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Abstract
In the present study, we report here the flow curve prediction of AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) at 
different temperatures and strain rates using different modeling techniques such as physics-based [modified Zerilli–Armstrong 
(ZA) model], phenomenological [modified Johnson–Cook (JC) model, Arrhenius model], and artificial neural network (ANN) 
modeling. Finally, the performance of all conventional (i.e., physics-based and phenomenological) and ANN modeling was 
evaluated by coefficient correlation (R) and average absolute relative error (AARE) parameters. It is found that the flow curve 
prediction by phenomenological modeling [i.e., modified JC model (R = 0.9646, AARE = 19.41%) and Arrhenius model 
(R = 0.9696, AARE = 14.62%)] is better as compared to physics-based modified ZA model (R = 0.9321, AARE = 21.42%). 
A comparative evaluation of obtained simulated results indicates that the prediction of hot deformation behavior of studied 
EHEA using ANN modeling (where R = 0.9985, and AARE = 4.57%) is matching excellently with experimental flow curve 
results as compared to conventional modeling approaches.

Keywords  Eutectic high entropy alloy (EHEA) · Hot deformation behavior · Conventional modeling · ANN modeling

Introduction

Multicomponent high entropy alloys (HEAs) have been 
attracting attention worldwide and constitute an active, 
frontier area of research in the exploration of novel materi-
als development with unseen properties since the pioneer-
ing work of Cantor et al. (2004) and Yeh et al. (2004) on 
these alloys in 2004. The search for novel HEA with unique 
microstructure is being actively pursued as a major step 
towards realizing the potential applications. It is reported 

that eutectic HEAs (EHEAs) having high thermal stability 
and unique properties open up new opportunities for creat-
ing next-generation engineering materials. Therefore, under-
standing the flow curve behavior during hot deformation 
is extremely important for the manufacturing of materials. 
Since the hot deformation processing of materials is a com-
plex phenomenon. During the deformation, the hardening 
and softening mechanism depends on the thermomechanical 
processing parameters such as temperature, strain, and strain 
rate (Jain et al. 2020b; Samal et al. 2016; Rahul et al. 2018). 
Microstructural development and mechanical properties of 
materials are interconnected during hot deformation and can 
be understood by a different flow mechanism (Huang and 
Logé 2016). Microstructural changes during the processing 
affect mechanical properties such as flow stress. Understand-
ing the flow behavior of HEAs during hot working condi-
tions helps in designing the alloy for high-temperature appli-
cations. The different mechanisms associated with the hot 
deformation of materials are work hardening, softening, and 
dynamic recrystallization (Huang and Logé 2016; Alaneme 
and Okotete 2019). The different constitutive models are also 
used to understand thermomechanical processing of materi-
als and are categorized as phenomenological, physics-based, 
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and artificial neural network (ANN) models (Lin and Chen 
2011; Murugesan and Jung 2019). It is to be noted that a 
phenomenological model based on mathematical functions 
provides information regarding flow stress but not about 
the physical significance of the process. The calibration 
of that model is easy due to the limited material constant 
to predict the flow stress, but that model is not applicable 
to a wide range of strain rate and temperature (Murugesan 
and Jung 2019). In phenomenological models, flow stress is 
the function of temperatures, stress, and strain rates. Those 
models are based on the classical approach for determining 
the prediction of flow stress for materials. Further, in the 
phenomenological model, the prediction of material proper-
ties is based on fitting and regression of experimental results 
at higher strain rate and temperature during the thermome-
chanical processing of materials. However, it is found that 
this model fails to predict the material behavior accurately. 
Further, the physics-based model provides information 
regarding the thermodynamics, dislocation, and kinetics 
of materials. Materials constant calculation for the above-
discussed model is based on regression fitting. Also, due 
to the non-linear flow stress behavior with temperature and 
strain rate during hot deformation of materials, the regres-
sion analysis for flow stress prediction is not accurate (Lin 
and Chen 2011).

Recently, artificial neural network (ANN) models have 
attracted researchers to design materials for different appli-
cations and predict mechanical properties for high-temper-
ature applications (Altinkok and Koker 2004; Hattab and 
Motelica-Heino 2014; Jain et al. 2020a). ANN model can 
solve a complex problem with good accuracy as compared 
to a conventional model. ANN approach is based on the 
human brain, the neural network mainly consists of dif-
ferent layers, and each layer has neurons that collect and 
transfer the data to the layer (Sabokpa et al. 2012). First 
input parameter as a signal is collected by each neuron in 
the input layer and then these signals transfer to the hidden 
layer and, subsequently, the layer activation function trans-
fers the signals to the output layer. Patnamsetty et al. (2020) 
reported the flow stress prediction using a constitutive model 
for CoCrFeMnNi HEA and found that the predicted output 
is an accurate track with experimental results in a broad 
range of temperature and strain rates. Motlagh et al. (2020) 
reported the hot deformation prediction of 1.4542 Stainless 
Steel using different constitutive models and found that the 
suggested model prediction is accurate and tracked with 
experimental results. Sani et al. (2018) reported the pre-
diction of the flow behavior of Mg alloy (at a temperature 
range 250–450 °C and strain rates range 0.001–1 s−1) by 
constitutive and ANN modeling approaches and obtained 
results show that the ANN model prediction is better than 
the constitutive model. Jain et al. (2020b) recently reported 
that the prediction of the flow curve using ANN modeling 

is well matched with the experimental flow curve compared 
to the results obtained using the constitutive model for novel 
Co–Cr–Fe–Ni–Zr quasi-peritectic HEA.

Considerable literature is available on various aspects 
of HEAs, including the development of novel HEAs and 
microstructure-property correlation. It is worth mentioning 
that the subject of the mechanical behavior of materials, 
followed by correlation with microstructure, has also been 
adequately covered in the literature (Miracle and Senkov 
2017; Chen et al. 2018). The different modeling techniques, 
including physics-based modeling, phenomenological 
modeling, and artificial neural network (ANN), prove to 
be useful tools in the analysis of materials flow behavior. 
In the current study, the conventional and ANN models 
are used to predict the hot deformation flow curve of the 
studied EHEA. The conventional models have specific 
limitations to predict the flow behavior, such as JC model 
has not considered the thermal softening effect for flow 
stress prediction, while physics-based ZA model considers 
the strain hardening, thermal softening, and other physical 
effects for flow stress prediction, but uses some parameters 
which are estimated using precision equipment. The main 
objective is to develop different modeling approaches that 
predict the hot deformation behavior of the studied EHEA at 
different hot working conditions with great accuracy.

Modeling Details

The experimental flow stress data were collected from a 
previous study conducted by Rahul MR and their coworkers 
on EHEA under various hot deformation conditions, 
including temperature ranges of 900–1100 °C and strain 
rate ranges of 0.001–10  s−1 (Rahul et al. 2018). In this 
study, three different types of models such as the physics-
based, phenomenological, and ANN models, are used to 
predict the flow behavior of EHEA. It is to be noted here 
that the modified Zerilli–Armstrong (ZA) model, modified 
Johnson–Cook (JC) model, Arrhenius-type constitutive 
equations, and ANN model with backpropagation training 
algorithm are used for predicting the flow stress. The 
different model's accuracy or performance is evaluated by 
the following parameters: coefficient of correlation (R) and 
average absolute relative error (AARE).

Results and Discussion

Modified Zerilli–Armstrong (ZA) Model

The simple ZA model is based on dislocation mechanisms 
which primarily is the cause of inelastic behavior under 
several load conditions (Lin and Chen 2011). The effects 
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of strain hardening, strain rate hardening, and thermal 
softening on flow stress are considered. However, the simple 
ZA model considers only the coupling effect of temperature 
and strain rate. While the modified ZA model assumes 
the coupling effects of both temperature and strain rate as 
well as temperature and strain. The modified ZA model is 
represented by the following equation (Lin and Chen 2011; 
Murugesan and Jung 2019; Niu et al. 2020):

where C1, C2, C3, C4, C5, C6, and n are material constants 
and T* = T–Tr, Tr being the reference temperature, is taken 
as 900 °C and 𝜀̇∗ (ratio of strain rate to reference strain rate) 
which is taken as 1 s−1. The following procedure has been 
employed to determine all the material constants:

	 (i)	 First, C1 is to be determined from flow curves at 
reference conditions. Actually, C1 is the reference 
yield stress (at reference strain rate and temperature 
conditions), i.e., at 900 °C and 1 s−1. C1 was found 
to be 298.77 MPa.

	 (ii)	 C2 and n are to be determined at reference strain rate 
using the following equation:

Taking natural logarithm and introducing two parameters 
I1 and S1 such that

We get

By putting the flow stress–strain data at reference strain 
rate 1 s−1, the values of S1 and I1 can be determined from 
the slope and intercept of ln � vs. T* at every discrete strain, 
as shown in Fig. 1a. Now, to find C2 and n, the following 
equation is used:

lnC2 and n are the intercept and slope of ln
(
exp

(
I1
)
− C1

)
 

vs. ln � linear fit curve (given in Fig. 1b). C2 and n are found 
to be 63.213005 and − 0.14001898, respectively.

	 (iii)	 Now to find C3 and C4, the expression of S1 is used:

(1)
𝜎 =

(
C1 + C2𝜀

n
)
exp

{
−
(
C3 + C4𝜀

)
T∗ +

(
C5 + C6T

∗
)
ln 𝜀̇∗

}
,

(2)� =
(
C1 + C2�

n
)
exp

[
−
(
C3 + C4�

)
T∗

]
.

(3)I1 = ln
(
C1 + C2�

n
)

(4)S1 = −
(
C3 + C4�

)
.

(5)ln � = I1 + S1T
∗.

(6)ln
(
exp

(
I1
)
− C1

)
= lnC2 + n ln �.

(7)S1 = −
(
C3 + C4�

)
.

		    For every strain, S1 is obtained. In the S1 vs. � 
linear fit curve (given in Fig. 1c), the slope is −C3, 
and the intercept is −C4. Thus, C3 and C4 are found 
to be 0.00379014 and 0.00117786, respectively.

	 (iv)	  C5 and C6 can be found by taking the natural 
logarithm of Eq. (1) and introducing a new parameter 
S2 such that:

For all the temperatures and discrete strains, S2 is to 
be found by the slope of the ln � vs. ln 𝜀̇∗ linear fit curve. 
Then, C5 and C6 are found from the slope and intercept 
of S2 vs. T* linear fit at every discrete strain (given in 
Fig. 1d). The final C5 and C6 are the average of all C5 and 
C6 at each strain. Thus, C5 and C6 are found to be 0.164199 
and 0.00039463, respectively. Now finally, the obtained 
modified ZA equation is expressed:

The predicted and experimental flow curve at different 
thermomechanical conditions employing a modified ZA 
model is given in Fig. 2.

Modified Johnson–Cook Model for Flow Stress 
Prediction

In the J–C model, f low stress is dependent on the 
temperature, strain, and strain rate which is used for 
different types of materials and a more comprehensive 
range of temperature and strain rate due to the simplicity 
and easy availability of model parameters. In a simple 
JC model, the relationship between the deformation 
temperature, flow stress, strain rate, and strain can be 
expressed as (Murugesan and Jung 2019; Motlagh et al. 
2020; Niu et al. 2020; Samantaray et al. 2009; He et al. 
2018):

where the � is flow stress, �y is the reference yield stress (at 
the reference temperature and strain), A is strain hardening 
coefficient, n is strain hardening exponent, B is coefficient of 
strain rate hardening, m is the thermal softening coefficient, 
𝜀̇
∗ dimensionless coefficient (ratio of strain rate 𝜀̇ and 𝜀̇r 

(8)
ln 𝜎 = ln

(
C1 + C2𝜀

n
)
−
(
C3 + C4𝜀

)
T∗ + S2 ln 𝜀̇

∗

(9)S2 = C5 + C6T
∗.

(10)

� =
(

298.77 + 63.213005�−0.14001898
)

exp {−(0.00379014 + 0.00117786�)(T(◦C) − 900)

+(0.164199 + 0.00039463(T(◦C) − 900)) ln �̇
1

}

.

(11)𝜎 =
(
𝜎y + A𝜀n

)
(1 + B ln (𝜀̇∗))(1 − T∗m),
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reference strain rate), and T* is homologous temperature. T* 
can be expressed as:

where the T is the hot working temperature, Tm is the 
melting temperature, and Tr is the reference temperature. 
The minimum value of temperature and strain rate during 
hot working is assumed to be the reference value. However, 
it is observed that the temperature and strain rate do not 
have independent effects on flow stress. This leads to a new 
modified Johnson cook model, which identifies the coupling 
effects of temperature and strain rates (Zhang et al. 2017). 
The modified Johnson Cook (JC) model can be expressed as:

(12)T∗ =
T − Tr

Tm − Tr
,

(13)
𝜎 =

(
A1 + B1𝜀 + B2𝜀

2
)(
1 + C1 ln 𝜀̇

∗
)
exp

[(
𝜆1 + 𝜆2 ln 𝜀̇

∗
)(
T − Tr

)]
,

where A1, B1, B2, C1, �1 , and �2 are materials constants. The 
meanings of the rest of the variables are the same as those 
in the simple JC model.

The following procedure is employed to determine these 
material constants:

(a)	  First, to determine A1, B1, and B2, a two-degree 
polynomial fitting is done at a reference temperature 
of 1100 °C (not taken minimum in modified JC model) 
and reference strain rate of 1 s−1 (given in Fig. 3a). 
The stress would now be evaluated in the reference 
conditions by the following expression:

	   On performing a two-degree linear fit for all chosen 
discrete strains (0.025–0.6) at reference conditions, we 

(14)� =
(
A1 + B1� + B2�

2
)
.

Fig. 1   Calculation of material constant for modified ZA model
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get A1, B1, B2 as 191.5067, − 71.93108, − 64.23083, 
respectively, from the coefficient of fitted polynomial 
equation.

(b)	 Now for determining C1, only reference temperature 
(1100  °C) is used. In this condition, we get the 
following equation:

	   Thus, from the given expression, C1 is the slope of 
�

(A1+B1�+B2�
2)

 vs. ln 𝜀̇∗ (given in Fig. 3b). This needs to 
be done for all discrete strains and strain rates in a 
single graph. C1 is determined as 0.1424.

(15)
𝜎(

A1 + B1𝜀 + B2𝜀
2
) = 1 + C1 ln 𝜀̇

∗.

Fig. 2   Predicted and experimental flow stress at different hot working conditions using a modified ZA model
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(c)	 Next to determine �1 , �2 , the following expression is 
used, which is results from rearranging the modified 
JC equation and taking its logarithm, we get

To simplify this equation, a parameter λ is introduced 
such that:

λ can be easily determined as it is the slope of the 
ln

𝜎

(A1+B1𝜀+B2𝜀
2)(1+C1 ln 𝜀̇

∗)
 vs. 

(
T − Tr

)
 given in Fig. 3c. Simi-

larly, a different λ for every strain rate is obtained. Hence, 
�1 , �2 , can be easily found from the intercept and slope of λ 
vs. ln 𝜀̇∗ plot, which is presented in Fig. 3d. �1 and �2 are 
found to be − 0.00401 and 0.000395208, respectively. Thus, 
the final modified JC equation can be expressed as follows:

(16)
ln �

(

A1 + B1� + B2�2
)(

1 + C1 ln �̇∗
)

=
(

�1 + �2 ln �̇∗
)(

T − Tr
)

.

(17)𝜆 = 𝜆1 + 𝜆2 ln 𝜀̇
∗,

The predicted and experimental flow stress at differ-
ent hot working conditions using a modified JC model is 
given in Fig. 4.

Arrhenius Model

In this model, hot deformation flow behavior during hot 
working of materials can be predicted by using the consti-
tutive equation. In the equation, flow stress is the function of 
different hot working variables such as temperature, strain, 
and strain rate. The equation can be written as follows con-
sidering the Zener–Holloman parameter (Z) (Saravanan and 
Senthilvelan 2016; Gao et al. 2018):

(18)

� =
(

191.5067 + −71.93108� − 64.23083�2
)

×
(

1 + 0.1424 ln �̇
1

)

exp
[(

−0.00401 + 0.000395208 ln �̇
1

)

(T(◦C) − 1100)
]

Fig. 3   Calculation of material constant for modified JC model
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In the above equation, 𝜀̇ is strain rate (s−1), Q is the 
activation energy (J mol−1), R is the universal gas constant 

(19)Z = A × [sinh (𝛼𝜎)]n = 𝜀̇ × exp

(
Q

RT

)

(20)𝜀̇ = A × [sinh (𝛼𝜎)]n × 𝜀̇ × exp

(
−

Q

RT

)
.

8.314 J−1mol−1 K−1, T is deformation temperature in K, σ is 
hot deformation stress (MPa), and A, α (α = β/N), and n are 
materials constant. The value of different material constants 
is calculated by linear fitting of different plots mentioned in 
Fig. 5. The values β and N are the slopes of the lnσ vs. ln𝜀̇ and 
σ vs. ln𝜀̇ plot with a linear fit (Fig. 5a, b). Linear fitting of ln𝜀̇ 
vs. ln[sinh(ασ)] plot yields the value of n (given in Fig. 5c). 
The activation energy (Q) and parameter A can be calculated 
by taking the logarithm of Eq. (19), which can be expressed as:

Fig. 4   Predicted and experimental flow stress at different hot working conditions using a modified JC model



716	 Transactions of the Indian National Academy of Engineering (2024) 9:709–724

123

(21)Q = 10, 000 × R × (n)T × (s)
𝜀̇

(22)ln Z = lnA + n × [sinh (��)].

In Eq. (21), the value of s is the slope after linear fitting the 
plot between 10,000/T vs. ln[sinh(ασ)] (given in Fig. 5d) and 
intercept of plot between the ln[sinh(ασ)] vs. lnZ determines 
the value of A, which is represented in Fig. 5e. The predicted 
flow stress curve using the Arrhenius model is represented in 
Eq. (23):

Fig. 5   Calculation of material constant for Arrhenius model
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Here, n is dependent on temperature and strain rate, so the 
value of n is the average slope of plot {(𝜕 ln 𝜀̇)∕𝜕 ln [sinh (𝛼𝜎)]} 
at various hot working temperatures. The value of different 
parameters for strain 0.5 is represented in Fig.  5. The 

(23)� =
1

�
× ln

⎧
⎪⎨⎪⎩

�
Z

A

� 1

n

+

��
Z

A

� 2

n

+ 1

� 1

2
⎫
⎪⎬⎪⎭
.

parameters Z, 𝜀̇ , and σ at strain 0.5 can be expressed by the 
following equations:

(24)Z0.5 = 𝜀̇. exp
(
254865

RT

)

(25)
𝜀̇ = 9.26 × 109 ×

[
sinh

(
0.005563.𝜎0.5

)]5
× 𝜀̇. exp

(
254865

RT

)

Fig. 6   Predicted and experimental flow stress at different hot working conditions using the Arrhenius model
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Similarly, flow stress is calculated for all strains by put-
ting the α, Z, A, and n in Eq. (26). The obtained predicted 
flow curve using the Arrhenius model and experimental flow 
curve at different thermomechanical conditions are repre-
sented in Fig. 6.

Artificial Neural Network (ANN) Modeling Approach 
for Flow Stress Prediction

ANN modeling approach is based on the human brain that 
collects the data by adoptive self-learning (Jain et al. 2022; 
Hosseini et al. 2004), which solves simple and complex 
problems by adaptive learning. Recently, this approach 
is extensively used in the materials community to design 
novel materials for specific applications. In this approach, 
there are different layers which can solve the problem 
with a proper database. The input layer first receives the 
input data and then transfers it to the hidden layer, after 
training in a hidden layer by the activation function, the 
data is transferred into an output layer. Before training, 
the data scaling should be performed to convert the data 
between 0 and 1. In this study, data scaling is done by 
two approaches which are mentioned in Table 1, as des-
ignated as ANN model-1 and ANN model-2. Both the 
ANN models have used a feed-forward backpropagation 
approach with the L–M algorithm. In the present study, a 
total of 2400 input-target (temperature, strain, strain rate, 
and flow stress) data are used. The model trains the data 
to get the output and then that compares with the targeted 
value. The output after several iterations for both the ANN 
models is presented in Table 1. The mean square error 

(26)
�0.5 =

1

0.005563
× ln

⎧
⎪⎨⎪⎩

�
Z0.5

9.26 × 109

� 1

3.43

+

��
Z0.5

9.26 × 109

� 2

3.43

+ 1

� 1

2
⎫
⎪⎬⎪⎭
.

(MSE) plot and coefficient of correlation (R) during train-
ing, validation, testing, and overall data for ANN model-1 
and ANN model-2 are represented in Figs. 7a, b, and 8a, b, 
respectively. The comparison of the flow curves for ANN 
model-1 and ANN model-2 at different temperatures and 
strain rates is given in Figs. 9 and 10, which shows that 
the prediction of flow stress at a higher strain rate is better 
than at a lower strain rate.

Performance of the Models

The performance of all above-discussed models is 
evaluated by the coefficient of correlation (R) and 
average absolute relative error (AARE), which can be 
mathematically expressed as (Sabokpa et al. 2012; Jain 
et al. 2020b):

where E and P are experimental and predicted values, 
respectively, and N is the total number of datasets. The per-
formance of all models is represented in Fig. 11. From the 
result, it is observed that the ANN model-2 predicts flow 
behavior more accurately as compared to all other models.

(27)R =

∑N

i=1

�
E − P

�
×
�
P − E

�
�∑N

i=1

�
E − P

�2

×
∑N

i=1

�
P − E

�2

(28)AARE(%) =
1

N
×

N∑
i=1

||||
E − P

E

|||| × 100,

Table 1   ANN model details

Model Scaling of data for training MSE Coefficient 
of correlation 
(R)

ANN model 1
Xnor. = 0.1 + 0.8 ×

(X−Xmin)
(Xmax−Xmin)

Normalization of stress (σ), temperature (T), and strain rate (𝜀̇)

0.0014 0.988

ANN model 2
𝜀̇nor. = 0.1 + 0.8 ×

(log 𝜀̇−log 𝜀̇min)
(log 𝜀̇max−log 𝜀̇min)

Normalization of strain rate (𝜀̇) , while stress (σ) and temperature (T) nor-
malized by as per the ANN model 1

8.91 × 10–5 0.9985
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Fig. 7   a MSE (mean square 
error) and b coefficient of cor-
relation at different stages of 
ANN model 1
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Fig. 8   MSE (mean square error) 
and coefficient of correlation at 
different stages of ANN model 
2
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Conclusion

In the present study, two phenomenological, one physical-
based, and two ANN-based models have been used to predict 
the flow behavior (at temperature range 800–1100 °C and 
strain rates range 10–3–10 s−1 of AlCoCrFeNi2.1 eutectic 
EHEA. The following conclusions are drawn based on the 
above-presented result and discussion.

1.	 The f low curve prediction is done by physics-
based modified ZA model with R = 0.9321 and 
AARE = 21.42%. This model does not predict the 
flow behavior accurately which is attributed to the 
dependence of some variables which requires precision 
equipment to be measured.

2.	 The phenomenological model such as the modified JC 
model does not also provide accurate tracking of flow 

Fig. 9   Predicted and experimental flow stress at different hot working conditions using ANN model 1
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stress at a higher strain rate and lower temperature which 
is due to the lack of information available on various 
phenomena during deformation. The observed values of 
R and AARE for the modified JC model are 0.9646 and 
19.41%.

3.	 Another phenomenological model such as the Arrhenius 
model (R = 0.9696 and AARE = 14.62%) shows an 
improvement in the flow curve's predictability compared 
to the modified ZA model and the modified JC model.

Fig. 10   Predicted and experimental flow stress at different hot working conditions using ANN model 2
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4.	 It is observed that the ANN model-2 ANN model with 
backpropagation training algorithm predict accurately 
the flow behavior at a wide range of temperature and 

strain rates with obtained R = 0.9985, MSE = 8.91 × 
10–5 and AARE = 4.57%) as compared to ANN model-1 
(R = 0.988, MSE = 0.0013621, and AARE = 16.42%) 

Fig. 11   Performance of models a modified JC, b modified ZA, c Arrhenius model, d ANN model 1, and e ANN model 2
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and conventional models. The predicted flow curve is 
in good agreement with the experimental results due to 
the proper scaling of input data.
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study are available from the corresponding author on reasonable 
request.
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