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Abstract
In addition to the non-Newtonian fluids (NNFs), thermophysical analysis of NNF–NNF is very useful for developing unsteady 
flow measurements. This work aims to provide a two dimensional (2-D) optimization problem consisting of thermal radiation, 
viscous dissipation, and inclined magnetic force based on the Buongiorno mathematical model. In this way, the unsteady 
2-D flow is simulated through a permeable shrinking wall, and the governing partial differential equations are reduced to a 
set of ordinary differential equations which can be easily solved by the robust homotopic approach (RHA). It is shown that 
the present RHA agrees very well with those numerical and analytical findings available in the open literature. In fact, it can 
be concluded that employing a desirable solution methodology is essential for nonlinear boundary value problems combined 
with the thermophysical properties.

Keywords RHA · NNF · Buongiorno mathematical model · Casson type · Carreau type

List of Symbols
n  Power-law index
u, v  Velocity components along x and y axes, respec-

tively (m s−1)
g  Gravitational acceleration (m s−2)
T   Temperature (K)
T∞  Ambient temperature
C  Nanoparticle concentration (kg m−3)
C∞  Ambient nanoparticle concentration (kg m−3)
B0  Magnetic field strength (kg s−2  A−1)
cp  Specific heat at constant pressure (J kg−1  K−1)
k  Thermal conductivity (W m−1  K−1)
qr  Radiation heat flux (W m−2)
DB  Brownian diffusion coefficient
DT  Thermophoresis diffusion coefficient
Uw  Velocity at the wall (m s−1)
b  Constant  (s−1)
a  Parameter correspond to unsteadiness  (s−1)
Vw  Mass transfer rate (m s−1)
v0  Suction/blowing parameter (m)
Tw  Wall temperature (K)
T0  Reference temperature (K)
Cw  Wall nanoparticle concentration (kg m−3)

C0  Reference nanoparticle concentration (kg m−3)
aR  Mean spectral absorption coefficient  (m2  kg−1)
f   Similarity function
ā  Unsteadiness parameter
Ha  Hartmann number
We  Weissenberg number
Pr  Prandtl number
NR  Radiation parameter
Nb  Brownian motion parameter
Nt  Thermophoresis parameter
Le  Lewis number
S  Mass suction parameter
Cf  Skin friction coefficient
Nux  Local Nusselt number
Shx  Local Sherwood number
Rex  Local Reynolds number

Greek Symbols
�  Cauchy stress
�0  Yield stress
�  Dynamic viscosity
�̇�  Shear rate
�∞  Infinite shear rate viscosity
�0  Zero shear rate viscosity
�   Relaxation time
�  Dimensionless parameter which accounts for the 

transition point between the zero shear rate and 
power-law regions

�  Kinematic viscosity
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�  Casson fluid parameter
�T  Thermal expansion coefficient
�C  Nanoparticle concentration expansion coefficient
�  Electrical conductivity
�  Density
�  Inclination angle of magnetic field
�  Ratio of effective heat capacity of the nanoparticle 

to the effective heat capacity of base fluid
�SB  Stefan–Boltzmann constant (W m−2  K−4)
�  Similarity parameter
�  Stream function
�  Non-dimensional temperature
�  Non-dimensional nanoparticle concentration
�1  Thermal buoyancy parameter
�2  Solute buoyancy parameter

Introduction

The study of immersed bodies surrounded by external flows 
is crucial for the fluid mechanics. One of the associated con-
cepts for studying the external flows is to utilize the boundary 
layer theory (BLT). In general, the coupling of BLT with the 
external flows characterizes the fluid behavior in an adverse 
pressure gradient (White 2011). It has found many practical 
applications in engineering industries, for example, to aero-
dynamics, hydrodynamics, turbulence, transportation, etc. 
(Sobey 2001). However, there may be one drawback to the 
BLT which is its failure in the separated flows (Sychev et al. 
1998). To remove this limitation, an efficient computational 
fluid dynamics (CFD) simulation (Versteeg and Malalasekra 
2007; Tu et al. 2012; Tannehill et al. 1997; Cebeci 2005; Sen-
gupta 2004; Anderson 1995) was developed. It is worth not-
ing that the CFD simulation is intended not only for the fluid 
behavior (Besthapu et al. 2017; Deng et al. 2012; Thepsonthi 
and Özel 2015; Hsiao 2016; Bezi et al. 2018; Mousazadeh 
et al. 2018; Shit et al. 2017), but also for chemical reactions 
(Ganapathirao et al. 2015; Ojjela and Kumar 2016; Hussain 
2017; Shateyi and Marewo 2018), phase changes (Onyiri-
uka et al. 2018; Attia et al. 2015; Sheikholeslami and Rokni 
2017), multiple flows (Raees et al. 2018; Gorla and Gireesha 
2016; Jahan et al. 2018), etc.

Unlike the numerical CFD solutions, some analytic meth-
ods do not suffer from long runtime. Furthermore, due to the 
simplified boundary conditions involved in the CFD simula-
tion (Houghton et al. 2013), an error usually occurs which 
cannot be neglected. It is noteworthy that although a large 
variety of analytical methods have been employed to inves-
tigate the NBVPs to date (Adesanya et al. 2018; Dehghan 
et al. 2015; Shahmohamadi and Rashidi 2016; Sayyed et al. 
2018; Dib et al. 2015; Mohseni and Rashidi 2017; Khader 
and Megahed 2014; Lu et al. 2018; Nadeem et al. 2018, 
2019), the RHA (Liao 1992, 2003), due to its convergence 

and effectiveness, can be considered as a powerful tool for 
discretizing the governing PDEs to an infinite series. In this 
way, Khoshrouye Ghiasi and Saleh (2018, 2019a, b, c, d) 
presented homotopic solutions to some problems arising in 
the BLT with the mixed boundary conditions. They com-
pared and verified their findings with those obtained by the 
multi-step techniques such as Runge–Kutta and finite dif-
ference methods as well. In addition, they indicated that the 
RHA would be desirable if the NNFs are employed.

Due to the complexity of NNFs through porous media 
as well as the interaction between the particles (Goldsmith 
1999), the RHA has been the centre of attention to date 
(Hashmi et al. 2017; Mustafa 2017; Abbas et al. 2010; Hayat 
et al. 2012a, b, 2016, 2017; Shehzad et al. 2018; Imtiaz 
et al. 2016). Moreover, the yield stress plays a crucial role 
in characterizing interaction threshold between the particles 
(Goldsmith 1999). According to rheology’s principle (Tan-
ner 2000), accounting for the influence of constitutive law 
to describe the whole state of NNFs is essential, because the 
strain generated by the external forces is very large. It is to 
be noted that regardless of the flow history, the NNFs can be 
desirable in some processing technologies such as mixing, 
shear thinning/thickening, surface coating, etc.

As discussed above, although many efforts have been 
dedicated to investigate the BLT and NNFs simultaneously, 
there exist a few works concerning the NNF combined with 
NNF. Here, a brief summary of the most important works 
undertaken on the thermophysical analysis of NNF–NNF are 
reviewed. Raju et al. (2017) characterized numerically the 
magnetohydrodynamic (MHD) response of NNF–NNF over 
a variable thickness wall. They developed those reported 
by Khader and Megahed (2013) and showed that the effect 
of multiple slip can be ignored only in flow regions away 
from the stretching wall. Gireesha et al. (2017) accounted 
for the chemical reaction between the three dimensional 
(3-D) NNF–NNF. They also investigated the volumetric 
heat release with the magnetic field and nonlinear thermal 
radiation. They found that the buoyancy-induced flow over 
a deformable sheet is significantly affected by the mixed 
convection of NNFs. Kumaran et al. (2018) simulated ther-
modynamically NNF–NNF along the upwardly concave 
paraboloid of revolution. They showed that increasing 
the uniform Lorentz force, which is known as a resistance 
towards the velocity distribution, causes suppression of the 
thermal convection. They also found a remarkable agree-
ment with the numerical solutions of heat transfer analysis 
in alumina–water fluid considering variable thermal con-
ductivity which is reported by Animasaun and Sandeep 
(2016). Reddy et al. (2017) analyzed peristaltic transport 
of electrically conducting NNF–NNF through the NDSolve 
simulation carried out in Mathematica commercial software. 
They showed that the natural convection buoyancy-induced 
flow inside in an irregular channel varies with the uneven 
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heating. However, one would expect the pressure loss not to 
be accelerated if the forced convection is regarded.

In this study, the unsteady Navier–Stokes, energy, and 
nanoparticle concentration equations are derived to inves-
tigate thermophysical characteristics of NNF–NNF over a 
permeable shrinking wall considering viscous dissipation 
and inclined magnetic field based on the Buongiorno math-
ematical model. For this purpose, the governing PDEs are 
undergone a similarity transformation and then converted to 
the ODEs. Furthermore, the RHA and its optimization have 
been employed to obtain the convergent series expressions. 
The results are compared and validated by those available 
numerical and analytical findings in the literature. To the 
best of author’s knowledge, no similar work exists to date.

Problem Formulation

Rheological Model

One of the most common NNFs is the Casson type which 
represents the Cauchy stress via the following constitutive 
equation (Casson 1959):

where �0 is the yield stress, � is the dynamic viscosity, �̇� is the 
shear rate, and n ∈ ℤ is the power-law index. It is to be noted 
that in the case when n = 1 , the Casson type reduces to an 
ideal Bingham plastic (Bingham 1922) (see “Appendix 1”).

An alternative NNF for describing the less resistance at 
higher shear rates is the Carreau–Yasuda type which is gov-
erned by Tropea et al. (2007):

where �∞ is an infinite shear rate viscosity, �0 is the zero 
shear rate viscosity, �  is the relaxation time, and 𝛽 > 0 is a 
dimensionless parameter which accounts for the transition 
point between the zero shear rate and power-law regions. It 
should be mentioned here that for monomolecular polymers 
(i.e., � = 1 ), Eq. (2) reduces to the generalized Carreau type 

(Carreau 1972). Furthermore, since �̇� =

√
1

2

( .
� ∶

.
�

)
 , and 

because �∞ is assumed to be zero, we have

Governing Equations

Utilizing the Buongiorno mathematical model in which the 
slip mechanisms between the nanoparticles can be modeled by 

(1)𝜏 =
[
𝜏
1∕n

0
+ (𝜇�̇�)1∕n

]n
,

(2)𝜏 = 𝜇∞ +
(
𝜇0 − 𝜇∞

)[
1 + (𝛤 �̇�)2𝛽

](n−1)∕2𝛽
,

(3)𝜇 = 𝜇0

[
1 + (𝛤 �̇�)2

](n−1)∕2
.

means of the thermophoresis and Brownian diffusion (Buon-
giorno 2006), the governing PDEs take the following form:

where � is the kinematic viscosity, � is the Casson fluid 
parameter, g is the gravitational acceleration, �T is the ther-
mal expansion coefficient, T∞ is the ambient temperature, �C 
is the nanoparticle concentration expansion coefficient, C∞ 
is the ambient nanoparticle concentration, � is the electri-
cal conductivity, B0 is the magnetic field strength, � is the 
density, � is the inclination angle of magnetic field, cp is the 
specific heat at constant pressure, k is the thermal conductiv-
ity, qr is the radiation heat flux, � = (�c)p∕(�c)f is the ratio 
of effective heat capacity of the nanoparticle to the effective 
heat capacity of base fluid, DB is the Brownian diffusion coef-
ficient, and DT is the thermophoresis diffusion coefficient.

The associated initial and boundary conditions are given 
below:

where Uw is the velocity at the wall, b > 0 is a constant with 
dimension (time)−1, a is a parameter corresponds to unstead-
iness, Vw is the mass transfer rate, v0 is the suction/blowing 
parameter, Tw is the wall temperature, T0 is the reference 
temperature, Cw is the wall nanoparticle concentration, and 
C0 is the reference nanoparticle concentration.

(4)
�u

�x
+

�v

�y
= 0,

(5)

�u

�t
+ u

�u

�x
+ v

�u

�y
= �

[
1 +

1

�
+

3(n − 1)� 2

2

(
�u

�y

)2
]
�2u

�y2

+ g
[
�T
(
T − T∞

)
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(
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)]

−
�B2

0

�
u sin2 �,

(6)

�T

�t
+ u

�T

�x
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�T

�y
=

1

�cp

(
k
�2T

�y2
−

�qr

�y

)
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[
DB

�C
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�T

�y
+

DT

T∞

(
�T
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)2
]
,

(7)
�C

�t
+ u

�C

�x
+ v

�C

�y
= DB

�2C

�y2
+

DT

T∞

�2T

�y2
,

(8)

u = 0, v = 0, T = T∞,C = C∞, at t = 0,

u = Uw(x, t) = −
bx

1 − at
, v = Vw(x, t) =

v0

(1 − at)1∕2
,

T = Tw = T∞ +
bx2T0(1 − at)−3∕2

2�
,

C = Cw = C∞ +
bx2C0(1 − at)−3∕2

2�
, at y = 0,

u → 0, T → T∞,C → C∞, as y → ∞,
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The Rosseland approximation formula for the radiation 
heat flux presented in Eq. (6) takes the form (Rosseland 
1931):

where �SB = 5.6697 × 10−8
[
Wm−2 K−4

]
 and aR are the Ste-

fan–Boltzmann constant and mean spectral absorption coef-
ficient, respectively. Assuming that the temperature discrep-
ancy within the flow is very small (Khoshrouye Ghiasi and 
Saleh 2019c), T4 can be expanded in Taylor series as

Upon substitution of Eq. (10) into Eq. (9) and differentiat-
ing this with respect to y , Eq. (6) can be rewritten as follows:

Introducing � = y
(

b

�(1−at)

)1∕2

 ,  � = x
(

b�

1−at

)1∕2

f (�) , 
�(�) =

T−T∞

Tw−T∞
 , and �(�) = C−C∞

Cw−C∞

 , the non-dimensional form 
of governing ODEs is given by

where � is the similarity parameter, � is the stream function, 
f  is the similarity function, � is the non-dimensional tem-
perature, � is the non-dimensional nanoparticle concentra-
tion, ā = a∕b is the unsteadiness parameter, Ha2 = �B2

0

�b
 is the 

Hartmann number, �1 is the thermal buoyancy (or mixed 
convection) parameter, �2 is the solute buoyancy parameter, 
We2 =

Γ2b3x2

�(1−at)3
 is the Weissenberg number, Pr = �cp

k
 is the 

Prandtl number, NR =
4�SBT

3
∞

3aRk
 is the radiation parameter, 

Nb =
�DB

�

(
Cw − C∞

)
 is the Brownian motion parameter, 

(9)qr = −
4�SB

3aR

�T4

�y
,

(10)
T4 = T4

∞
+ 4T3

∞

(
T − T∞

)
+ 6T2

∞

(
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)2
+⋯ ≈ 4T3

∞
T − 3T4

∞
.

(11)
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3
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T∞

(
�T
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]
.
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(
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ā𝜂

2
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−

(
𝜕f
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+ Ha2 sin2 𝛼 + ā

)
𝜕f

𝜕𝜂
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+
3(n − 1)

2
We

(
𝜕2f

𝜕𝜂2

)2
𝜕3f

𝜕𝜂3
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1

Pr

(
1 +

4NR

3

)
𝜕2𝜃

𝜕𝜂2
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(
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ā𝜂

2
+ Nb

𝜕𝜙
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)
𝜕𝜃

𝜕𝜂

+ Nt

(
𝜕𝜃
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)2

= 0,

𝜕2𝜙

𝜕𝜂2
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(
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ā𝜂

2
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𝜕𝜙
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+

Nt

Nb

𝜕2𝜃

𝜕𝜂2
= 0,

Nt =
�DT

�T∞

(
Tw − T∞

)
 is the thermophoresis parameter, and 

Le = �∕DB is the Lewis number.
The associated boundary conditions are written as

where S is the mass suction parameter.
Here, the non-dimensional skin friction coefficient, local 

Nusselt number, and local Sherwood number are given by

where

It is to be noted that substitution of similarity transforma-
tions into Eqs. (14) and (15) gives the results:

where Rex =
�Uwx

�
 is the local Reynolds number.

Solution Methodology

Let us consider the initial approximation of f  , � and � as 
follows:

which must satisfy the boundary conditions given in 
Eq. (13). According to the definition of homotopy, the aux-
iliary linear operators can be represented in the form:

with the properties:

where C1 – C7 are the arbitrary constants. Using q ∈ [0, 1] 
as an embedding parameter, the zeroth-order deformation 
equations are given by

(13)
f = S,

�f

��
= −1, � = 1,� = 1, at � = 0,
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��
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.
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,

(17)f0 = S − 1 + e−� , �0 = �0 = e−� ,

(18)Lf =
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��3
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where hf  , h� , and h� are the nonzero auxiliary parameters, 
and Nf  , N� , and N� are the nonlinear operators which can 
be expressed as

with the boundary conditions

It is to be noted that as q increases from 0 to 1, f (�;q) , 
�(�;q) , and �(�;q) deform from the initial approximations to 
the exact solutions. Expanding f (�;q) , �(�;q) and �(�;q) in 
the Taylor series with respect to q gives

(20)
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(22)

f (�;q) = S,
�f (�;q)

��
= −1, �(�;q) = 1,�(�;q) = 1, at � = 0,

�f (�;q)

��
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where

With the proper choice of initial approximations, aux-
iliary linear operators, and auxiliary parameters, Eq. (23) 
converges at q = 1 as

Differentiating Eq. (20) m times with respect to q , divid-
ing them by m! and then setting q = 0 , the m th-order defor-
mation equations are constructed as

where
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+ 𝛽1𝜃m−1 + 𝛽2𝜙m−1 +
3(n − 1)

2
We

m−1∑
l=0

(
l∑

i=0

𝜕2fl−i

𝜕𝜂2

i∑
j=0

𝜕2fj

𝜕𝜂2

𝜕3fi−j

𝜕𝜂3

)
,

R𝜃,m(𝜂) =
1

Pr

(
1 +

4NR

3

)
𝜕2𝜃m−1

𝜕𝜂2
+

m−1∑
l=0

fl
𝜕𝜃m−l−1

𝜕𝜂
−

ā𝜂

2

𝜕𝜃m−1

𝜕𝜂
+ Nb

m−1∑
l=0

𝜕𝜙l

𝜕𝜂

𝜕𝜃m−l−1

𝜕𝜂
+ Nt

m−1∑
l=0

𝜕𝜃l

𝜕𝜂

𝜕𝜃m−l−1

𝜕𝜂
,

R𝜙,m(𝜂) =
𝜕2𝜙m−1

𝜕𝜂2
+ Le

m−1∑
l=0

fl
𝜕𝜙m−l−1

𝜕𝜂
− Le

ā𝜂

2

𝜕𝜙m−1

𝜕𝜂
+

Nt

Nb

𝜕2𝜃m−1

𝜕𝜂2
,
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with the boundary conditions

The general solutions of Eq. (26) in terms of particular 
solutions (i.e., f⋆

m
(𝜂) , 𝜃⋆

m
(𝜂) , and 𝜙⋆

m
(𝜂) ) can be written as

where

To summarize the above-mentioned RHA, one can serve 
the following algorithm:

1. Set m = 1.
2. Substitute Eq. (17) into Eq. (28) and find Rf ,1 , R�,1 and 

R�,1.
3. Substitute Rf ,1 , R�,1 , and R�,1 into Eq. (26).
4. Determine C1 – C7 and find f1 , �1 , and �1.
5. Substitute f1 , �1 , and �1 into Eq. (26) and find Rf ,2 , R�,2 

and R�,2.
6. Repeat steps 2–4 m times.
7. Find fM , �M and �M , where M is the number of iterations.
8. Check for convergence of the series expressions.

One way to accelerate the convergence of RHA is to find 
the optimal values of auxiliary parameters by minimizing the 
squared residual errors as follows (Liao 2010):

(29)
f (�) = 0,

�f (�)

��
= 0, �(�) = 0,�(�) = 0, at � = 0,

�f (�)

��
→ 0, �(�) → 0,�(�) → 0, as � → ∞.

(30)
fm(𝜂) = f⋆

m
(𝜂) + C1 + C2e

𝜂 + C3e
−𝜂 ,

𝜃m(𝜂) = 𝜃⋆
m
(𝜂) + C4e

𝜂 + C5e
−𝜂 ,

𝜙m(𝜂) = 𝜙⋆
m
(𝜂) + C6e

𝜂 + C7e
−𝜂 ,

(31)
C1 = −

(
f⋆
m
(0) +

𝜕f⋆
m
(0)

𝜕𝜂

)
,C2 = C4 = C6 = 0,

C3 =
𝜕f⋆

m
(0)

𝜕𝜂
,C5 = −𝜃⋆

m
(0),C7 = −𝜙⋆

m
(0).

(32)

Δf ,m =
1

r + 1

r�
p=0

⎧⎪⎨⎪⎩
Nf

�
m�
d=0

f (�)

�

�=p��

⎫⎪⎬⎪⎭

2

d�,

Δ�,m =
1

r + 1

r�
p=0

⎧⎪⎨⎪⎩
N�

�
m�
d=0

f (�),

m�
d=0

�(�),

m�
d=0

�(�)

�

�=p��

⎫⎪⎬⎪⎭

2

d�,

Δ�,m =
1

r + 1

r�
p=0

⎧
⎪⎨⎪⎩
N�

�
m�
d=0

f (�),

m�
d=0

�(�),

m�
d=0

�(�)

�

�=p��

⎫
⎪⎬⎪⎭

2

d�,

where r = 20 and �� = 0.5 . It is worth noting that the total 
squared residual error (i.e., Δt,m = Δf ,m + Δ�,m + Δ�,m ) 
can be determined by Mathematica package BVPh2.0 (see 
“Appendix 2”).

Results and Discussion

This section is devoted entirely to finding the thermophysical 
characteristics of unsteady Casson–Carreau fluid over a per-
meable shrinking wall based on the Buongiorno mathemati-
cal model. To this end, the governing physical parameters, 
unless stated otherwise, are given in Table 1. It is to be noted 
that after estimating convergence region of the series expres-
sions and comparing the RHA findings with those available 
in the open literature, an outline of how the governing physi-
cal parameters influence the results is also provided.

Convergence Study

Table 2 tabulates the values of auxiliary parameters as 
well as its associated total squared residual errors at differ-
ent orders of approximations (i.e., m ) with the parameters, 
as given in Table 1. According to this table, the auxiliary 
parameters minimize when m is increased for all cases. 
Furthermore, it follows that the squared residual error 
achieves the minimum possible value when hf = − 0.7235 , 
h� = − 0.9911 , and h� = − 1.0759 are chosen. Therefore, it 
can be concluded that the above-mentioned auxiliary param-
eters are hereafter utilized in this study.

Table 3 investigates the convergence of above-mentioned 
series expressions through the use of squared residual errors 
with the parameters, as presented in Table 1. It is seen from 
this table that the minimum values of squared residual errors 
can be found at m = 20 . Under these circumstances, one 
can expect the convergence of RHA to accelerate as fast as 
possible.

Table 1  Governing physical 
parameters

� ā Ha � (Khoshrouye Ghiasi and 
Saleh 2018)

�1 �2 n We Pr NR Nb Nt Le S

0.4 − 0.5 2 45° − 0.1 0.2 3 0.3 6.2 0.1 0.4 0.4 1 2

Table 2  Selection of hf  , h� and h�

m = 1 m = 2 m = 3 m = 4 m = 5

hf − 0.5418 − 0.6191 − 0.6722 − 0.7020 − 0.7235
h� − 0.8941 − 0.9367 − 0.9647 − 0.9818 − 0.9911
h� − 1.0060 − 1.0341 − 1.0560 − 1.0693 − 1.0759
Δt,m 2.14 × 10−6 8.37 × 10−7 3.95 × 10−7 7.98 × 10−8 4.63 × 10−8
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Comparison and Validation

To verify the effectiveness of the present RHA, Fig.  1 
illustrates the variation of skin friction coefficient ver-
sus different values of Hartmann number in both 
� = 45° and 90 ° with n = 1 , Pr = 0.71 , NR = 1 , and 
ā = 𝛽1 = 𝛽2 = We = Nb = Nt = Le = S = 0 . This figure 
also represents a comparison between the RHA findings and 
those reported by Hakeem et al. (2016) obtained through 
the Runge–Kutta method. It is to be noted here that veloc-
ity slip at the boundary reported by Hakeem et al. (2016) is 
negligibly small.

As it can be observed from Fig. 1, increasing the values 
of Hartmann number significantly decreases the skin fric-
tion coefficient in both cases. Furthermore, the present RHA 
agrees very well with those numerical findings reported by 
Hakeem et al. (2016).

Table  4 provides a comparison between the pre-
sent RHA and those prepared by Bhattacharyya (2011) 
to show the effect of mass suction parameter in the 
calculation of skin friction coefficient. The inserted 
results in this table are given by � → ∞ , n = 1 and 

ā = 𝛽1 = 𝛽1 = We = NR = Nb = Nt = Le = 0 . Based on 
the results of Table 4, it is seen that increasing the suction 
parameter without considering its NNF terms increases the 
skin friction coefficient. Furthermore, the RHA findings are 
consistent with those prepared by Bhattacharyya (2011), 
because the insignificant relative error between them does 
not exceed 0.0008%.

According to the results depicted in Table 5, the pre-
sent RHA is in an excellent agreement with the numerical 
findings provided by Pal et al. (2014) as well as those of 
Khan and Pop (2010). It is due to the fact that the present 
RHA and those reported by Pal et al. (2014) and Khan and 
Pop (2010) only suffer from a maximum relative error of 
at most 0.0058% and 0.0141%, respectively. Furthermore, 
Table 5 shows the variation of heat transfer rate versus dif-
ferent values of Prandtl number with � → ∞ , n = 1 , and 
ā = Ha = 𝛼 = 𝛽1 = 𝛽2 = We = NR = Nb = Nt = Le = S = 0.

It is to be noted here that increasing the values of Prandtl 
number in Table 2 clearly increases the heat transfer rate. 
Therefore, in view of Fig. 1 and Tables 4 and 5, one can 
say that the present RHA, due to its accuracy and short run 
time, is desirable to have convergent and reliable series 
expressions.

Parametric Study

Based on the earlier studies (Khoshrouye Ghiasi and Saleh 
2018; Zhang et al. 2016; El-Aziz and Afify 2016), the mini-
mum boundary layer thickness would occur for large values 

Table 3  Values of Δf ,m , Δ�,m and Δ�,m

m Δf ,m Δ�,m Δ�,m

2 6.17 × 10−7 2.04 × 10−7 1.61 × 10−8

4 5.90 × 10−8 1.76 × 10−8 3.27 × 10−9

6 6.70 × 10−9 3.51 × 10−9 5.86 × 10−10

8 8.33 × 10−10 7.73 × 10−10 9.14 × 10−11

10 1.01 × 10−10 6.22 × 10−10 5.70 × 10−11

12 4.12 × 10−11 4.05 × 10−10 2.69 × 10−11

14 8.97 × 10−12 2.24 × 10−10 8.72 × 10−12

16 4.36 × 10−12 9.06 × 10−11 5.63 × 10−12

18 9.95 × 10−13 7.19 × 10−11 3.03 × 10−12

20 7.08 × 10−13 5.56 × 10−11 1.22 × 10−12

Fig. 1  Verification of the skin 
friction coefficient for a Casson 
type; a � = 45◦ and b � = 90◦

Table 4  Values of the skin friction coefficient compared with those of 
Bhattacharyya (2011)

S = 2 S = 3 S = 4

Present 2.414240 3.302796 4.236101
Bhattacharyya 

(2011)
2.414217 3.302772 4.236073
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of the unsteadiness parameter. It was shown that this param-
eter can also be regarded as the induced flow stabilizer. This 
issue is clearly seen in Fig. 2.

Figure 2 represents the variation of skin friction coef-
ficient versus different values of unsteadiness parameter 
for 0.1 ≤ � ≤ 0.4 . According to this figure, by increasing 
the Casson fluid parameter, the skin friction coefficient 
is increased which is only due to a reduction in the diffu-
sion-induced plasticity. However, Mabood et al. (2016) 
showed that this coefficient becomes relatively insensitive 
to � in the case of temperature-dependent dynamic viscos-
ity. It is worth noting that using this observation and the 
Vogel–Fulcher–Tamman (VFT) law (Vogel 1921), one can 
modify the temperature dependence of zero shear rate vis-
cosity/relaxation time effectively.

In view of the results given in Table 6, it is seen that 
the thermal buoyancy parameter plays a more significant 

role in reducing the skin friction coefficient than that of the 
solute buoyancy one. This is because of the buoyancy force 
dominated by the viscous force. Furthermore, the buoyancy 
effects become more pronounced as the particle and fluid 
densities are quite different. It is to be mentioned here that 
a similar conclusion for entropy generation in a heterogene-
ous porous cavity has also been questioned by Zhuang and 
Zhu (2018).

Figure 3 depicts the effect of viscoelasticity on the skin 
friction coefficient for both shear thinning ( n < 1 ) and shear 
thickening ( n > 1 ) fluids. Based on the results shown in 
this figure, increasing the values of Weissenberg parameter 
decreases the skin friction coefficient which is relevant to the 
enhancement of the drag force. In addition, since the viscoe-
lasticity depends on the relaxation time, large values of �  
thicken the momentum boundary layer (Khan et al. 2018), 
and thereby decrease the velocity distribution. Hence, it can 
be inferred from Fig. 3 that the shear thinning/thickening 
effect causes little change to the momentum boundary layer 
thickness.

As shown in Fig. 4, it is obvious that the local Nusselt 
number is greatly affected by the Brownian motion and 
thermophoresis parameters simultaneously. Therefore, it is 
essential to account for the influence of mass diffusivity and 
temperature gradient with regard to the Brownian motion 
and thermophoresis parameters, respectively. However, 
it is to be noted that for large values of Brownian motion 
parameter, the temperature boundary layer thickness does 
not significantly vary.

Based on the results presented in Fig.  4, increasing 
the Browning motion/thermophoresis parameter clearly 
decreases the local Nusselt number particularly when it is 
subjected to the shear thickening effect. This is due to the 
fact that the thermophoresis can be introduced as a time-
averaged motion influenced by the Brownian diffusion.

To investigate the effect of thermal radiation on the tem-
perature distribution, the variation of local Nusselt number 
versus unsteadiness parameter is depicted in Fig. 5. It is seen 
from this figure that the heat energy which is generated by 
the radiation process can affect the temperature boundary 
layer thickness. Furthermore, Fig. 5 emphasizes on the fact 
that there exists a relationship between the thermal radiation 
and diffusion in describing the surface heat flux (Khader and 
Megahed 2014; Nadeem et al. 2019; Farooq et al. 2016). 

Table 5  Values of the heat transfer rate compared with those of Pal 
et al. (2014) and Khan and Pop (2010)

Pr = 0.7 Pr = 2 Pr = 7 Pr = 70

Present 0.45398 0.91136 1.89538 6.46218
Pal et al. (2014) 0.45391 0.91135 1.89540 –
Khan and Pop (2010) 0.4539 0.9113 1.8954 6.4621

Fig. 2  Variation of CfRe
1∕2
x

 versus ā

Table 6  Combined effect of 
thermal and solute buoyancy 
parameters on the skin friction 
coefficient

�1 � = 0.5 � = 1

�2 = 0.2 �2 = 0.4 �2 = 0.6 �2 = 0.2 �2 = 0.4 �2 = 0.6

− 0.1 0.55147 0.53916 0.51701 0.84247 0.81966 0.79990
0 0.51180 0.49266 0.47207 0.78515 0.76117 0.74307
0.1 0.47815 0.45180 0.43014 0.72437 0.70191 0.67899
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Using these important observations, one can conclude that 
in such systems the thermal radiation cannot be ignored.

Table 7 provides the variation of local Sherwood number 
versus ā , �2 , Nb , Nt , and Le with both shear thinning and 
shear thickening fluids. According to this table, by increas-
ing Le , the local Sherwood number is increased which is 
largely due to a reduction in the Brownian diffusion coef-
ficient. Furthermore, Table 7 represents that the local Sher-
wood number is an enhancing function of ā , �2 and Nb , 
while it is a diminishing function of Nt . At the end of this 

section, only the velocity, temperature and nanoparticle con-
centration distributions are listed in Table 8.

Conclusions

The RHA was introduced in this work to investigate ther-
mophysical characteristics of NNF–NNF over a perme-
able shrinking wall based on the Buongiorno mathemati-
cal model. The PDEs that govern the conservation of mass, 
momentum, energy, and nanoparticle concentration were 
converted to the ODEs in time via similarity transforma-
tion. The present RHA was also optimized by minimizing 
the squared residual errors at different orders of approxima-
tions. Here, the main results of the work can be summarized 
as follows:

• Accounting for the effect of shear thinning/thickening 
fluid has little change to its momentum boundary layer 
thickness.

• In case of � = 45◦ and 90◦ , the RHA findings agree excel-
lently with those reported by Hakeem et al. (2016).

• The heat transfer rate is not affected by large values of 
the Brownian motion parameter. Moreover, the thermo-
phoresis effect cannot be increased without considering 
the Brownian diffusion.

• The nanoparticle concentration distribution becomes 
increasingly dependent on the Lewis number.

Fig. 3  Variation of CfRe
1∕2
x

 versus Ha for n = 0.5 and 1

Fig. 4  Variation of NuxRe
−1∕2
x

 versus Nt

Fig. 5  Variation of NuxRe
−1∕2
x

 versus ā
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Appendix 1

The constitutive equation for an ideal Bingham plastic which 
requires a critical force to begin its flow can be written as 
follows (Bingham 1922):

As it can be observed from Eq. (33), �̇� and �0 are usually 
treated as the curve-fitting constants. It is worth mentioning 
that although the dynamic viscosity in an ideal Bingham 
plastic varies linearly, a zero shear rate occurs when the criti-
cal force is exceeded (White 2011; Chhabra and Richardson 
1999).

(33)
�̇� = 0, for |𝜏| ≤ ||𝜏0||,
𝜏 = 𝜏0 + 𝜇�̇� , for |𝜏| > ||𝜏0||.

Table 7  Values of the local 
Sherwood number

ā �2 Nb Nt Le ShxRe
−1∕2
x

n = 0.5 n = 1.5

− 0.5 0.2 0.4 0.4 1 0.50361 0.72915
− 0.4 0.81195 1.07324
− 0.3 1.12730 1.29816
− 0.3 0.3 1.21919 1.30600

0.4 1.22746 1.31017
0.4 0.5 1.53714 1.77195

0.6 1.91730 1.99899
0.6 0.5 1.01740 1.10002

0.6 0.24344 0.27805
0.6 2 0.86901 0.94629

3 1.55196 1.74841
4 2.12302 2.46790

Table 8  Velocity, temperature, 
and nanoparticle concentration 
distributions

� Carreau type Casson type

�f∕�� � � �f∕�� � �

0 − 1 1 1 − 1 1 1
0.1 − 0.9381 0.9519 0.9456 − 0.9510 0.9346 0.9768
0.2 − 0.9140 0.9160 0.9045 − 0.9319 0.8915 0.9528
0.3 − 0.8216 0.8826 0.8709 − 0.9047 0.8324 0.9479
0.4 − 0.7695 0.8524 0.8195 − 0.8670 0.7849 0.8930
0.5 − 0.7210 0.7938 0.7055 − 0.8255 0.7110 0.7915
0.6 − 0.6762 0.7244 0.6721 − 0.7899 0.6706 0.7065
0.7 − 0.6044 0.6531 0.5939 − 0.8291 0.6119 0.6206
0.8 − 0.5329 0.6030 0.5017 − 0.6948 0.5751 0.5937
0.9 − 0.5019 0.5207 0.4230 − 0.6401 0.4604 0.5417
1 − 0.4895 0.4679 0.3573 − 0.5973 0.2932 0.4893
2 − 0.1836 0.2315 0.0941 − 0.3364 0.0914 0.2007
3 − 0.1273 0.0195 0.0007 − 0.2044 0.0171 0.0715
4 − 0.0845 0.0005 0 − 0.1178 0.0004 0.0002
5 − 0.0316 0 0 − 0.0792 0 0
6 − 0.0129 0 0 − 0.0241 0 0
7 − 0.0017 0 0 − 0.0114 0 0
8 − 0.0008 0 0 − 0.0019 0 0
9 0 0 0 − 0.0004 0 0
10 0 0 0 0 0 0
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Appendix 2

The supplementary data correspond to the Mathematica 
package BVPh2.0 can be found in the online version at 
http://numer icalt ank.sjtu.edu.cn/BVPh.htm.
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