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Abstract
In the broadest sense, reliability is a measure of performance of the system under the stated conditions. The reliability–redun-
dancy allocation problem gives a highly reliable system in the presence of optimal redundant components. This design is the 
most preferred by the design engineer. During the designing phase of the system, all the design data involved in the system 
are not very precise. Various types of uncertainties such as expert’s information character, qualitative statements, vagueness, 
incompleteness, unclear system boundaries, inability to evaluate the relative importance of the objectives, etc., are typical 
for many practical problems. Fuzzy set theory is an efficient technique to tackle such types of uncertainties in the system 
design problem. In this paper, the goals of the fuzzy multi-objective reliability–redundancy allocation problem are specified 
by various membership functions such as linear, quadratic, parabolic, and hyperbolic. An efficient multi-objective evolution-
ary algorithm, namely, NSGA-II is employed to solve it. The Pareto-optimal fronts for the various membership functions 
are shown in both the membership and objective spaces. Fuzzy ranking method then finds the best compromise solution for 
each membership function. Finally, the performance of membership functions is ranked by the data envelopment analysis 
by taking cost criteria (cost, weight, and volume) as inputs and benefit criteria (reliability and maximum satisfaction level) 
as outputs of the system. The effectiveness of the proposed approach is illustrated by a numerical example of the over-speed 
protection system for a gas turbine. A comparative analysis of the proposed approach is given with the existing approach.

Keywords  System reliability · NSGA-II · Membership function · Pareto-optimal front (POF) · Fuzzy ranking method · 
DEA

List of Symbols
nj	� Number of components in the j th 

subsystem
rj	� Reliability of each component in the j th 

subsystem
n	�

(
n1, n2,… , nm

)
 , the vector of redundancy 

allocation for the system
r	�

(
r1, r2,… , rm

)
 , the vector of component 

reliabilities for the system

m	� Total number of subsystems
M	� Number of constraints
gi	� i th constraint function, i = 1, 2,…M

vj	� The volume of each component in the j th 
subsystem

wj	� The weight of each component in the j th 
subsystem

�j, �j	� Constants of characteristics factors for 
each component in the j th subsystem

T 	� Active operational time
rj,min	� The minimum value of reliability of each 

component in the j th subsystem
cj	� The cost of each component in the j th 

subsystem
rj,max	� The maximum value of reliability of each 

component in the j th subsystem
nj,max	� The maximum number of components in 

the j th subsystem
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RS,CS,WS,VS	� System reliability, system cost, system 
weight, and system volume, respectively

R	� Lower limit on RS

C	� Upper limit on CS

W 	� Upper limit on system weight
V 	� Upper limit on system volume

Introduction

The reliability–redundancy allocation problem (RRAP) is 
a mixed-integer non-linear programming problem and NP-
hard (Chern 1992) for which only approximate solutions have 
been proposed (Tillman et al. 1977; Sakawa 1978; Dhingra 
1992). The increment of redundancies adds more cost, weight, 
volume, etc., in the system. Therefore, a set of trade-offs is 
required in multi-objective reliability–redundancy alloca-
tion problem (MORRAP) where the number of redundan-
cies is an important decision variable. Heuristic approaches 
to MORRAP can be viewed in Huang et al. (2006), Tavakkoli 
et al. (2008), Huang et al. (2009), Garg and Sharma (2013), 
Sheikhalishahi et al. (2013), Damghani et al. (2013), Liu 
(2013), Zhang et al. (2014), Kim and Kim (2017) etc.

Multi-objective evolutionary algorithms (MOEAs) (Deb 
et al. 2002) are popular techniques to handle different types of 
multi-objective optimization problems (MOOPs) for the pur-
pose of finding multiple solutions (popularly known as Pareto-
optimal solutions) in a single simulation run. This group of 
algorithms conjugates the basic concepts of dominance. 
MOEAs are able to deal with non-continuous, non-convex, 
and/or non-linear as well as problems whose objective func-
tions are not explicitly known (Salazar et al. 2006). Taboada 
et al. (2007) presented a practical solution for multi-objective 
reliability-based system design using the MOEA and cluster-
ing technique. A number of different MOEAs such as MOGA 
(Fonseca and Fleming 1993), NPGA (Horn et al. 1994), NSGA 
(Srinivas and Deb 1994), SPEA (Zitzler and Thiele 1998), 
PAES (Knowles and Corne 1999), MOMGA (Veldhuizen and 
Lamont 2000), SPEA2 (Zitzler et al. 2001), PESA-II (Corne at 
al. 2001), NSGA-II (Deb et al. 2002), MOEA/D (Zhang and 
Li 2007), AGE-II (Wagner and Neumann 2013), etc., have 
been developed. An ideal multi-objective optimization needs:

1.	 to get a group of solutions as close as possible to the true 
Pareto-optimal front, and

2.	 to maintain these solutions as diverse homogeneous as 
possible.

The first goal is responsible for the convergence, while 
the second is for diversity in the solutions set. Many MOEAs 
and their solution techniques to the MOOP can be viewed in 
Deb (2001), Konak et al. (2006), Coello et al. (2007), and 
Zhou et al. (2011).

Elitist non-dominated sorting genetic algorithm (NSGA-II) 
is one of the popular MOEAs. It comprises a second-generation 
MOEA which gives much better spread and good convergence 
near the true Pareto-optimal front compared to other elitist 
MOEAs such as SPEA and PAES. Simulation results of the 
constrained NSGA-II give better performance on several non-
linear problems (Deb et al. 2002). It has some special prop-
erty that makes it different from other MOEAs such as elitist 
strategy, parameter-less sharing approach, crowding distance, 
classifying the solutions into the fronts, efficient handling con-
straints, and low computational requirements. Salazar et al. 
(2006) demonstrated NSGA-II in identifying a set of optimal 
solutions known as Pareto-optimal front by solving constrained 
redundancy problems. Wang et al. (2009) solved the MORRAP 
using NSGA-II and compared their results with single-objective 
approaches. Safari (2012) proposed a variant of NSGA-II in 
solving MORRAP. Sharifi et al. (2016) used the NSGA-II algo-
rithm in solving MORRAP for a series–parallel problem and 
k-out-of-n subsystems with three objectives. Recently, Muhuri 
et al. (2018) used NSGA-II to solve the MORRAP with inter-
val type-2 fuzzy environment which considers higher order 
uncertainties in the component. Practically, various types of 
uncertainties are involved in system design. During the design-
ing phase of the system, the designer does not have a clear 
idea about the design parameters such as reliability, cost, and 
weight of the constituent components. As a result, approximate 
values are considered by guessing. The environmental factors 
such as improper storage, adverse operating conditions, age etc., 
affect the reliability of the system. Therefore, all the design data 
involved in the system are hardly precise. In general, redundant 
components are found in the different models which contain 
less information regarding their critical parameters, e.g., failure 
operating time which is used to evaluate the component’s reli-
ability. To cope up these issues, fuzzy optimization techniques 
(Zimmermann 1996) can be useful during the initial stages of 
the conceptual design of a system. In the fuzzy decision-making 
process, the linear membership function is often used by fixing 
two points as the upper and lower levels of acceptability. In real-
world situations, models are built more flexible and adaptable 
to the human decision-making process. It needs some kind of 
empirical justification or assumption. Keeping these views in 
mind, several other (non-linear) shapes for membership func-
tions such as concave, convex shapes need to be analyzed in 
determining their impact on the overall system design process. 
The membership function of a fuzzy goal has also been viewed 
as “a kind of utility function representing the degree of sat-
isfaction or acceptance” (Dhingra and Moskowitz 1991). To 
choose the best compromise solution in the fuzzy MOOP is 
another challenge. Liu (2013) proposed an approach with fuzzy 
programming and DEA method to choose the efficient solution 
in MORRAP. Recently, Kumar and Yadav (2019) presented 
NSGA-II based decision-making approach to determine the 
optimal value of MORRAP.
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In this paper, MORRAP is considered under several 
design constraints. The goals of the problem are specified 
by the various membership functions to look into the impact 
on the overall system design process. The best compromise 
solution in each membership function is obtained by the 
fuzzy ranking method (Pandiarajan and Babulal 2014) and 
the overall performance of the various membership func-
tions is then measured by the CCR model (Charnes et al. 
1978) by taking three inputs as cost, weight, and volume, 
and two outputs as reliability and maximum satisfaction 
level of the system obtained by fuzzy ranking method.

Multi‑objective Optimization

This section describes some important facts of the MOOP.

Formulation of the MOOP

In general, an MOOP is defined as follows:

where k ≥ 2 is the number of objectives; me is the number 
of equality constraints; M is the total number of constraints; 
X =

[
x1, x2,… , xn

]T is n dimensional decision vector from 
the feasible region or decision space � defined by the 
following:

the feasible region 𝛺 ⊂ ℝ
n ; objective functions fp(X) , 

p = 1, 2,… , k , where fp ∶ � → ℝ and the constrained func-
tions gi(X) , where gi ∶ � → ℝ ; the image of the feasible 
region denoted by Z ⊂ ℝ

k and it is called a feasible objective 
region or objective space which is defined by 
Z =

{
F(X) ∈ ℝ

k|X ∈ �
}
 . The elements of Z  are called 

objective vectors or criterion vector denoted by 
F(X) =

[
f1(X), f2(X),… , fk(X)

]T ; xl
j
 and xu

j
 are the lower and 

upper bounds of the decision variable xj , respectively. For 
every point X in the decision space Ω, there exists a point 
F(X) in the objective space Z . Therefore, it is a mapping 
between n-dimensional solution vector and k-dimensional 
objective vector (see Fig. 1).

If all fp s and gi s are linear, then the problem is called 
a multi-objective linear programming problem (MOLPP); 
otherwise, it is called a multi-objective non-linear program-
ming problem (MONLPP).

(1)

Minimize F(X) =
[
f1(X), f2(X),… , fk(X)

]T
subject to gi(X) = 0, i = 1, 2,… ,me;

gi(X) ≥ 0, i = me + 1, me + 2,… ,M;

xl
j
≤ xj ≤ xu

j
, j = 1, 2,… , n,

� =

{
X ∈ ℝ

n
|||||
gi(X) ≥ 0, gi(X) = 0, xl

j
≤ xj ≤ xu

j

j = 1, 2,… , n

}
,

Basic definitions

The concept of optimality in an MOOP depends on Pareto 
optimality. Therefore, the following definitions are defined 
in terms of Pareto terminology.

Definition 1  Pareto dominance (Coello et al. 2007) A vector 
X ∈ � is said to dominate another Y ∈ � denoted by X ≺Y  
iff fi(X) ≤ fi(Y)∀i = 1, 2,… , k, and there exists at least one 
fj(X) < fj(Y), j ∈ {1, 2,… , k}, j ≠ i.

Definition 2  Pareto-optimal solution (Coello et al. 2007) 
A solution vector X ∈ � is said to be Pareto-optimal solu-
tion (Pareto-optimal) iff there does not exist another vector 
X� ∈ � which dominates X ∈ �.

Definition 3  Pareto-optimal set  (Coello et   al . 
2007) The Pareto-opt imal  set  is  def ined as 
PS ∶=

{
X ∈ 𝛺|¬∃X� ∈ 𝛺 ∶ X� ≺X

}
.

Definition 4  Pareto-optimal front (Coello et al. 2007) 
T h e  P a r e t o - o p t i m a l  f r o n t  i s  d e f i n e d  a s 
PF ∶=

{
F(X) =

[
f1(X), f2(X),… , fk(X)

]T
∣X ∈ PS

}
.

Definition 5  Ideal objective vector (Coello et  al. 2007) 
If a decision vector X∗ =

[
x∗
1
, x∗

2
,… , x∗

n

]T
∈ � is such 

that fi(X∗) = minX∈� fi(X) , i ∈ {1, 2,… , k} ; then the vec-
tor F(X∗) =

[
f1(X

∗), f2(X
∗),… , fk(X

∗)
]T

∈ Z  is  called 
an ideal objective vector for an MOOP given by (1) and 
X∗ =

[
x∗
1
, x∗

2
,… , x∗

n

]T
∈ � is called an ideal vector.

Definition 6  Utopian objective vector (Deb 2001) A uto-
pian objective vector F(X∗∗) has each of its components 
marginally smaller than the ideal objective vector, or 
F(X∗∗) = F(X∗)− ∈i with ∈i> 0∀i = 1, 2,… , k.

Definition 7  Nadir (anti-ideal) objective vector (Deb 2001) 
Unlike the ideal objective vector which represents the lower 
bound of each objective, the nadir objective vector Fnad 

Fig. 1   Multi-objective evaluation mapping
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represents the upper bound of each objective in the entire 
objective space ℝk.

Definition 8  Fuzzy set (Zimmermann 1996) Let X be a collec-
tion of objects generically denoted by x . A fuzzy set Ã in X is 
a set of ordered pair defined in the form as follows:

where �
Ã
∶ X → [0, 1] is called the membership function 

and its function value is known as the grade of membership 
of x in Ã.

Mathematical Model of the Problem

RRAP can be understood by a series–parallel system con-
figuration. The general configuration of the series–parallel 
system is shown in Fig. 2. This system contains several paral-
lels and identical components arrayed in each stage. Gener-
ally, redundancy is applied for increasing the system reli-
ability, but this technique gives more complexity in terms of 
cost, weight, volume, etc., to the system design. Therefore, 
it is better to solve the multi-objective programming model 
based problem. Here, twofold design variables are required 
to determine the optimal design of the system. One is the 
reliability of each component and other is to select a num-
ber of redundant components in each stage. Mathematically, 
MORRAP is given as follows:

Ã =
{(

x,�
Ã(x)

)
x ∈ X

}
,

(2)

Max. RS(r, n) =

m∏
j=1

[
1 −

(
1 − rj

)nj]

Min. CS(r, n) =

m∑
j=1

Cj

(
rj
)[
nj + exp

(
nj∕m

)]

subject to gi(r, n) ≤ 0, i = 1, 2,… ,M

0 ≤ rj,min ≤ rj ≤ rj,max ≤ 1,

1 ≤ nj,min ≤ nj ≤ nj,max nj ∈ ℤ
+

j = 1, 2,… ,m.

Elitist Non‑dominated Sorting Genetic  
Algorithm (NSGA‑II)
Srinivas and Deb (1994) proposed the NSGA which is an 
early dominance-based MOEA. The purpose of developing 
NSGA is to find better solutions according to their non-dom-
ination levels. NSGA uses the naive and slow (Deb 2001) 
sorting approach to distribute a population into different 
non-domination levels, and a sharing function method to 
maintain the diversity of the population. However, it has 
high computational complexity O(kN3) , where k is the num-
ber of objectives and N is the population size in the non-
dominated sorting. Therefore, NSGA is computationally 
expensive for large population sizes. Moreover, NSGA is 
a non-elitist approach which affects its convergence rates 
compared to other MOEAs and it also requires a sharing 
parameter to calculate the sharing fitness, which ensures the 
diversity of the population.

Deb et al. (2002) proposed NSGA-II to overcome the 
drawbacks of NSGA. Specifically, NSGA-II presents a fast 
non-dominated sorting approach with the worst-case com-
putational complexity O

(
k(2N)2

)
 . This approach searches 

iteratively non-dominated solutions into different fronts.
First, for each solution X in the population, the algorithm 

calculates two entities:

1.	 nX , the number of solutions dominating X,
2.	 SX , a set of solutions dominated by X.

The solutions for which nX = 0 belong to the first front. 
Second, for each member Y  in the set SX , the value of nY is 
reduced by one. If any nY is reduced to zero during this stage, 
the corresponding member Y is put in the second front. The 
above process is continued with each member in the second 
front to identify the third front and so on. Furthermore, NSGA-
II applies the concept of crowding distance with the worst-case 
computational complexity O(k(2N) log (2N)) . The introduc-
tion of crowding distance replaces the fitness sharing approach 
that requires a sharing parameter to be set by the user.

The crowding-distance value (CDX) (see Fig. 3) of the Xth 
solution is calculated as follows:

where f X+1
p

 and f X−1
p

 denote the pth objective function of the 
(X + 1)th and (X − 1)th individual (solution), respectively, 
and fmax

p
 and fmin

p
 represent the maximum and minimum 

values of the pth objective function.

(3)dXp =
f X+1
p

− f X−1
p

fmax
p

− fmin
p

(4)CDX =

k∑
p=1

dXp,

Fig. 2   Series–parallel system configuration
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A higher value of crowding-distance gives the lesser 
crowded region and vice versa (Deb et al. 2002). There-
fore, the crowding distance selects solutions located in 
less-crowded regions after the fast non-dominated sorting 
procedure, which is extended to an entire POF to maintain 
the diversity in the solution set. Finally, NSGA-II uses an 
elitist strategy with the worst-case computational complexity 
O(2N log (2N)) . The elitist strategy (Zitzler et al. 2000; Lau-
manns et al. 2002) is used to enhance the convergence of an 
MOEA and avoid the loss of optimal solutions after getting it.

Deb et al. (2002) proposed constraint dominance-based 
binary tournament selection method in constraint handling pro-
cedure. A search space (decision space) is divided by the con-
straints in two regions—feasible and infeasible. Accordingly, 
a solution X is called a constrained-dominate to a solution Y if

•	 X is feasible and Y  is infeasible.
•	 X and Y  are infeasible, but X contains a smaller overall 

constraint violation.
•	 X and Y  are feasible, but X dominates Y .

In Fig. 4, an evaluation cycle of the NSGA-II is shown. 
First, an offspring Qt of size N is obtained using the genetic 
operators such as selection, recombination, and mutation. 
A combined population Rt of size 2 N is then formed which 
consists of the current population Pt and the offspring popu-
lation Qt . Using fast non-dominated sorting, Rt is divided 
into different fronts PF1, PF2,… , PFn . Let the number of 
solutions in each front PFi be Ni . Next, we choose members 
for the new population Pt+1 from the front PF1 to PFt−1 , noting 
that N1 + N2 +⋯ + Nt > N and N1 + N2 +⋯ + Nt−1 ≤ N . 
Afterwards, to get the exactly N population members in Pt+1 , 
we sort the solutions in front PFt using the crowding distance 
sorting procedure and choose the best solutions to fill empty 
slot in the new population Pt+1 . This process is continued 
until the termination condition is satisfied.

Data Envelopment Analysis (DEA)

DEA is a data-oriented approach for evaluating the perfor-
mance of decision-making units (DMUs). A complete rank-
ing system is developed for evaluating the best DMU. An 
efficient design indicator Ek is defined for the kth DMU as 
follows:

Let us consider n DMUs to evaluate the performance of 
kth DMU. Each DMU has m inputs and s outputs. Then, 
the CCR model (Charnes et al. 1978) is given in fractional 
form as follows:

(5)Ek =
v1y1k + v2y2k +⋯ + vsysk

u1x1k + u2x2k +⋯ + umxmj
.

(6)

Max. Ek

subject to 0 ≤ v1y1j + v2y2j +⋯ + vsysj

u1x1j + u2x2j +⋯ + umxmj
≤ 1;

j = 1, 2,… , n; u1, u2,… , us ≥ 0; v1, v2,… , vm ≥ 0,

Fig. 3   Fitness evaluation and individual crowding distance estimation
Fig. 4   An evaluation cycle of the NSGA-II algorithm

The pseudo code of the NSGA-II is given as:
1: Initialize randomly population P0
2: Compute fitness values of individuals in P0
3: Perform non-dominated sorting on P0
4: Apply binary tournament selection on P0
5: Generate child population Q0

6: Apply recombination and mutation
7: While <  (max no. of generation ) do
8: Generate Rt = Pt ∪ Qt

9: Perform non-dominated sorting on Rt

10: Copy individuals from non-dominated fronts Pt+1

11: Apply binary tournament selection on Pt+1
12: Generate child population Qt+1

13: Apply recombination and mutation
14: End while
15: Return
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where ui s and vi s are weights corresponding to inputs xi s and 
yi s, respectively. xij is the observed amount of the i th input 
of the  j th DMU and yrj is the observed amount of the r th 
output of the j th DMU. The general form of CCR Model 
can be written in linear form as follows:

The dual form of the linear model is given as follows:

 �k is unrestricted in sign, s−
ik

 is called the ith  input 
excesses and s+

rk
 is called the rth output shortfalls.

To discover the possible input excesses and output short-
falls, the following two phases are considered.

1.	 The efficiency of the CCR model is the optimal value of 
dual form denoted by �∗

k
.

2.	 The value of �∗
k
 is used in the following problem:

Any DMU is said to be fully efficient if �∗
k
= 1 . There are 

possibilities to have more than one DMUs with efficiency 
score 1. To tackle this issue, super-efficiency model (Noura 

(7)

Max. Ek =

s∑
r=1

vryrk

subject to

m∑
i=1

uixik = 1;

s∑
r=1

vryrj ≤
m∑
i=1

uixij, j = 1, 2,… , n;

ui ≥ 0, vr ≥ 0, i = 1, 2,… ,m; r = 1, 2,… , s.

(8)

Min. �k

subject to s−
ik
= �kxik −

n∑
j=1

xij�jk ≥ 0, i = 1, 2,… ,m;

s+
rk
=

n∑
j=1

yrj�jk − yrk ≥ 0, r = 1, 2,… , s;

�jk ≥ 0, j = 1, 2,… , n.

(9)

Max. w = es− + es+

subject to

s−
ik
= �kxik −

n∑
j=1

xij�jk ≥ 0, i = 1, 2,… ,m;

s+
rk
=

n∑
j=1

yrj�jk − yrk ≥ 0, r = 1, 2,… , s;

�jk ≥ 0, j = 1, 2,… , n;

e = (1, 1,… , 1).

et al. 2011) in DEA can be effective. The following steps are 
given in this context:

1.	 Choose upper and lower limits for each input and output 
among efficient DMUs as follows:

2.	 Indicate aspiration levels for each input and output. The 
utility inputs–outputs regarding the definition of sets as 
D−

i
,D+

i
,D−

o
,D+

o

3.	 In this step, we calculate ( dij, drj ) for each DMUj s.t. 
j ∈ E as follows:

Here, � is a small and non-zero number which pre-
vents division by zero. So, Dj can be defined as: 
Dj =

∑
i∈I dij +

∑
r∈R drj ; I = D+

i
∪ D−

i
 ; R = D+

r
∪ D−

r
 . It is 

noticed that the larger Dj is more successful DMUj in given 
proposed objectives for input–output. Thus, it is possible to 
rank efficient DMUs with higher Dj.

E =
{
j|E∗

j
= 1

}
.

x∗u
i

= Max
⏟⏟⏟

j∈E

|||xij
|||, i = 1, 2,… ,m;

x∗l
i
= Min
⏟⏟⏟

j∈E

|||xij
|||, i = 1, 2,… ,m;

y∗u
r

= Max
⏟⏟⏟

j∈E

|||yrj
|||, r = 1, 2,… , s;

y∗l
r
= Min
⏟⏟⏟

j∈E

|||yrj
|||, r = 1, 2,… , s.

x = x∗l
i
, ∀i

(
i ∈ D−

i

)
;

x = x∗u
i
, ∀i

(
i ∈ D+

i

)
;

y = y∗l
r
, ∀i

(
i ∈ D−

o

)
;

y = y∗u
r
, ∀i

(
i ∈ D+

o

)
.

dij =
xij

xi + �
∀i ∈ D+

i
;

dij =
xi

xij + �
∀i ∈ D−

i
;

drj =
yrj

yr + �
∀i ∈ D+

r
;

drj =
yr

yrj + �
∀i ∈ D−

r
.
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Proposed Methodology

The proposed methodology is given step by step as follows.

Step 1 Find the upper and lower limits on RS and CS.
The upper and lower limits on RS and CS are obtained by 

solving each objective one by one as follows:

Step 2 Construct the membership functions.
Figure 5 shows various membership functions such as 

linear, quadratic, parabolic, and hyperbolic to the objec-
tive functions RS and CS . These membership functions are 
defined as follows. 

1.	 Linear membership function (Kumar and Yadav 2017, 
2019)

	   This function is a strictly decreasing concave and con-
vex function. It is defined as follows:

2.	 Quadratic membership function (Garg et al. 2014b)
	   This function is a convex function and it is defined as 

follows:

(10)

Max.∕Min. RS(r, n)

subject to gi(r, n) ≤ 0, i = 1, 2,… ,M

0 ≤ rj,min ≤ rj ≤ rj,max ≤ 1,

1 ≤ nj,min ≤ nj ≤ nj,max, nj ∈ ℤ
+, j = 1, 2,… ,m

(11)

Max.∕Min. CS(r, n)

subject to gi(r, n) ≤ 0, i = 1, 2,… ,M

0 ≤ rj,min ≤ rj ≤ rj,max ≤ 1,

1 ≤ nj,min ≤ nj ≤ nj,max, nj ∈ ℤ
+, j = 1, 2,… ,m.

(12)�
R̃S

=

⎧⎪⎨⎪⎩

0, RS ≤ Rl
S�

RS − Rl
S

���
Ru
S
− Rl

S

�
, Rl

S
≤ RS ≤ Ru

S

1, RS ≥ Ru
S

(13)

�
C̃S

=

⎧⎪⎨⎪⎩

1, CS ≤ Cl
S�

Cu
S
− CS

���
Cu
S
− Cl

S

�
, Cl

S
≤ CS ≤ Cu

S

0, CS ≥ Cu
S

.

(14)

�
R̃S

=

⎧⎪⎨⎪⎩

0, RS ≤ Rl
S��

RS − Rl
S

���
Ru
S
− Rl

S

��2
, Rl

S
≤ RS ≤ Ru

S

1, RS ≥ Ru
S

(15)

�
C̃S

=

⎧⎪⎨⎪⎩

1, CS ≤ Cl
S��

Cu
S
− CS

���
Cu
S
− Cl

S

��2
, Cl

S
≤ CS ≤ Cu

S

0, CS ≥ Cu
S

3.	 Parabolic membership function (Singh and Yadav 2017).
	   This function is a concave function and it is defined 

as follows:

4.	 Hyperbolic membership function (Dhingra and 
Moskowitz 1991; Singh and Yadav 2017).

	   This function is a convex in one part of the objec-
tive function and concave in the remaining part. “If the 
decision-maker is worse off with respect to a goal, then 
he/she tends to have a higher marginal rate of satisfac-
tion with respect to that goal. A convex shape captures 
that behavior in the membership function. Similarly, if 
the decision-maker is better-off with respect to a goal, 

(16)

�
R̃S

=

⎧⎪⎨⎪⎩

0, RS ≤ Rl
S

1 −
��
Ru
S
− RS

���
Ru
S
− Rl

S

��2
, Rl

S
≤ RS ≤ Ru

S

1, RS ≥ Ru
S

(17)

�
C̃S

=

⎧⎪⎨⎪⎩

1, CS ≤ Cl
S

1 −
��
CS − Cl

S

���
Cu
S
− Cl

S

��2
, Cl

S
≤ CS ≤ Cu

S

0, CS ≥ Cu
S

.

Fig. 5   a Monotonically increasing membership functions for system 
reliability; b monotonically decreasing membership functions for sys-
tem cost
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then he/she tends to have a smaller marginal rate of sat-
isfaction. This type of behavior is modeled using the 
concave shape of the membership function” (Singh and 
Yadav 2017). It is defined as follows:

Step 3 Reformulate the problem as a fuzzy MOOP.
The mathematical model of the problem is reformulated 

as follows:

Theorem 1  The Pareto-optimal solution of the fuzzy MOOP 
(20) satisfies the MOOP (2).

Proof  Let R∗ be a Pareto-optimal solution of the fuzzy 
MOOP (20). Then, by definition of Pareto-optimal solu-
tion, we get

∄R ∈ � (feasible region), such that −�
R̃S
(R) ≤ −�

R̃S
(R∗) and 

−𝜇�CS
(R) < −𝜇�CS

(R∗)

⇔ ∄R ∈ � , such that −h1
[
RS(R)

] ≤ −h1
[
RS(R

∗)
]
 and 

−h2
[
CS (R)

]
< −h2

[
CS(R

∗)
]

⇔ ∄R ∈ �  ,  such tha t  h1
[
RS(R)

] ≥ h1
[
RS(R

∗)
]
 and 

h2
[
CS(R)

]
> h2

[
CS(R

∗)
]

⇔ ∄R ∈ � , such that RS(R) ≥ RS(R
∗) and CS(R) < CS(R

∗) 
(since h1 is monotonically increasing and h2 is monotonically 
decreasing function).

⇔ ∄R ∈ � , such that −RS(R) ≤ −RS(R
∗) and CS(R) < CS(R

∗)

(18)�
R̃S

=

⎧
⎪⎨⎪⎩

0, RS ≤ Rl
S

1

2
tanh

��
RS −

Rl
S
+Ru

S

2

�
�1

�
+ 1

2
, Rl

S
≤ RS ≤ Ru

S

1, RS ≥ Ru
S

; �1 =
6

Ru
S
− Rl

S

(19)�
C̃S

=

⎧
⎪⎨⎪⎩

1, CS ≤ Cl
S

1

2
tanh

��
Cl
S
+Cu

S

2
− CS

�
�2

�
+ 1

2
, Cl

S
≤ CS ≤ Cu

S

0, CS ≥ Cu
S

; �2 =
6

Cu
S
− Cl

S

.

(20)

Maximize
(
�
R̃S
,�

C̃S

)
or

Minimize
(
−�

R̃S
,−�

C̃S

)

subject to gi(r, n) ≤ 0, i = 1, 2,… ,M

0 ≤ rj,min ≤ rj ≤ rj,max ≤ 1,

1 ≤ nj,min ≤ nj ≤ nj,max, nj ∈ ℤ
+, j = 1, 2,… ,m.

⇔ R∗ ∈ � is a Pareto-optimal solution of the MOOP given 
by (2).

Similarly, we can prove by taking the second objective 
CS first.

Step 4 Find the Pareto-optimal solutions (Pareto-optimal 
front).

In this step, the given model of the problem is encoded 
in MATLAB. All information about optimization part such 
as no. of objectives, design variables, design constraints, 
and the NSGA-II parameters such as population size ( N ), 
maximum no. of generation (tmax) , crossover probability 
(pc) , mutation probability (pm) , and distribution indices (Deb 
2001) for SBX crossover ( �c ) and polynomial mutation ( �m) are 
collected. To find a well-spread and well-converged set of 
solutions, a rigorous experimentation and tuning of param-
eters need to be exercised. After getting the Pareto-optimal 
fronts in terms of membership values of the objective func-
tions, we are able to find the Pareto-optimal fronts in terms 
of the objective values.

Step 5 Find the best compromise solution.
Fuzzy ranking method (Pandiarajan and Babulal 2014) 

ranks the multiple solutions as per their degree of satisfac-
tion. The best compromise solution achieves the maximum 
satisfaction level as follows:

where P is the number of obtained Pareto-optimal solutions.

Step 6 Rank the DMUs obtained by the various membership 
functions.

In this step, DEA is implemented to rank the efficiency of 
the optimal results given by the various membership functions 
in the form of DMUs. The CCR model (Charnes et al. 1978) 
is applied for efficiency and then the super-efficiency model 
(Noura et al. 2011) for resolving the issue of more than one 
DMUs having equal efficiencies. There are four DMUs as 
follows:

(21)�best = max
P

[
min

{
�
R̃S
,�

C̃S

}]
,
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An Illustrative Example

Let us consider a four-stage over-speed protection system (see 
Fig. 6) for a gas turbine (Dhingra 1992). The over-speed detec-
tion is continuously provided by the electrical and mechanical 
systems. When an over-speed occurs, it is necessary to cut off 
the fuel supply by closing the four control valves (V1–V4). 
The control system is modeled as a four-stage series system. 
All components have a constant failure rate in the system. The 
objective is to determine the optimal design variables rj (com-
ponent reliability) and nj (no. of the redundant components) 
at stage j , such that maximization of the system reliability 
( RS ) and minimization of the system cost ( CS ) are achieved 
simultaneously. In addition, several design constraints such 
as minimum requirements for reliability of the system, the 
overall cost of the system, the total permissible volume of the 
system, and maximum allowable weight of the system are 
considered in this example. The mathematical formulation of 
the over-speed protection system is given as follows:

DMU1 Linear: �
L
best

= max
P

[
min

{
�
R̃S
,�

C̃S

}]

DMU2 Quadratic: �
Q

best
= max

P

[
min

{
�
R̃S
,�

C̃S

}]

DMU3 Parabolic: �
P
best

= max
P

[
min

{
�
R̃S
,�

C̃S

}]

DMU4 Hyperbolic: �
H
best

= max
P

[
min

{
�
R̃S
,�

C̃S

}]
.

(22)Max. RS(r, n) =

4∏
j=1

[
1 −

(
1 − rj

)nj]

(23)Min. CS(r, n) =

4∑
j=1

cj
(
rj
)[
nj + exp

(
nj∕4

)]

(24)subject to VS =

4∑
j=1

vjn
2
j
≤ V

 
The cost of the j th component cj

(
rj
)
 is assumed to be an 

increasing function of rj (conversely, a decreasing function 
of the component failure rate) in the form:

where �j and �j are constants of characteristics factors for 
each component at the j th stage or subsystem. This formula 
can be found in Kumar et al. (2009).

Each component of the system has a constant failure rate 
�j that follows an exponential distribution. The reliability of 
each component is given by the following:

From (29) and (30), we have 

The parameters �j and �j give the physical features (shap-
ing and scaling factor) of the cost–reliability curve of each 
component in the j th subsystem and the factor exp

(
nj∕4

)
 

accounts for the additional cost due to the interconnection 
between the parallel components (Kuo and Prasad 2000; 
Wang et al. 2009).

Computational Results and Discussion

This section describes and analyzes the results obtained by 
the proposed approach.

Parameter Settings

The overall process is implemented in the MATLAB 
(R2017a) on Intel(R) Core(TM) i3-2370M CPU @ 
2.40 GHz with 4 GB RAM. The integer variables nj are 

(25)
WS =

4∑
j=1

wjnjexp
(
nj∕4

) ≤ W

(26)

4∏
j=1

[
1 −

(
1 − rj

)nj] ≥ R

(27)

4∑
j=1

cj
(
rj
)[
nj + exp

(
nj∕4

)] ≤ C

(28)
0.5 ≤ rj ≤ 1 − 10−6, 1 ≤ nj ≤ 10, nj ∈ ℤ

+, j = 1, 2, 3, 4.

(29)cj
(
rj
)
= �j∕�

�j
j
,

(30)rj(T) =

∞

∫
T

�je
−�jTdT = e−�jT .

(31)cj
(
rj
)
= �j

[
−T∕ ln

(
rj
)]�j .

Fig. 6   A schematic diagram of the over-speed protection system
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initially treated as real variables, but during the evaluation 
of the objective functions, the real values are transformed to 
the nearest integer values. MATLAB optimization tool-box 
function namely “fmincon” (Coleman et al. 1999) is used to 
determine the optimal values to each of the objective func-
tions with given constraints. The design data for the given 
example are listed in Table 1. The optimal results for the 
single-objective optimization problem (SOOP) are given in 
Table 2 and compared it with other heuristic approaches. 
The parameters settings of the NSGA-II and other MOEAs 
such as PESA-II and SPEA2 are given as follows: 

NSGA-II: N  = 40, tmax = 100, pc = 0.9, pm = 0.1, �c = 10, 
�m = 100.

PESA-II (Corne et  al. 2001): hyper-grid size = 10 × 10; 
pc = 0.8 , pm = 0.2 , �c = 10 , �m = 100 , archive size = 40; 
tmax = 100.

SPEA2 (Zitzler et al. 2001): N = 40; pc = 0.9 , pm = 0.1 ; and 
�c = 10 , �m = 100 , archive size = 40; tmax = 100.

Simulation Results

After setting the parameters, a simulation run for the given 
problem is shown to non-fuzzy approach fuzzy approach 
in Fig. 7. In Figs. 8 and 9, the simulation results of the pro-
posed approach have been shown to both the membership 

Table 1   Design data for the 
given example

Subsystem 105�j �j vj wj R C W V T

1 1.0 1.5 1 6 0.75 400 500 250 1000 h
2 2.3 1.5 2 6
3 0.3 1.5 3 8
4 2.3 1.5 2 7

Table 2   Optimum solutions for the SOOP

MATLAB optimization func-
tion “fmincon” (Coleman et al. 
1999)

GA (Goldberg 1989) PSO (Kennedy and Eberhart 
1995)

Dhingra (1992)

Design variables Attributes Design variables Attributes Design variables Attributes Design variables Attributes

Max R
S

(0.91,403, 5) R
S
 = 0.99994 (0.92472, 5) R

S
 = 0.99810 (0.91513, 6) R

S
 = 0.9996 (0.81604, 6) R

S
 = 0.99961

(0.86723, 6) C
S
 = 399.52 (0.87732, 3) C

S
 = 396.95 (0.87883, 4) C

S
 = 393.92 (0.80309, 6) C

S
 = 399.94

(0.94282, 3) W
S
 = 439.02 (0.83430, 6) W

S
 = 434.05 (0.94312, 5) W

S
 = 442.30 (0.98364, 3) W

S
 = 495.65

(0.87349, 5) V
S
 = 174 (0.91449, 4) V

S
 = 183 (0.87959, 4) V

S
 = 175 (0.80373, 5) V

S
 = 185

Min C
S

(0.5, 4) R
S
 = 0.7541 (0.5, 4) R

S
 = 0.7608 (0.53447, 4) R

S
 = 0.7615 (0.5, 4) R

S
 = 0.7604

(0.5, 4) C
S
 = 20.30 (0.5, 4) C

S
 = 20.62 (0.5, 4) C

S
 = 20.71 (0.5, 4) C

S
 = 20.72

(0.54536, 5) W
S
 = 314.55 (0.53150, 5) W

S
 = 314.55 (0.51812, 5) W

S
 = 314.55 (0.59251, 5) W

S
 = 314.55

(0.5, 3) V
S
 = 141 (0.51457, 3) V

S
 = 141 (0.5, 3) V

S
 = 141 (0.5, 3) V

S
 = 141

Fig. 7   The POFs based on the 
non-fuzzy approach in a single 
simulation run
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and objective spaces respectively. NSGA-II is shown com-
paratively with other elitist MOEAs such as PESA-II and 
SPEA2. Figure 10 shows a box-plot comparison of RS and 
CS between non-fuzzy and fuzzy approach.   

The Best DMU

The best trade-off of optimal solutions for each of the mem-
bership functions is obtained by the fuzzy ranking method in 
Table 3. Figure 11 shows the optimal values obtained by the 

Fig. 8   The POFs in the membership grades space using the various membership functions

Fig. 9   The POFs in the objective space on the basis of the various membership functions
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various membership functions in RS and CS . In Fig. 12, the 
maximum satisfaction levels achieved by the various mem-
bership functions are compared. After that, DEA is imple-
mented to rank the DMUs obtained by the various member-
ship functions. Table 4 gives the ranking to each DMU. It 
is based on the CCR model that is implemented in DEAP 
solver software (Coelli 1996). The efficiencies are obtained 
in this model as DMU1  = 1, DMU2  = 0.988, DMU3  = 1, 
and DMU4  = 1. To resolve it, super-efficiency model con-
cept (Noura et al. 2011) is used, and finally, it is ranked as 
DMU4  > DMU3  > DMU1  > DMU2.   

Fig. 10   Box-plot comparison between the fuzzy and non-fuzzy approach

Table 3   The best compromise solution for each membership function

r
1

n
1

r
2

n
2

r
3

n
3

r
4

n
4

R
S

C
S

W
S

V
S

�
best

Linear 0.81986 5 0.75042 3 0.67214 3 0.78987 4 0.947628 99.28 269.74 102 0.7907
Quadratic 0.78327 5 0.67480 3 0.67243 4 0.85639 3 0.951174 100.85 274.26 109 0.6207
Parabolic 0.71126 5 0.72219 4 0.64577 3 0.83937 4 0.947256 108.18 296.87 116 0.9461
Hyperbolic 0.82737 5 0.67367 4 0.65271 4 0.80692 4 0.972764 103.69 333.05 137 0.9666

Fig. 11   The optimal values of R
S
 and C

S
 on the basis of the various membership functions

0

0.2

0.4

0.6

0.8

1

Linear Quadratic Parabolic Hyperbolic

Fig. 12   Maximum satisfaction level achieved by the various member-
ship functions
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A Comparative Study with Existing Approach

The proposed approach is compared with other 
approaches applied to the same problem. Liu (2013) solved 
this problem by converting  into a single-objective fuzzy 
non-linear programming problem. A heuristic method is 
developed to get a set of satisfactory solutions. To rank the 
satisfactory solutions, DEA model is used by considering 
criteria of reliability, cost, volume, and weight. However, 
an MOOP is preferred to obtain a set of optimal solutions 
popularly known as Pareto-optimal solutions and the best 
Pareto-optimal solution is then chosen by some higher level 
information involved in the problem. The proposed approach 
simultaneously optimizes the membership functions instead 
of objective functions and gets multiple solutions in a single 
simulation run. Figure 13 shows the box-plot comparison of 
the proposed approach and Liu (2013) by taking the same 
range of limits in the linear membership function. The pro-
posed approach gives well-distributive solutions in the same 
conditions.

Garg et al. (2014a) solved this problem by developing a 
model in fuzzy environment with the assumption that the 
reliability of each component is a triangular fuzzy number. 

To solve the problem, the developed fuzzy model is con-
verted into crisp model using expected values of fuzzy 
numbers and taking into account the preference of decision-
maker regarding cost and reliability goals. However, the 
proposed approach does not require any kind of aggregate 
operators and various membership functions give the desir-
ability functions to the decision-maker in choosing the best 
compromise solution according to his/her own’s interest. 
Figure 14 shows the box-plot comparison between linear 
and non-linear (sigmoidal shape) membership functions. 
The proposed approach uses MOEA technique rather than 
heuristic approaches such as GA (Goldberg 1989), and PSO 
(Kennedy and Eberhart 1995), so it covers a larger search 
space where multiple solutions are generated in a single 
simulation run. It gives more information about the charac-
teristics of the solutions.

Wang et al. (2009) solved the MORRAP using NSGA-
II in the crisp environment. In a similar environment, 
Damghani et al. (2013) used multi-objective particle swarm 
optimization (MOPSO). Both these approaches do not reflect 
the real-life situations where uncertainty is an inherent char-
acter in the system design problem. Recently, Muhuri et al. 
(2018) solved the MORRAP with interval type-2 fuzzy set 

Table 4   Ranking from the DEA 
model

DMU Linear (1) Quadratic (2) Parabolic (3) Hyperbolic (4)

Reliability 0.947628 0.951174 0.947256 0.972764
Cost 99.28 100.85 108.18 103.69
Weight 269.74 274.26 296.87 333.05
Volume 102 109 116 137
Satisfaction level 0.7907 0.6207 0.9461 0.9666
Efficiency 1 0.988 1 1
Aspiration level 1.9977 – 2.1369 2.1667
Ranking 3 4 2 1

Fig. 13   The box-plot comparison with Liu (2013)
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which considers higher order uncertainties in the component 
parameters and addressed it using NSGA-II. The comparison 
between the Muhuri et al. (2018) and the proposed approach 
is given as follows.

Muhuri et al. (2018) Proposed approach

This type of modeling is suitable 
for those situations where the 
end points of the component or 
objective are ambiguous

The present approach finds the end 
points of each objective first and 
then models the given problem 
as a fuzzy MOOP

It does not show the POF in the 
membership space. In fact, this 
type of modeling creates dif-
ficulty to show the POF in the 
membership space

The present approach finds the 
POF in the objective space as 
well as its membership space

Only linear membership function 
is considered

However, a real-world situation 
demands models to be more 
flexible and adaptable to the 
human decision-making process 
as well as some kind of empiri-
cal justification or assumption. 
Keeping these views in mind, 
various membership functions 
are considered

 It does not give the best solu-
tion

It finds the best “trade-off” or 
compromise solution

Conclusions

In this piece of work, MOEA approach is used to solve 
MORRAP in a fuzzy environment where the goals of the 
objectives are specified by various membership functions 
such as linear, quadratic, parabolic, and hyperbolic. A 
numerical example of over-speed protection system with 
conflicting objectives such as maximization of system reli-
ability and minimization of system cost is considered simul-
taneously under several design constraints such as minimum 
requirements for reliability of the system, the overall cost 
of the system, the total permissible volume of the system, 
and maximum allowable weight of the system. Fuzzy rank-
ing method is used to obtain the best compromise solution. 
Finally, DEA model is used to rank the results for the various 
membership functions in the form of DMUs.

The experiments performed by the proposed approach are 
concluded as follows:

•	 MOEA technique namely NSGA-II is shown with other 
MOEAs which are capable in finding a complete picture 
of Pareto-optimal solutions in a single simulation run, 
where a decision-maker gets more information such as 
non-dominated and their characteristics.

Fig. 14   The box-plot comparison with Garg et al. (2014a)



205INAE Letters (2019) 4:191–206	

123

•	 The proposed approach is free from any kind of aggrega-
tion. It deals with purely multi-objective manner.

•	 The trade-offs between the system reliability and system 
cost are shown in both membership space and objective 
space.

•	 Simulation results of fuzzy and non-fuzzy approach are 
comparatively analyzed. It shows a fuzzy approach gives 
the flexibility to the decision-maker in setting the desired 
goals.

•	 The best compromise solutions are obtained for the vari-
ous membership functions.

•	 DEA ranks the DMUs as Hyperbolic > Parabolic > Lin-
ear > Quadratic.

•	 Hyperbolic membership function gives the best result to 
the decision-maker.

•	 The proposed approach gives flexibility to the decision-
maker in choosing the membership function to his/her’s 
own interests.
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