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Abstract
Long-term predictions for an ongoing epidemic are typically performed using epidemiological models that predict the timing 
of the peak in infections followed by its decay using non-linear fits from the available data. The curves predicted by these 
methods typically follow a Gaussian distribution with a decay rate of infections similar to the climbing rate before the peak. 
However, as seen from the recent COVID-19 data from the US and European countries, the decay in the number of infections 
is much slower than their increase before the peak. Therefore, the estimates of the final epidemic size from these models 
are often underpredicted. In this work, we propose two data-driven models to improve the forecasts of the epidemic during 
its decay. These two models use Gaussian and piecewise-linear fits of the infection rate respectively during the decelera-
tion phase, if available, to project the future course of the pandemic. For countries, which are not yet in the decline phase, 
these models use the peak predicted by epidemiological models but correct the infection rate to incorporate a realistic slow 
decline based on the trends from the recent data. Finally, a comparative study of predictions using both epidemiological and 
data-driven models is presented for a few most affected countries.
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Introduction

In recent days, Coronavirus disease 2019 (COVID-19) has 
emerged as an unprecedented challenge before the world. 
This disease is caused by a novel coronavirus SARS-CoV-2, 
for which there is no specific medication or vaccine approved 
by medical authorities. This disease is transmitted by inha-
lation or contact with infected droplets or fomites, and the 
incubation period may range from 2 to 14 days (Wu and 
McGoogan 2020). This disease can be fatal to the elderly 
patients (about 27% for 60+ age groups), and those with 
underlying co-morbid conditions (Yang et al. 2020). As of 
May 15, 2020, there have been about 4.6 million confirmed 
cases of COVID-19 and about 300,000 reported deaths 
globally.

A realistic estimate of intensity and temporal distribution 
of this epidemic can be beneficial to design key strategies to 
regulate the quarantine as well as to prepare for social and 

economic consequences due to lockdown. However, as seen 
from the recent literature (Roda et al. 2020), the predictions 
by epidemiological models for an ongoing spread are often 
unreliable as they do not accurately capture the dynamics of 
COVID-19 in the absence of established parameters. In this 
work, we propose data-driven models for COVID-19 decay 
purely based on characteristics of COVID-19 spread, and 
thus include the effects of lockdown and other key factors. 
For subsequent discussions, the default year is 2020 and 
all the statistics are based on data till May 15, 2020, unless 
otherwise specified.

First, we examine the dynamics of COVID-19, before 
and after the lockdown as shown in Fig. 1a. The abscissa 
indicates the days shifted by the date when the lockdown 
was imposed or other intervention measures were taken (see 
list in Ranjan 2020b). Thus, the four phases indicate: (1) 
Early slow epidemic growth ( t < t−1 ), (2) initial exponential 
growth ( t−1 < t < t0 ) typical of an epidemic, (3) continu-
ing exponential growth during lockdown based on the incu-
bation period of SARS-CoV-2 ( t0 < t < t1 ≡ t0 + 14 ) and 
(4) expected deceleration phase ( t > t1 ). In Fig. 1a, both 
China and South Korea (SK) show a very rapid arrest of the 
COVID-19 growth post interventions ( t > t1 ), while other 
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countries display just a slowdown evident by the change in 
slope. Further, the growth curves for India and Russia are 
much more rapid in this phase compared to those for other 
countries .

The differences in COVID-19 spread among geographi-
cal regions after the lockdown can be better visualized on 
a linear scale as shown in Fig. 2a. Most of the countries 

considered in the figure took social distancing measures 
before the end of March, so it is expected that the effects 
of interventions should become visible latest by mid-April. 
Both the US and the UK exhibit linear growth in this period, 
while other European countries show initial linear growth 
followed by a slow flattening (Ansumali and Prakash 2020). 
The curves for India and Russia are closer to exponential 

Fig. 1   Dynamics of COVID-19 before and after interventions for key countries in the world(a), and most affected states in India (b)

Fig. 2   (a) Growth curves, (b) daily number of tests for different countries
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growth. A relatively low number of infections for India 
despite exponential growth reflects the early measures of 
India in international flight suspension and lockdown.

Very different trends of the curve after the lockdown 
indicate a disparity in compliance levels of social distanc-
ing measures. For example, in the US, each state follows its 
norm of intervention, and social distancing measures are 
imposed on different dates. An implication of this is that 
when the initially most impacted states like New York and 
New Jersey started showing signs of flattening in late April, 
other states like Illinois, Massachusetts and California dis-
played surges in the number of cases, thereby keeping the 
overall growth in the US on a linear course.

The case of India is also compelling as it first displayed 
a strong impact of lockdown (close to 70% compliance, as 
suggested in Ranjan 2020a) despite a few local outbreaks. 
This led to a linear growth for some time, but an escalation 
in early May cases put India on a near exponential course. 
To further examine this, we plot COVID-19 distribution in 
key affected states in India in Fig. 1b. The time-series data 
is divided into four periods, with the first three being before, 
during and after lockdown similar to that in Fig. 1a and the 
last one from May 2 (green shade) when a surge in the num-
ber of cases in many states put India onto the exponential 
course. Fig. 1b, we note a varying distribution of COVID-19 
among Indian states much like in the US, just four states - 
Maharashtra, Gujarat, Tamilnadu, and New Delhi contribute 
to about 70% of the total cases.

Among these, the most affected states, Maharashtra and 
Gujarat are on the course of exponential growth. Delhi, 
Tamilnadu and West Bengal show an initial arrest of the 
growth (blue shade), followed by later and more recent local 
outbreaks as marked by a discontinuity in the slope (see 
green shade in inset). Several other states, including Uttar 
Pradesh, Kerala and Karnataka display good control over the 

epidemic, while other states are in the linear regime through-
out from t1 (beginning of the blue shade).

Since the predictive models depend significantly on 
data, an important aspect to consider is that the number of 
reported infections does not truly reflect the actual outbreak 
of COVID-19. The data on infection rate are often limited by 
the countries’ testing capability, which in turn is related to 
the availability of testing kits, size of healthcare profession-
als per population, and infrastructure. Further, the asymp-
tomatic population is often excluded in testing strategies 
adopted by most countries. To elucidate this, we show the 
daily number of tests for key countries in Fig. 2b. We gener-
ally note that the increase in the number of tests with time 
is very closely related to the infections shown in Fig. 2a, 
as expected. A small number of reported cases for India 
in March could be due to inadequate testing at that time. 
Therefore the predictions by models using data from that 
period had considerable uncertainty (Ranjan 2020b; Singh 
and Adhikari 2020).

We briefly discuss the implication of rigorous testing in 
COVID-19 control by carefully examining the South Korean 
data, shown in the inset in Fig. 2b. Unlike most countries 
with the number of tests increasing slowly during the initial 
phase of the outbreak, the reverse is seen for South Korea. 
The response of SK to the outbreak was quick and they ran 
the most comprehensive and well-organized testing program 
in the world from February (Fig. 2b) when the outbreak was 
still not severe. This, combined with large-scale efforts to 
isolate infected people and trace and quarantine their con-
tacts, lead to successful control of the outbreak. For compar-
ison, SK, the US, and India respectively have 14500, 33000 
and 1550 tests per million inhabitants on May 15.

A final but most important factor affecting the outbreak 
and the predictions is the epidemiology of COVID-19 in dif-
ferent geographical regions. The values of epidemiological 

Table 1   Characteristics of 
COVID-19 spread and projected 
epidemic size until middle of 
August, 2020

1  High uncertainty in projections as COVID-19 curve displays near exponential growth
2  Uncertainty due to varying intervention measures among states
3  Based only on the PCR data

Projected size (×10−5)

Characteristic ratios (%) Epidemiological Data-driven

Country   PR   CRR​   CFR   SIR   SEIQRDP   MGDM   PLDM

USA2 13.4 22.1 6.0 20.2 15.88 18.68 25.28
Russia1 4.1 23.2 0.9 4.11 5.56 6.74 5.83
UK 10.1 – 14.4 2.60 2.68 3.24 4.11
Spain3 9.0 68.9 10.0 2.26 2.19 2.66 2.64
Italy 7.8 53.7 14.1 2.23 2.18 2.64 2.48
France 13.0 33.7 15.3 1.77 1.79 2.18 1.96
Germany 5.6 86.8 4.5 1.73 1.65 2.01 1.86
India1,2 4.0 35.6 3.2 2.22 6.61 7.13 6.19
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parameters such as transmission rate, recovery rate, and 
basic reproduction number (Liu et al. 2020) depend on many 
social and environmental factors and are dissimilar in differ-
ent regions. For an ongoing outbreak, the epidemiology is 
not fully established, but available data can provide mean-
ingful insights. We report three characteristic ratios: positiv-
ity ratio (PR), case recovery ratio (CRR) and case fatality 
ratio (CFR) to roughly correlate with the epidemiological 
parameters: the rates of infection � , recovery � , and mortal-
ity � respectively (Hethcote 2020). PR is the total number 
of infections for a given number of tests. CRR and CFR are 
respectively, the number of recovered and deceased cases 
as a fraction of total infections. These values are reported 
in percentages in Table 1. There is a high disparity in these 
values among different regions. India and Russia have the 
lowest PR ≃ 4% , compared to the very high values in the US 
( ≃ 14% ), UK ( ≃ 10% ), and France ( ≃ 13% ). A very low PR 
for India could be due to the factors like warmer climate as 
well as humidity (O’Reilly et al. 2020), a large proportion 
of the young in the total population, and possible immunity 
due to BCG vaccinations (Curtis et al. 2020) and malar-
ial infections (Goswami et al. 2020). CRRs for Germany 
( ≃ 87% ) and Spain ( ≃ 69% ) are highest, but it is expected 
that the value of CRR in countries currently in the accelera-
tion phase will improve with time. The case fatality ratio is 
very high for France(≃ 15% ), UK(≃ 14% ) and Italy(≃ 14% ) 
compared to the world average of 2–3%. A high ratio may 
be due to a higher percentage of the elderly population in 
these countries.

It is clear from the above discussion that the epidemi-
ologies of COVID-19, as well as the impact of social dis-
tancing for different countries, are very dissimilar. Further, 
there is an inhomogenous COVID-19 spread within a coun-
try as seen for the US and India. All of these factors make 
the modeling of this epidemic during its progress very chal-
lenging. Typically, epidemiological models such as a logistic 
or a compartmental model are preferred for modeling the 
later stages. However, these models are highly dependent 
on initial conditions and underlying unknown epidemiologi-
cal parameters, incorrect estimation of which can give com-
pletely different results. A further concern with these models 
is the prediction of the decay rate of infections, which is gen-
erally high compared to the recent trends (Ranjan 2020a). 
Therefore, in this work, we propose two data-driven models 
for the predictions that incorporate the slow decay of the epi-
demic post-lockdown and provide more realistic estimates. 
Projections for key affected countries are presented using 
these data-driven as well as epidemiological models.

COVID-19 data used in this study are taken from vari-
ous sources. Modeling is based on the time-series data from 
Johns Hopkins University Coronavirus Data Stream, which 
combines World Health Organization (WHO) and Centers 
for Disease Control and Prevention (CDC) case data. Data 
on tests are taken from ‘Our World in Data’ source that com-
piles data from the European Centre for Disease Prevention 
and Control (ECDC). Time-series data for Indian states are 
taken from github.com/covid19india.

Fig. 3   Projections using epidemiological and proposed data-driven models
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Data‑Driven Models

Typically for an ongoing epidemic, epidemiological models 
estimate the underlying parameters based on fit from avail-
able data and then use simple ordinary differential equations 
to predict the day of the peak and the decay rate. To illustrate 
the limitations of these models, we show predictions for Italy 
using a logistic model (Ma 2020), as well as two compart-
mental epidemiological models- SIR (Hethcote 2020) and 
Generalized SEIR (SEIQRDP) (Peng et al. 2020) in Fig. 3a. 
Open-source MATLAB codes developed by Batista (2020) 
and Cheynet (2020) are used for SIR and SEOQRDP models 
respectively.

As the epidemic has passed its peak in Italy, a key param-
eter for estimation is the decay rate. A close examination 
of the daily cases in Fig. 3a shows that all the three models 
predict a faster decay rate as the curve is nearly symmetric 
around the peak. This distribution leads to an under-predic-
tion of size as well as the duration of the epidemic. Although 
not shown for every geographical region considered in this 
paper, this is true for most of the predictions.

Modified Gaussian Decay Model (MGDM)

We shall describe the first data-driven model to improve the 
predictions. As shown in Fig. 3a, the infection rate (daily 
cases) predicted by epidemiological models follow a nearly 

normal distribution with dI
dt

= aexp

(

−

(

t − �

�

)2
)

 , where � 

represents the day with the peak number of cases, � is spread 
around this day from the beginning of the epidemic to the 
end, and a is a constant that determines the number of cases. 
Because of the nearly symmetric distribution of the curve, 
the decline rate is typically predicted as the negative of the 
climb rate.

To make the predictions closer to actual values in the 
deceleration phase, we introduce a new parameter � , which 
changes the variance � of this distribution after the peak to 
make the decline rate more realistic. Hence, the new distri-
bution in this Modified Gaussian Decay Model (MGDM) is 

given by dI
dt

= �aexp

(

−

(

t − �

��

)2
)

 , where the pre-multi-

plication factor � ensures that the number of infections on 
the peak day remains unaltered.

The dash-dot magenta curve in Fig. 2a shows the dis-
tribution of MGDM. The infection rate, in this case, 
is closer to the actual values during decay and gener-
ally provides the upper limit of estimated total cases, as 
seen from the difference in the cumulative cases. Param-
eters for fitted normal distribution with R2 = 0.9999 , 
RMSE=4.09 and 95% confidence bounds are: 

a = 5273(5272, 5275),� = −5.572(−5.723,−5.421), � = 248.1(248, 248.2) . 
The modifications due to data gives � = 1.4, � = 0.996. 
The final epidemic size by this model as well as SIR and 
SEIQRDP models are given in Table 1. Note that, a Gauss-
ian fit of the infection rate can be directly used in MGDM 
for regions with sufficient data in the deceleration phase, and 
a prediction from epidemiological model is not necessary.

Piecewise‑Linear Decay Model (PLDM)

We shall now discuss the second data-driven model. As dis-
cussed earlier, recent trends indicate that the lockdown 
arrests the initial exponential growth but a linear regime 
persists after that, and then a prolonged decay follows. We 
propose that this decay can be modeled better with several 
linear segments than an exponential or a Gaussian curve that 
gives a fast decline with a relatively small tail. Piecewise-
Linear Decay Model (PLDM) incorporates these dynamics. 
The cumulative data in the deceleration phase is collected 
and then divided into equal segments. An optimal piecewise 
linear fit in a least-squares sense is then obtained. The slopes 
of these linear fits are m

i
 , where i = 1, ...,N  , N being the 

number of segments. The ratios of slopes are then computed, 
�
i
=

m
i

m
i−1

 , with 𝛼
i
< 1 , and a slope factor 𝛼̄ is calculated by 

taking an average of the last three ratios. This factor is then 
used to predict the slope of the next future segment such as 
m

N+1 = 𝛼̄m
N

 and so on. Figure 3a includes the predictions 
from this model for Italy. Data during the decay phase, 
between Mar 21 and May 15, have been divided into five 
equal segments of eleven days. The modeling gives 
𝛼̄ = 0.6734 , which is used to predict the slopes of future 
linear segments of the same sizes (see bottom panel in the 
figure). As evident from Fig. 3a, while the prediction of the 
final estimate size for both MGDM and PLDM is similar, 
PLDM predicts the cumulative curve more closely and has 
a more gradual decay.

Predictions

Table 1 shows the projections for key countries using both 
the epidemiological (SIR and SEIQRDP) as well as data-
driven models until the middle of August. Though not shown 
for individual cases, it is ensured in every case that the 
logistic fits are statistically significant with R2 > 0.98 and 
p-value < 0.0001 . Parameters of data-driven models ( �, � in 
MGDM, and 𝛼̄,m

N
 in PLDM) are directly obtained from the 

data in the deceleration phase when available. For countries, 
where the infection rate is still growing, predictions from 
the SEIQRDP model are used as a baseline, and parameters 
of data-driven models are taken from the fit used in Italy. 
As expected, there is higher uncertainty for these countries.
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All European countries in Table 1 except UK, where the 
outbreak is already in the decline phase, show a good con-
vergence of epidemic sizes i.e., predictions from the epi-
demiological models are not very different as shown in the 
case of Italy (Fig. 3a). Likewise, estimates from both the 
data-driven models are very close and are higher than those 
from epidemiological models as expected. Both MGDM and 
PLDM suggest the equilibrium to be expected towards the 
end of July. Predictions for these regions using the data-
driven models are fairly reliable provided there is no new 
outbreak.

For the US, there is an uncertainty due to fluctuations in 
the recent data, which in turn is due to different epidemiol-
ogy and a differential impact of stay-at-home order among 
different states (Ranjan 2020a). For the UK, the epidemic is 
in the linear growth stage with mild signs of decay recently. 
Therefore, there is high unreliability in the prediction of the 
peak. Nevertheless, forecasts by different models in these 
cases can provide an estimate of the expected range.

For India and Russia, the growths are still close to 
exponential, and therefore there is a significant disparity 
in predictions by different epidemiological models. Fig-
ure 3b illustrates the uncertainty in such cases by show-
ing the projections for India by different models. While 
the Logistic and SIR models predict the peak close to each 
other, SEIQRDP model shows continuing growth till the 
middle of June before the decline begins. This difference 
leads to a significantly higher epidemic size with SEIQRDP 
(0.66 million) than those with logistic (0.17 million) and SIR 
(0.22 millions) models. A critical difference between the SIR 
and SEIQRDP models implemented here is that in SIR, the 
population N considered is just the number of susceptible 
persons before the outbreak, while the entire population of 
the region is taken as the population size in SEIQRDP. As 
results from the SEIQRDP model are used as a baseline for 
data-driven models, estimates from the latter are also in the 
higher range.

These models are then used for statewise projections in 
India. Table 2 gives the lower and upper range value of the 
estimated epidemic size as calculated by all the models.

As expected, the highest contribution comes from four 
key states: Maharashtra, Gujarat, Delhi and Tamilnadu, who 
are on the exponential growth (Fig. 1b). Also, the projec-
tions have the highest uncertainty in these regions among 
the states listed in the table. If these states can control the 
epidemic and new outbreaks do not appear in other states, it 

is expected that the optimistic scenario for India shown by 
the SIR model in Fig. 3b can be realized.

The final epidemic size of the entire world is difficult 
to estimate without getting individual estimates of all the 
countries. This is because the global trend of total infections 
is still on an accelerating stage with new countries (Brazil, 
Peru, Canada) reporting surge in the number of cases.

Concluding Remarks

Epidemiological models such as logistic and compartmen-
tal models are generally used to predict the total size and 
duration of COVID-19. However, these models generally 
do not account for the precise change in dynamics due to 
different interventions, or a new outbreak, and therefore esti-
mate unrealistic epidemic size. We show that the COVID-19 
curves for different countries after the lockdown are very 
dissimilar with four primary distributions: linear, exponen-
tial, and slow and fast flattening. Further, within a country, 
the characteristics of spread among states may be different. 
Therefore, to account for differences in dynamics, a locally 
data-driven approach for modeling may be more suitable. 
Two data-driven models for the decay of COVID-19 based 
on recent trends- one based on skewed Gaussian distribution 
and the other by using a piecewise linear fit—are proposed. 
These models generally provide a more realistic estimate of 
the epidemic size than epidemiological models for regions in 
the deceleration phase, with the piecewise linear model pre-
dicting a more gradual decay. For countries (like India and 
Russia) still in the growth stage, these data-driven models 
use predictions from epidemiological models as a baseline 
and impose corrections using parameters obtained from an 
available data with a realistic decline rate. The uncertainty 
in predictions for such cases is higher. The paper also high-
lights that the reported data on infections is not an accurate 
representation of actual outbreak, and is limited by the test-
ing capacity. Therefore, estimations given by these models 
could still be optimistic and should be used with caution. A 
periodic evaluation of characteristics of COVID-19 spread, 
and thus a revision of projections is necessary.
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