve
more so than the SST group, t(42) = 1.21, p = 0.23. Together,
these results reveal significant near transfer for the PRO group
to the task switching paradigm.

While switch cost was the primary dependent measure of
interest for the task switching task, we also tested a 3 (group:
DNBT, SST, PRO) × 2 (session: pre, post) repeated-measures
ANOVA on task accuracy to ensure the RT results could not
be explained by a difference in accuracy or a speed-accuracy
tradeoff. A main effect of session emerged, F(1,61) = 11.77,
p < 0.001, partial η2 = 0.16, with accuracy being higher after
training compared to before training (pre-training M = 96%,
post-trainingM = 94%). Importantly, neither themain effect of
group, F(2,61) = 0.95, p = 0.39, nor the group × session in-
teraction, F(2,61) = 0.29, p = 0.75, approached significance,
which suggests that the selective improvement of the PRO
group on switch cost following training cannot be explained
by a speed-accuracy tradeoff.

BOMAT The dependent measure was the total number of
correctly solved problems within the time limit. No outliers
were present on this measure (i.e., no score was ± 2SD from
the group mean). The main effect of session was significant,
F(1,70) = 28.74, p < 0.001, partial η2 = 0.29, with perfor-
mance being higher after training compared to before.

Fig. 6 Near transfer results for each training group. a Significant near
transfer to the object n-back task for the DNBT group. b The data for the
OSpan task were in the expected direction with numerically greater gains

for the SST group, but the results did not reach significance. c Significant
near transfer to the task switching paradigm for the PRO group. Error bars
represent standard error of the mean. *p < 0.05, †p = 0.1

Table 2 Test-retest reliability results for the transfer measures of
interest

Test-retest reliability for near Transfer measures

Measure Cronbach’s alpha

Object n-back: average d’ 0.65

Ospan: partial score 0.88

Task Switching: switch cost 0.72

BOMAT 0.72
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Neither the main effect of group, F(2,70) = 0.09, p = 0.91, nor
the group × session interaction, F(2,70) = 0.77, p = 0.47,
approached significance. Figure 7 illustrates the group means
by session.

Predictors of Near Transfer While previous studies have
shown near transfer, it has also been demonstrated that there
are individual differences in performance on training and near
transfer (Jaeggi et al. 2014). Figure 8 illustrates group average
session by session performance on the three training tasks.
First, we were interested in whether performance on training
was correlated with the degree of near transfer. To standardize
each training groups’ performance, we calculated the maxi-
mum training level reached throughout the 20 sessions and
then z-scored that value for each group. A correlation analysis
(not corrected for multiple comparisons) showed that maxi-
mum training level showed a trend toward being positively
correlated with improvement on the object n-back task, for the
DNBT group, R(47) = 0.29, p = 0.05, but not for the SST
group, R(24) = 0.24, p = 0.25,or PRO group, R(22) = 0.07,
p = 0.76. Figure 9a shows that better performance during
training for the WM groups was associated with greater gains
on the object n-back task. Further, we found that baseline
performance (i.e., pre-training) on the object n-back task was
related to improvement on that task following training, for our
WM groups, but not the PRO group. To examine this, we
performed a median split on pre-training performance on the
object n-back task and then compared gain scores (post–pre)
within each group (see Fig. 9b). For the DNBT and SST
groups, the lowWM participants saw greater gains after train-
ing compared to high WM participants, DNBT: t(21) = 3.01,
p = 0.007, SST: t(22) = 3.51, p = 0.002, but this difference was
not significant for the PRO group, t(20) = 1.52, p = 0.14,
showing that this effect was specific to individuals who
trained on a WM task.

Behavioral Results During EEG

Similar to the other transfer tasks described above, we were
interested in whether any group improved significantly more
after training compared to the other two groups on the
Locations/Relations WM task performed during EEG record-
ing. We analyzed the behavioral data from the 61 participants
who completed the study and had sufficient EEG data for
analysis (see details above in the BMethod^).4 First, we tested
a 3 (group: DNBT, SST, PRO) × 2 (session: pre, post) × 2
(load: low, high) × 2 (trial type: Location, Relation) repeated-
measures ANOVA on accuracy. Significant main effects of
load, F(1,58) = 639.07, p < 0.001, partial η2 = 0.92, and trial
type emerged, F(1,58) = 136.05, p < 0.001, partial η2 = 0.70,
with accuracy being higher on low load and Relation trials,
respectively. The session × trial type interaction approached
significance, F(1,58) = 3.90, p = 0.05, partial η2 = 0.06, with
greater improvement on the Relation trials after training com-
pared to the Location trials. Further, the load × trial type in-
teraction was also significant, F(1,58) = 264.13, p < 0.001,
partial η2 = 0.82, with higher load decreasing accuracy to a
greater degree for Location trials compared to Relation trials.
All other main effects and interactions did not reach signifi-
cance, all Fs ≤ 1.80, all ps ≥ 0.17. Given the lack of a signif-
icant interaction including the session and group factors, these
results suggest no significant transfer to this WM task (see
Fig. 10).

EEG Results

To examine whether changes in neural activity occurred in
response to training, we tested a group × session interaction
on the delay period alpha (8–13 Hz) power separately for
Location and Relation trials. Here we only present analyses
from high load trials, but group × session interaction results
for low load trials are detailed in the Supplemental Online
Material. For high load Location trials (see Fig. 11a), there
was a significant interaction in a group of frontal electrodes
when comparing the DNBT and SST groups, p = 0.013, and
also when comparing the DNBT and PRO groups, p = 0.009,
which was in a similar group of frontal electrodes. However,
the group × session interaction comparing SST and PRO
groups was not significant, p > 0.05. To follow up on the
significant interactions, we examined spectral power differ-
ences within each testing session as well as within each group.
Before training, there was no significant difference in alpha
power between the DNBT group and either the SST or PRO
groups. However, after training, the DNBT group showed
significantly more alpha power in a group of frontal electrodes

Fig. 7 BOMAT performance before and after training by group showing
no evidence of significant transfer for any specific group. Error bars
represent standard error of the mean

4 The direction of the effects and significance remain unchanged when the
analyses are tested on all 72 participants that completed both pre- and post-
training EEG sessions.
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compared to the SST group, p < 0.05, and in a cluster of
frontal electrodes and a separate cluster of posterior electrodes
when compared to the PRO group, ps < 0.05. We also exam-
ined whether each group showed significant changes in alpha
power by comparing the post- to pre-training alpha power.
While the PRO and SST groups showed no significant change
in alpha power, the DNBT showed significantly more alpha
power after training compared to before training, p < 0.005, in
a group of frontal electrodes.

For high load Relation trials (see Fig. 11b), there was a
significant interaction in a group of left frontal electrodes

when comparing the DNBT and PRO groups, p = 0.017, but
not when comparing the DNBT and SST groups, p > 0.05.
Also, the group × session interaction comparing SSTand PRO
groups was not significant, p > 0.05. To follow up on the
significant interaction, we examined spectral power differ-
ences within each testing session as well as within each group.
Before training, there was no significant difference in alpha
power between the DNBT group and either the SST or PRO
groups. However, after training, the DNBT group showed
significantly more alpha power in a group of right frontal
electrodes compared to the SST group, p < 0.05, and in a
cluster of frontal electrodes and a separate cluster of posterior
electrodes when compared to the PRO group, ps < 0.05. We
also examined whether each group showed significant chang-
es in alpha power from to pre-training to post-training. While
the PRO and SST groups showed no significant change in
alpha power, the DNBT group showed significantly more al-
pha power after training compared to before training, p < 0.05,
in a group of left frontal electrodes.

Baseline Correlations

We found no evidence in our training data that DNBT has a
differential effect on relational WM. However, in experiment
2 we have a large baseline data set that could be used to
attempt to replicate the initial correlational findings from ex-
periment 1.We therefore tested the same partial correlations as
in experiment 1, here with our baseline sample of 119 partic-
ipants who completed both pre-training sessions (i.e., assess-
ments and EEG). The partial correlation between Relation
WM and pre-training object n-back performance while con-
trolling for Location WM did not reach significance, p = 0.29.
Likewise, there was no relationship between Location WM
and n-back performance when controlling for Relation WM,
p = 0.81. Similarly, there was no significant relationship be-
tween Relation WM and OSpan or BOMATwhen controlling
for Location WM, p = 0.16 and p = 0.64, respectively. There
was also no significant relationships between Location WM
and OSpan or BOMAT when controlling for Relation WM,
p = 0.63 and p = 0.61, respectively.

Discussion

Experiment 2 demonstrated clear near transfer to the object n-
back task for both of our WM training groups, as well as
robust near transfer to a task switching paradigm for our active
control group. Moreover, near transfer for our WM training
groups was predicted by baselineWM level, whereby individ-
uals with lower baseline WM improved more after training
compared to their high WM counterparts. While each group
improved on the BOMAT, we found no specific evidence of
far transfer to Gf for any one training group. In fact, the PRO
group showed the largest numerical gains on the BOMAT of

Fig. 8 Group average training performance for each group. Data is
shown as the average level achieved per session. For the DNBT group,
data is shown by n-level. For the SST group, every third level added an
additional memory item, whereas in between levels added symmetry
judgments in between memory items. For the PRO group, each level
required faster encoding of the rules and then every fourth level added
in a new rule, then starting with level 31 the amount of time to respond
decreased. Error bars represent standard error of the mean
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the three groups. Finally, we found that the DNBT group
showed significant increases in frontal alpha power compared
to the other two training groups.While we did not find support
for our hypothesis of specific improvement in relational WM
driving the DNBT group’s transfer, these results are consistent
with the idea that DNBTmay be a more effective training task
as compared to complex span tasks. Further implications are
discussed below.

General Discussion

We initially hypothesized that a critical difference between n-
back and complex span WM tasks is their reliance on the
ability to extract and maintain relational information in WM.

We predicted that this difference might account for differences
in training efficacy seen in the literature, whereby n-back tasks
seem to produce more effective far transfer. In experiment 1,
we found correlational evidence in support of this hypothesis
whereby performance on a relational WM task predicted per-
formance on an n-back task and a measure of Gf, but not a
complex span task. We followed up on this finding with a
training study in experiment 2, which is the first study to
directly compare n-back and complex span WM training in
the same study. While we found strong near transfer effects,
we saw no evidence of far transfer to Gf. We did not find
evidence to support the notion that the effectiveness of
DNBT is due to a dependence on relational WM. Further,
we failed to replicate our findings from experiment 1 of a
relationship between relational WM and n-back performance

Fig. 9 Predictors of near transfer to the object n-back task. a Scatterplot
for each training group illustrating the relationship between standardized
maximum training level reached and improvement on the object n-back
task. b Baseline performance on the object n-back task was associated

with greater gains after training on that same task for the WM groups but
not the PRO group. Error bars represent standard error of the mean.
*p < 0.05

Fig. 10 Behavioral accuracy data
for the Relation and Location
WM task that participants
completed while EEG was
recorded. Error bars represent
standard error of the mean
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in the larger sample in experiment 2. While we ultimately did
find support for our initial hypothesis about the role of rela-
tional WM in n-back training, our results demonstrated that
DNBT did elicit robust near transfer and significantly greater
neural changes compared to the other two training groups.

Our finding of near transfer but not far transfer, even with
the DNBT group, is perhaps not surprising. There have been
inconsistent results in the literature surrounding far transfer,
but there have been far fewer inconsistencies with respect to
near transfer, i.e., training on one WM task and finding evi-
dence of improvement on a separate, untrained WM task. For
example, training on one type of n-back task transfers to im-
provements on untrained versions of the n-back task (Colom
et al. 2013; Jaeggi et al. 2010a, b; Li et al. 2008). Similarly,
training on one type of complex span WM task transfers to
improvements on other complex span tasks (Chein and
Morrison 2010; Richmond et al. 2011). Consistent with this
previous work, here we found that DNBT resulted in robust
near transfer to an untrained n-back task. Moreover, the SST
group also showed significant improvement on the object n-
back task, but not significantly more so than the active control
group. Importantly, we found clear near transfer from our
active control group to a task switching paradigm, which sug-
gests that this group was indeed an adequate control and that
our WM training groups’ transfer was specific to WM tasks.
Surprisingly, we did not see significant near transfer from the
SST or DNBT groups to the Ospan task even though the
results were in the expected direction. There are at least two
potential reasons for this null result. First, we had a particu-
larly high number of outliers on the Ospan task as noted above

in experiment 2, which may have underpowered the crit-
ical group x session interaction. Second, SST and Ospan
cross-modality boundaries, with symmetry span being vi-
suospatial and Ospan involving verbal, letter stimuli. This
fits with previous evidence that intra- and across-modal
training effects are separable (Schneiders et al. 2011), but
on the other hand, there is evidence of cross-modality
transfer (Buschkuehl et al. 2014; Jaeggi et al. 2014). It
is possible that if we had used another visuospatial com-
plex span task, we might have seen more robust near
transfer; however, an important direction for future train-
ing studies will be to elucidate the role of stimulus mo-
dality in transfer.

Despite the near transfer pattern seen in experiment 2, we
found no evidence of far transfer to BOMAT performance. All
three training groups showed significant improvement on the
BOMATafter training compared to before training, but no one
group showed significantly more improvement, which sug-
gests that these increases may simply be practice effects.
While we predicted far transfer a priori, our results are consis-
tent with previous failures to find far transfer to Gf following
WM training. Interestingly, two prominent examples of failure
to find far transfer also failed to find any improvement from
pre- to post-training on measures of Gf following training
(Redick et al. 2013; Thompson et al. 2013), which is unusual
given the expectation of practice effects. Here we did observe
significant improvement on the BOMAT from pre- to post-
training, but that pattern was present for all three training
groups. In light of this observation, one possible explanation
for our results may be our choice of active control group. The

Fig. 11 Nonparametric
permutation test results for delay
period alpha power (8-13 Hz).
Results are shown for group x
session interactions and post-hoc
contrasts separately for Location
(a) and Relation (b) trials. See
online version for color figures
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PRO training involved rapid rule learning and the ability to
quickly encode and switch between rules. It may be possible
that these active ingredients helped participants to perform
better on the BOMAT after training by increasing speed of
processing and/or cognitive flexibility. This idea is specula-
tive, but future work should address the effectiveness of PRO
training in eliciting transfer effects. Furthermore, the choice of
appropriate active control groups is an ongoing issue that will
play a key role in moving the cognitive training field forward.

In experiment 1, we found evidence that n-back perfor-
mance was associated with relational WM performance
supporting our initial hypothesis. However, in experiment 2,
neither the behavioral nor the EEG data demonstrated support
for a specific role of relational WM in DNBT performance
effects. And we also did not observe the same relationship
between relational WM and n-back performance in our larger
sample in experiment 2. Here we sought to test out the notion
that DNBT may exert different training effects than complex
span because of a greater reliance on relational WM, as was
initially suggested by the results of experiment 1. This hypoth-
esis was not supported, however, by the results of experiment
2. It may be the case that DNBT does utilize relational WM,
but additional factors also contribute to its training effective-
ness, which diluted the transfer to the relation WM task. An
alternative approach would be to specifically design a training
paradigm that improves relational WM more directly. Future
studies could test the effectiveness and transfer effects of such
a training paradigm. Nonetheless, our EEG data did support
the original motivation for our hypothesis, which was that
DNBT seems to be more effective than other training ap-
proaches. Our results showed that only DNBT produced sig-
nificant changes in alpha power, with significant increases in
delay period frontal alpha power after training compared to
before training for both Location and Relation trials. Neither
the SST nor the PRO group showed any significant differ-
ences from pre- to post-training. Alpha activity over frontal
brain regions have been interpreted as representing top-down
modulation of WM (Zanto et al. 2011), which may be the
mechanism by which DNBT is exerting its effectiveness;
however, future studies will be needed to directly test this idea.
Further, this lack of support for the role of relational WM in
transfer, would benefit from future studies examining other
possible factors that underlie WM training and transfer effec-
tiveness. A recent example of such an effort provides evidence
for the role distractor filtering in improving WM capacity via
training (Li et al. 2017).

Our findings with frontal alpha are consistent with the
idea that training is influencing the frontoparietal network,
which has also been shown in two previous studies using
EEG. Jausovec and Jausovec (2012) found that WM train-
ing, on a diverse set of WM tasks, resulted in changes in
alpha and theta event-related synchronization (ERS) when
participants performed transfer tasks. However, in their

study the EEG data were averaged across multiple transfer
tasks that included measures of Gf, verbal analogy, and
spatial rotation. This approach makes it difficult to pinpoint
the changes in oscillatory synchronization to a specific aspect
of training or transfer. Another study by Kundu et al. (2013)
used EEG and TMS to demonstrate that transfer following
WM training was supported by changes in task-related effec-
tive connectivity in frontoparietal and parieto-occipital net-
works that were engaged by the training and transfer tasks.
While very few studies have examined changes in EEG mea-
sures due to training, there is a small body of work using fMRI
that also suggests that training is associated with functional
changes that have been localized to posterior parietal and pre-
frontal cortices (Beatty et al. 2015; Buschkuehl et al. 2014;
Salminen et al. 2016; for an fNIRS study see, McKendrick
et al. 2014; Schneiders et al. 2011; Thompson et al. 2016;
Vartanian et al. 2013). While our results are consistent with
this notion of frontoparietal involvement in dual n-back train-
ing effects, it is worth noting that our frontal alpha results are
present in slightly more anterior clusters of electrodes than are
typically seen. Given the nature of EEG, it is not possible to
discern whether our results have distinct neural sources from
previous work, but it is an interesting idea that may be relevant
for future investigations working in source-space.

One interesting facet of our results is the lack of behavioral
improvement on the Location and Relation WM tasks. The
significant increase in frontal alpha power for the DNBT group
was present despite no significant performance improvement
on the tasks performed during the EEG recording. While these
results may seem at odds with one another, the lack of behav-
ioral change is also a benefit in interpreting the EEG changes.
This suggests that our results are not simply driven by differ-
ences in behavior. At least one previous study has also found
similar dissociations between changes in neural activity follow-
ing training in the absence of changes in behavior (Vartanian
et al. 2013). Somewhat surprisingly, we did not find any asso-
ciation between the changes in alpha power and the behavioral
near transfer measures. In other words, there was no correlation
between transfer to the object n-back task and changes in fron-
tal alpha power during location or relation WM for the DNBT
group. An important future direction will be to measure EEG
activity while participants perform near transfer tasks to poten-
tially pinpoint the mechanism underlying near transfer.

One additional limitation of the current study was the use
of individual tasks as transfer measures. There has been a push
in the field to examine transfer to construct level variables
opposed to individual tests (Chooi and Thompson 2012;
Colom et al. 2013; Shipstead et al. 2012). It remains difficult
to assess constructs with multiple measures and keep the test-
ing sessions at a reasonable length. However, a critical future
direction for the WM training field will be to systematically
test for transfer to construct level variables and simultaneously
uncover the potential neural basis of that transfer.
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In summary, we sought to find what distinguishes n-back
and complex span WM training tasks and how the two types
of training compare with respect to near and far transfer. Our
original hypothesis that relational WM was the critical factor
differentiating these two forms ofWM training was ultimately
not supported. However, we found clear evidence that the
effects of these two types of training are indeed distinct. In
addition to improving behavioral performance on a different
n-back task, DNBTwas found to elicit significant changes in
frontal alpha power during two other substantially different
WM tasks. SST and our active control groups did not demon-
strate any training-related changes in EEG measures. Thus,
DNBT training appears to be a promising method for improv-
ing WM, but future work is needed to test alternative hypoth-
eses about what Bactive ingredients^ of the n-back task make
it a more effective training tool in order to further improve
training protocols.
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