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Abstract
Recently developed Grey Wolf Optimizer (GWO) algorithm has conspicuous behavior for verdict of global optima, without 
getting ensnared in premature convergence and has been applied to benchmark problems including engineering design and 
optimization problems. In the proposed research, the exploration phase of the Grey Wolf Optimizer has been further improved 
using pattern search algorithm, which is a derivative-free search method. To overcome the problem of stagnating in neighbor-
hood optima, it involves two moves: one is pattern move and other is exploratory search. In the proposed research, a hybrid 
version of Grey Wolf Optimizer algorithm combined with pattern search (hGWO-PS) algorithm has been developed for the 
solution of various non-linear, highly constrained engineering design and engineering optimization problems. To indorse the 
results of the proposed hybrid algorithm, 23 benchmark problems including two real-life biomedical problems are taken into 
consideration. Experimentally, it has been observed that the exploitation phase in the proposed hybrid GWO-PS algorithm 
is better than standard Grey Wolf Optimizer algorithm, Ant Lion Optimizer algorithm, Moth Flame Optimization algorithm, 
sine–cosine optimization algorithm and other recently reported heuristics and meta-heuristics search algorithm. However, 
computational time of the algorithm has been slightly increased due to increase in the number of fitness evaluations. Hence, 
proposed algorithm indorses its effectiveness in the field of nature inspired meta-heuristics search algorithms.

Keywords Engineering optimization · Grey Wolf Optimizer · Meta-Heuristics search

Introduction

Multidisciplinary design optimization and multidisciplinary 
system design optimization are emerging area for the solu-
tion of design and optimization problems incorporating a 
number of disciplines. With the advancement in technology, 
a new era of problem solving methods is emerging which 
make use of computers. It is becoming a common approach 
for solving complex problems. The problem with the con-
ventional methods which require direct human involvement 
is bit sluggish which makes computer-aided design a widely 
adopted emphasizing on use of computer for design prob-
lems. They are fast and speedup the working process. The 
computer-aided design emphasizes not only on simulating 

a system but also to design the same; another revolutionary 
approach in this field is not only to design the system but 
also to find the optimal design with high accuracy, low cost, 
high speed and reliability. If we talk about the challenges in 
solving real engineering problems, they require specific tools 
to handle them. Optimization techniques are considered to 
be one of the best tools for solving the engineering prob-
lems and to find the optimal results for the problem. These 
approaches consider the problem as black box and find the 
optimal solution. The optimization process initializes with 
random set for specified problem and then improving them 
over predefined steps. The engineering problems to be tack-
led consist of various difficulties such as constraints, uncer-
tainties, local solution, multiple objective, etc. Optimization 
technique should be able to discourse these issues.

The multi-objective focuses on finding solution for the 
problem having more than one objective. These problems 
have nature of multi-objectivity which makes them complex 
and difficult to solve. To solve such problems, two main 
approaches are used: posteriori and priori. In a priori 
approach, the multi-objective problem is first converted into 
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single objective by accumulating the objectives. Weight is 
assigned to every objective depending on importance of the 
respective objective. The drawback in this approach is that 
the algorithm should be run multiple times to find Pareto 
optimal set. A posterior approach works opposite to priori 
approach by maintaining multi-objective nature of the prob-
lem and finding Pareto optimal set by running the algorithm 
just once. But this approach requires high computational cost 
but still this method is widely used to solve real-world prob-
lems. Once the optimization algorithm is selected, another 
fact to be taken into consideration is feature selection and 
data mining. Data mining consist of various intermediate 
steps such as data pre-processing, data cleaning, data inte-
gration, data transformation, data mining and pattern evalu-
ation to present final data. Feature selection is also a major 
step which aims to eliminate irrelevant variables in data; 
these methods are categorized as wrappers and filters. Filters 
evaluate features of data set into subset depending on the 
data itself, whereas wrappers utilize learning algorithm to 
evaluate subset. Filters generally work faster than wrappers. 
While evaluating the optimization problem, exploration and 
exploitation are the criteria to be taken into account; based 
on these two features, the algorithms are classified into two 
categories consisting of population-based search algorithm 
which is exploration oriented and the other one is evolution-
based algorithms which are exploitation focused. And there 
should be a good balance between them so as to enhance the 
working efficiency of the resultant algorithm. One of the 
methods to achieve this balance is using a hybrid algorithm 
which enhances performance by combining two techniques; 
the resulting technique is called memetic algorithm. In the 
recent years, various meta-heuristics search algorithms have 
been implemented such as Biogeography Based Optimizer 
(Simon 2008), Grey Wolf Optimizer (Mirjalili et al. 2014), 
Ant Lion Optimizer (Mirjalili 2015a, b, c), Moth Flame 
Optimizer (Mirjalili 2015a, b, c), Multi Verse Optimizer 
(Mirjalili et al. 2016a, b), Dragon Fly Algorithm (Mirjalili 
2016a, b), Sine Cosine Algorithm (Mirjalili 2016a, b), 
Lightning Search Algorithm (Shareef et al. 2015), Seeker 
Optimization Algorithm (Chaohua et al. 2006),Virus Colony 
Search Algorithm (Li et al. 2016a, b), Whale Optimization 
Algorithm (Mirjalili and Lewis 2016), Wind Driven Opti-
mization (Bayraktar et al. 2010), Water Cycle Algorithm 
(Eskandar et al. 2012), Salp Swarm Algorithm (Mirjalili 
et  al. 2017), Symbiotic Organism Search (Cheng and 
Prayogo 2014), Search Group Algorithm (Gonçalves et al. 
2015), Stochastic Fractal Search Algorithm (Salimi 2015), 
The Runner Root Algorithm (Merrikh-Bayat 2015), Ant 
Colony Optimization (Dorigo et al. 2006), Shuffled Frog 
Leaping Algorithm (Eusuff et al. 2006), Flower Pollination 
Algorithm (Yang 2012), Optics Inspired Optimization 
(Kashan 2014a, b), Cultural Evolution Algorithm (Kuo and 
Lin 2013), Grasshopper Optimization Algorithm (Saremi 

et al. 2017), Interior Search Algorithm (Gandomi 2014), 
Colliding Bodies Optimization (Kaveh and Mahdavi 2005), 
Krill Herd Algorithm (Gandomi and Alavi 2012), Competi-
tion over Resources (Mohseni et al. 2014), Binary Bat Algo-
rithm (Nakamura et al. 2002), Mine Blast Algorithm (Sadol-
lah et al. 2013), Biogeography Based Optimization (Du et al. 
2009), Adaptive Cuckoo Search Algorithm (Mareli and 
Twala 2018), Bat Algorithm (Yang 2010a), Animal Migra-
tion Optimization (Li et al. 2014), Gravitational Search 
Algorithm (Rashedi et al. 2009), Branch and Bound Method 
(Cohen and Yoshimura 1983), Expert System Algorithm 
(Kothari and Ahmad 1995), Genetic Algorithm (Kazarlis 
et al. 1996), Binary Gravitational Search Algorithm (Rashedi 
et al. 2010), Collective Animal Behavior Algorithm (Cuevas 
et al. 2012a, b), Bird Swarm Algorithm (Meng et al. 2016), 
Cognitive Behavior Optimization (Li et al. 2016a, b), Elec-
tromagnetic Field Optimization (Abedinpourshotorban et al. 
2016), Firework Algorithm (Tan et al. 2015), Water Wave 
Optimization (Zheng 2015), Earthworm Optimization Algo-
rithm (Wang et al. 2015), Forest Optimization Algorithm 
(Ghaemi and Feizi-Derakhshi 2014), Mean Variance Opti-
mization Algorithm (Erlich et al. 2010), League Champion-
ship Algorithm (Kashan 2014a, b), Chaotic Krill Herd Algo-
rithm (Wang et al. 2014), Elephant Herding Optimization 
(Wang et al. 2016), Differential Evolution Algorithm (Storn 
and Price 1997), Imperialistic Competition Algorithm 
(Atashpaz-Gargari and Lucas 2007), Invasive Weed Optimi-
zation (Karimkashi and Kishk 2010), Particle Swarm Opti-
mization Algorithm (Kennedy and Eberhart 1995), Crow 
Search Algorithm (Askarzadeh 2016), Self-Adaptive Bat 
Algorithm (Bavafa et al. 2014), Random Walk GWO (Gupta 
and Deep 2018). A large portion of these calculations 
depend on straight and nonlinear programming systems that 
require broad slope data and for the most part attempt to 
locate an enhanced arrangement in the region of a beginning 
stage. The main drawbacks of the numerical systems and 
dynamic programming technique are the size or measure-
ments of the issue, huge computational time and many-sided 
quality in programming (Rust 1996). Branch and bound 
technique do not require priority ordering of units and can 
be extended to allow for probabilistic reserve constraints. 
The trouble of this technique is the exponential development 
in the execution time for frameworks of an extensive reason-
able size (Cohen and Yoshimura 1983). The Lagrangian 
Relaxation approach takes care of the short UC issue that 
gives quicker procedure; yet it neglects to acquire arrange-
ment achievability and ends up simply confusing if the quan-
tity of units is more (Mukherjee and Adrian 1989). The 
mixed integer programming strategies for the unit commit-
ment issues fall flat when the investment of number of units 
increases since they require an expansive memory and expe-
rience the ill effects of computational delay (Dakin 1965). 
The fuzzy theory strategy utilizes fuzzy set to understand 
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the estimated stack plans, yet it experiences multifaceted 
nature (Kadam et al. 2009). The Hopfield neural system con-
siders more supplies yet it might experience the ill effects of 
numerical meeting because of its preparation procedure 
(Swarup and Simia 2006). The Artificial Neural Network 
technique has theupsides of giving great arrangement quality 
and fast meeting. This technique can suit more confounded 
unit-wise limitations and gives numerical meeting and 
arrangement nature of the issue. The arrangement handling 
in every strategy is extremely one of a kind (Saini and Soni 
2002). The Genetic Algorithm is a broadly useful stochastic 
and parallel pursuit strategy in light of the mechanics of 
characteristic choice and normal hereditary qualities. It is an 
inquiry technique to have capability of getting close world-
wide minima. Also, it has the ability to acquire the exact 
outcomes inside brief time and the limitations are incorpo-
rated effortlessly (Kazarlis et al. 1996). The Evolutionary 
Programming is highly faster over customary GAs and 
acquires a good problem solving arrangement. The “Bane of 
dimensionality” is overcome, and the computational weight 
is relatively direct with the issue scale (Juste et al. 1999). 
Harmony search algorithm is able to solve non-linear, hard 
satisfactory and complex optimization problems within a 
reasonable time; however, it suffers from slow local conver-
gence speed when the iteration solution approaches the opti-
mal solution and requires large number of iterations for 
optimal solution (Afkousi-Paqaleh and Rashidinejad 2010). 
Particle swarm optimization algorithm is an intellectual 
technique having very fast search speed with no mutation 
calculation and overlapping. But it requires parameter tuning 
and selection and cannot solve the problems of non-coordi-
nate system and also suffers from less exact regulation of its 
speed as well as direction due to the partial optimism (Ken-
nedy and Eberhart 1995). Loss of Load Probability algo-
rithm is a robust and swift algorithm which finds a solution 
close to the best one. Whereas few of the problem’s require-
ments are disregarded to be simple and fast (Booth 1972). 
Pattern search algorithm can be operated on functions which 
are neither differentiable nor continuous with high efficiency 
and fast speed. The pattern search respond to the early esti-
mation of initial point and confirm the closeness of known 
initial point with respect to global solution, which make it 
more vulnerable to get stuck in the local minimum (Yin and 
Cagan 2000). Binary fireworks algorithm has fast conver-
gence speed with high optimization accuracy. But sometimes 
when a bad firework occurs, the optimal solution becomes 
inefficient and inaccurate (Tan et al. 2015).

Shuffled frog leaping algorithm is capable of resolving 
continuous discrete, non-differentiable, multi-modal and 
non-linear optimization difficulties with faster convergence 
speed, but has limitations in local searching ability and has 
non-uniform initial population and sometimes suffers from 
premature convergence (Eusuff et al. 2006). Invasive weed 

optimization has a faster and accurate response and can be 
stretched for any duration and number of generating units for 
load scheduling. The convergence of results and the speed 
of execution are reduced because it obtains the outputs of 
UC from various other techniques (Karimkashi and Kishk 
2010). Gravitational search algorithm is easy to implement 
and has low computational cost. It easily falls into local 
optima solution convergence speed slows down in the late 
search phase and also easily falls into local optima solu-
tion (Rashedi et al. 2009). Bat-inspired algorithm requires 
less execution efforts and finds better solutions at high con-
vergence speed and is ease to implement. This algorithm 
has slow progress and also there is lack of variety in the 
population and due to local optima, this algorithm confronts 
improper convergence (Yang 2010a). Artificial bee colony 
algorithm is flexible, uses less control parameters and has 
advantage of easy hybridization with other algorithms. But 
its convergence performance for the local minima is slow 
and sometimes premature convergence of local minima 
occurs due to poor exploitation (Karaboga 2010). Imperial-
istic competition algorithm has good convergence rate with 
better global solution if parameters are adjusted properly; 
otherwise, efficiency of global optimal solution decreases 
and computational time also increases (Atashpaz-Gargari 
and Lucas 2007). Multi-particle swarm optimization could 
obtain global optimum solution more probably and the 
results show that this method is more efficient than genetic 
algorithms (Mostaghim and Teich 2003). Self-Adaptive 
Bat Algorithm has high speed of convergence in solving 
unit commitment problem and increases the population 
diversity and improves the exploration power of conven-
tional bat algorithm (Bavafa et al. 2014). Whale Optimiza-
tion Algorithm is much determined in comparison with the 
other meta-heuristic algorithms and traditional approaches 
(Mirjalili and Lewis 2016). Crow Search Algorithm is easier 
to find promising results as compared to numerous other 
optimization algorithms used so far (Askarzadeh 2016). 
Seeker optimization algorithm results are associated with 
other diverse algorithms issued in literature to inaugurate 
its pre-eminence (Chaohua et al. 2006). Hopfield Method 
uses a linear input–output model for neurons and weighting 
factor are calculated. But this method can only be applied 
to the systems consisting of only linear constraints (Swarup 
and Simia 2006). Ant Lion Optimization has high rate of 
meeting which gives us quick outcomes, and it gives pre-
ferred outcomes over differential development calculations 
for the multi-modular issues. These numerical improvement 
calculations give a valuable technique to get the worldwide 
ideal in basic and perfect models (Mirjalili 2015a, b, c). 
Environmental economic dispatch using novel differential 
evolution presents Differential Evolution method for solving 
the environmental economic hydrothermal system dispatch 
problem with the aim to reduce electricity generation fuel 
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costs and emissions of thermal units. The problem is con-
strained by limitations on generations, active power balance, 
and amount of available water. Two modified techniques are 
used in this paper: one is modified mutation using balanced 
local and global search and other is modified selection to 
choose best solution and the results are promising then con-
ventional algorithms (Le et al. 2018), Optimal generation 
scheduling Biologically Inspired Grasshopper Algorithm 
presented solution for economic dispatch problem of power 
system. The feasibility and validity of algorithm is evaluated 
by solving three different problems comprising of small-, 
medium- and large scale power systems and the results show 
that the proposed method is quite promising for solving a 
wide range of ED problems efficiently (Rajput et al. 2017), 
Island Bat Algorithm for optimization is a vital strategy to 
control diversity during the search. The drawback of conven-
tional bat-inspired algorithm is its inability to preserve the 
diversity and thus the prematurity take place. This algorithm 
is evaluated using 15 benchmark functions. The algorithm is 
compared with 17 competitive methods and shows success-
ful outcomes. The proposed algorithm is applied for three 
real-world cases of economic load dispatch problem where 
the results obtained prove considerable efficiency in com-
parison to other methods (Ahmadpour et al. 2018).

However, some certifiable designing and logical improve-
ment issues are exceptionally intricate and hard to settle, 
utilizing these techniques. On the off chance that there are 
more than one neighborhood minima in the problem, the 
outcome may rely upon the choice of an underlying point, 
and the acquired minima may not really be the worldwide 
minima. Moreover, the gradient search may end up plainly 
troublesome and unstable when the target work andimpera-
tives have different or sharp peaks. The computational disad-
vantages of existing numerical straight and nonlinear strate-
gies have constrained analysts to depend on meta-heuristic 
calculations in light of reproductions to take care of building 
and logical streamlining issues. A few traditional techniques 
are accessible to take care of the unit commitment issue. Be 
that as it may, every one of these strategies requires the cor-
rect numerical model of the framework and there is a shot of 
stalling out at the nearby optima. Also, The No-Free-Lunch 
theorem for optimization allows developers to develop new 
algorithm or to improve the existing algorithm, because it 
logically proves that there is no such optimization algorithm 
which can solve all the optimization problems with equal 
efficiency for all. Some algorithms work best for few prob-
lems and worst for the rest of the problems. So, there is 
always a scope or improvement to develop the algorithm 
which could work well for most of the problems.

Hybrid Grey Wolf Optimizer

Grey Wolf Optimizer (Mirjalili et al. 2014) is swarm intel-
ligence-based, recently developed, meta-heuristics search 
algorithm inspired from the hunting mechanism and lead-
ership hierarchy of grey wolves in nature and requires few 
control parameters and was initially applied to solve 29 
benchmark problems and three classical engineering design 
problems such as tension/compression spring, welded beam, 
pressure vessel designs problem and real-world optical engi-
neering. Further, it was successfully applied to solve various 
engineering optimization problems such as economic load 
dispatch problem (Vlachogiannis and Lee 2009), Economic 
load dispatch problem with valve point effect (Herwan 
Sulaiman et al. 2015), unit commitment problem (Bhardwaj 
et al. 2012), training multi-layer perceptron (Mirjalili 2015a, 
b, c), solving optimal reactive power dispatch (Sulaiman 
et  al. 2015), Feature subset selection approach (Emary 
et al. 2015a, b), parameter estimation in surface wave (Song 
et al. 2015), Power point tracking for photovoltaic system 
(Mohanty et al. 2016), Multi criterion optimization (Mir-
jalili et al. 2016a, b), shop scheduling problem (Komaki and 
Kayvanfar 2015), training q-Gaussian radial base function 
(Muangkote et al. 2014), combined heat and power dispatch 
problem (Jayakumar et al. 2016), Automatic generation con-
trol problem (Sharma and Saikia 2015; Gupta and Saxena 
2016), automatic generation control with TCPS (Lal et al. 
2016), load frequency control of interconnected power sys-
tem (Guha et al. 2016a, b), optimal control of DC motor 
(Madadi and Motlagh 2014), For solving multi-input–multi-
output system (El-Gaafary et al. 2015), smart grid system 
(Mahdad and Srairi 2015), multi-objective optimal power 
flow (El-Fergany and Hasanien 2015), combined eco-
nomic emission dispatch problem (Mee Song et al. 2014), 
3D stacked SoC (Zhu et al. 2015), economic load dispatch 
problem (Kamboj et al. 2016), hyperspectral band selection 
problem (Medjahed et al. 2016), sizing of multiple distrib-
uted generation (Sultana et al. 2016), capacitated vehicle 
routing problem (Korayem et al. 2015), for clustering analy-
sis (Zhang and Zhou 2015), System reliability optimization 
(Kumar et al. 2017), stabilizer design problem (Shakarami 
and Davoudkhani 2016), Dynamic scheduling in welding 
industry (Lu et al. 2017), photonic crystal filter optimization 
(Chaman-Motlagh 2015), attribute reduction (Emary et al. 
2015a, b), Tuning of fuzzy controller (Precup et al. 2017), 
tuning of Fuzzy PID controller (Saxena and Kothari 2016), 
doubly fed induction generator-based wind turbine (Yang 
et al. 2017), robust generation control strategy (EBSCOhost 
1033), aligning multiple molecular sequences (Jayapriya 
and Arock 2015), image registration (Rathee et al. 2015), 
training LSSVM for price forecasting (Mustaffa et al. 2015), 
unmanned combat aerial vehicle path planning (Zhang et al. 
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2016), automated offshore crane design (Hameed et al. 
2016), decision tree classifier for cancer classification on 
gene expression data (Vosooghifard and Ebrahimpour 2015), 
human recognition system (Sánchez et al. 2017), For solv-
ing optimizing key values in the cryptography algorithms 
(Shankar and Eswaran 2016), and optimal design of double 
later grids (Gholizadeh 2015). Several algorithms have also 
been developed to improve the convergence performance of 
Grey Wolf Optimizer that includes parallelized GWO (Pan 
et al. 2016), hybrid GWO with Genetic Algorithm (GA) 
(Tawhid and Ali 2017), hybrid DE with GWO (Jitkongchuen 
2015), Hybrid Grey Wolf Optimizer using Elite opposition-
based learning strategy and simplex method (Zhang et al. 
2017), Modified Grey Wolf Optimizer (mGWO) (Mittal 
et al. 2016), Mean Grey Wolf Optimizer (MGWO) (Singh 
and Singh 2017a), Hybrid particle swarm optimization 
with Grey Wolf Optimizer (HPSOGWO) (Singh and Singh 
2017b) and RW-GWO (Gupta and Deep 2018).

Problem Formulation

Primarily developed Grey Wolf Optimizer is a transforma-
tive calculation algorithm, based on grey wolves, which rec-
reate the social level and hunting component of grey wolves 
in view of three principle ventures of chasing: scanning for 
prey, encompassing prey and assaulting prey and its math-
ematical model was designed in view point of hierarchy level 
of different wolves. The fittest solution was designated as 
alpha (α). Accordingly, the second and third best solutions 
are named beta (β) and delta (δ) individually. Whatever is 
left of the hopeful solution are thought to be kappa ( � ), 
lambda ( � ) and omega (ω). For the fitness value calcula-
tion, the advancement (i.e., chasing) is guided by α, β and 
δ. The ω, � and � wolves trail these three wolves. In GWO, 
encircling or trapping of prey was achieved by calculating D⃗ 
and X⃗GWolf  vectors described by Eqs. (1) and (2).

where iter demonstrates the present iteration, A⃗ and C⃗ are 
coefficient vectors, X⃗Pr ey is the position vector of the prey 
and X⃗GWolf  shows the position vector of a Grey Wolf and the 
vectors A⃗ and C⃗ are calculated as follows:

where �⃗𝜇1, �⃗𝜇2 ∈ r and (0, 1) and a⃗ decreases linearly from 2 
to 0.

(1)D⃗ =
|
|
|
C⃗ ⋅ X⃗Pr ey(iter) − X⃗GWolf (iter)

|
|
|

(2)X⃗GWolf (iter + 1) = X⃗Pr ey(iter) − A⃗.D⃗

(3)A⃗ = 2a⃗. �⃗𝜇1 − a⃗

(4)C⃗ = 2. �⃗𝜇2

The hunting of prey is achieved by calculating the corre-
sponding fitness score and positions of alpha, beta and delta 
wolves using Eqs. 5a, 5b, 6b, 6b and 7a, 7b, respectively, and 
final position for attacking towards the prey was calculated 
by Eq. (8).

Pattern Search

Pattern search method, also known as black box method, 
is a derivative-free method having local search capabil-
ity and suitable for search problem, where the derivative 
of the objective function is inconvenient or unknown. The 
method involves two moves while performing its operation: 
one is exploratory search which is local search looking for 
improving the direction to be moved, and the other move 
is the pattern move which is a larger search for improving 
the direction; in this move, step size is increased unless the 
improvement is not altered. The pattern move requires two 
points: one is the current point and the other one is some 
random point having better value of the objective function 
which guides the search direction; the consideration of new 
point is guided by Eq. (9).

where � is positive acceleration factor, which is used to mul-
tiply the length of the direction improvement vector. The 
PSEUDO code for the Pattern Search algorithm is shown 
in Fig. 1.

In the proposed hybrid Grey Wolf Optimizer-Pattern 
Search (hGWO-PS) algorithm, the randomly generated posi-
tion vector X⃗ has been further modified using Pattern search 
method and the modified position vector X⃗ has been applied 
to grey wolves to evaluate alpha, beta and delta scores. To 
hybridize the GWO and PS, the heuristics procedure has 
been adopted. The impact of newly obtained positions vec-
tors as two-dimensional and three-dimensional positions 
vector and conceivable neighbors are outlined in Fig. 2, 

(5a)D⃗Alpha = abs(C⃗1.X⃗Alpha − X⃗)

(5b)X⃗1 = X⃗Alpha − A⃗1 ⋅ D⃗Alpha

(6a)D⃗Beta = abs(C⃗2 ⋅ X⃗Beta − X⃗)

(6b)X⃗2 = X⃗Beta − A⃗2 ⋅ D⃗Beta

(7a)D⃗Delta = abs(C⃗3 ⋅ X⃗Delta − X⃗)

(7b)X⃗3 = X⃗Delta − A⃗3 ⋅ D⃗Delta

(8)X⃗(iter + 1) =
(X⃗1 + X⃗2 + X⃗3)

3

(9)x(2) = x(0) + �[x(1) − x(0)]
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Fig. 1  PSEUDO code for pattern search method

Fig. 2  2D and 3D view of position vectors and possible next location with respect to Prey
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which shows, a Grey Wolf poser of (X, Y) can update its 
position with respect to the newly obtained position vec-
tors as indicated by the position of the prey (X*, Y*) and 
exploit the search space in better way.  Better places around 
the search space can be explored by altering the present posi-
tion of  A and C vectors.

The exploration phase in hGWO-PS is similar to classical 
GWO. To explore the search space globally, vectors A⃗ and 
��⃗C are used, which mathematically model divergence. The 
absolute value of A⃗ greater than 1 forces the grey wolves 
to diverge from the prey to optimistically find an adequate 
prey and has been depicted in Fig. 3. The PSEUDO code 
of proposed hGWO-PS algorithm has been shown in Fig. 4 
and flow chart of the proposed hybrid algorithm is depicted 
in Fig. 5.

Test System and Standard Benchmark

To validate the performance of the proposed hGWO-PS 
algorithm, 23 benchmark functions (Mirjalili et al. 2014) 
have been taken into consideration and have been shown 
in Tables 9, 10, 11 in Appendix 1. Table 9 depicts the Uni-
modal Benchmark Function, Table 10 depicts the multi-
modal benchmark functions and Table 11 depicts the fixed 
dimensions benchmark problems. The 3D view of unimodal, 
multi-modal and fixed dimensions benchmark problems are 
shown in Figs. 14, 15 and 16 in Appendix 2, respectively. 
To validate the stochastic nature of proposed algorithm, 30 
trial runs have been performed and results are evaluated for 
mean, worst and best values of fitness including standard 
deviation. In the whole research study, 30 search agents 
are taken into consideration and algorithm is simulated for 
maximum iterations of 500.

Results and Discussion

To overcome the stochastic nature of proposed hGWO-PS 
algorithm and validate the results, 30 trial runs are taken 
into consideration and each objective function has been 
evaluated for average, standard deviation, worst and best 
values. To validate the exploitation phase of proposed algo-
rithm, unimodal benchmark functions F1, F2, F3, F4, F5, 
F6 and F7 are taken into consideration. Table 1 shows the 
solution of unimodal benchmark function using hGWO-PS 

Fig. 3  Exploration phase of grey wolves

Fig. 4  PSEUDO code of proposed hGWO-PS algorithm
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START

Read Input data for each Objective Function

Initialize the input parameter for GWO-PS Algorithm i.e. Search Agent, Dim, Alpha,

Beta and Delta Score and Position etc.

Set Iteration Count = 0

Increment Iteration Countby 1

Initialize Random Position of each Search Agents

Update the Random Position of search agents 

using Pattern Search algorithm (refer Fig.1)

If fitness<Alpha 

Score
eta Score>fitness>Alpha Score

tness>Alpha & Beta Score, 

fitness< Gamma Score

Alpha Score=fitness and Alpha 

position= Best Position of 

Search Agent

Set Delta Score=fitness and Delta

position= Best Position of 

Search Agent

Set Beta Score=fitness and Beta 

position= Best Position of Search 

Agent

Linearly Decrease value of a from 2 to 0

Calculate A1 and C1 using equation (3) and (4) respectively

Update DAlpha and X1 using equation (5a) and (5b) respectively

Calculate A2 and C2 using equation (3) and (4) respectively

Update DBeta and X2 using equation (6a) and (6b) respectively

Calculate A3 and C3 using equation (3) and (4) respectively

Update DDelta and X2 using equation (7a) and (7b) respectively

Evaluate Mean Position, X=(X1+X2+X3)/3 

Store Optimize Fitness= Alpha Score, Best 

Position=Alpha Position

If Iteration Count=Itermax

Print the optimal value of fitness and position

STOP

NO NO
NO

YES

YES YES

YES

NO

Fig. 5  Flow chart of proposed hGWO-PS algorithm
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Table 1  Results of hybrid 
GWO-PS algorithm for 
unimodal benchmark function

Benchmark 
functions

Parameters

Mean value SD Worst value Best value Wilcoxon

F1 1.71978E−24 6.5711E−24 2.93534E−23 1.61E−43 1.73E−06
F2 2.34427E−10 1.22825E−09 6.73422E−09 6.87E−34 1.73E−06
F3 6725.768228 5499.655745 19165.97152 1.87631 1.73E−06
F4 1.33693E−06 1.97966E−06 8.0706E−06 4.82E−20 1.73E−06
F5 90.39372577 195.3497519 831.3540324 7.608876 1.73E−06
F6 5.63887E−09 5.21592E−09 1.42798E−08 1.61E−11 1.73E−06
F7 0.021224233 0.02511146 0.100523113 0.000563 1.73E−06

Table 2  Comparison of unimodal benchmark functions

Algorithms Parameters Unimodal Benchmark functions

F1 F2 F3 F4 F5 F6 F7

GWO (Mirjalili et al. 2014) Mean 6.59E−28 7.18E−17 3.29E−06 5.61E−07 26.81258 0.816579 0.002213
SD 6.34E−05 0.029014 79.14958 1.315088 69.90499 0.000126 0.100286

PSO (Kennedy and Eberhart 1995) Mean 0.000136 0.042144 70.12562 1.086481 96.71832 0.000102 0.122854
SD 0.000202 0.045421 22.11924 0.317039 60.11559 8.28E−05 0.044957

GSA (Rashedi et al. 2009) Mean 2.53E−16 0.055655 896.5347 7.35487 67.54309 2.50E−16 0.089441
SD 9.67E−17 0.194074 318.9559 1.741452 62.22534 1.74E−16 0.04339

DE (Storn and Price 1997) Mean 8.20E−14 1.50E−09 6.80E−11 0 0 0 0.00463
SD 5.90E−14 9.90E−10 7.40E−11 0 0 0 0.0012

FEP (Yao et al. 1999) Mean 0.00057 0.0081 0.016 0.3 5.06 0 0.1415
SD 0.00013 0.00077 0.014 0.5 5.87 0 0.3522

SMS (Cuevas et al. 2012a, b, 2014) Mean 0.056987 0.006848 0.959865 0.276594 0.085348 0.125323 0.000304
SD 0.014689 0.001577 0.82345 0.005738 0.140149 0.084998 0.000258

BA (Yang 2010a) Mean 0.773622 0.334583 0.115303 0.192185 0.334077 0.778849 0.137483
SD 0.528134 3.816022 0.766036 0.890266 0.300037 0.67392 0.112671

FPA (Yang 2012) Mean 1.06E−07 0.000624 5.67E−08 0.0038379 0.7812 1.08E−07 0.00310527
SD 1.27E−07 0.000176 3.90E−08 0.002186 0.366891 1.25E−07 0.001367

CS (Yang and Deb 2009; Yang 2010a) Mean 0.0065 0.212 0.247 1.12E−05 0.007197 5.95E−05 0.001321
SD 0.000205 0.0398 0.0214 8.25E−06 0.007222 1.08E−06 0.000728

FA (Yang 2010a, b) Mean 0.039615 0.050346 0.049273 0.145513 2.175892 0.05873 0.000853
SD 0.01449 0.012348 0.019409 0.031171 1.447251 0.014477 0.000504

GA (John 1992) Mean 0.118842 0.145224 0.13902 0.157951 0.714157 0.167918 0.010073
SD 0.125606 0.053227 0.121161 0.862029 0.972711 0.868638 0.003263

MVO (Mirjalili et al. 2016a, b) Mean 2.08583 15.92479 453.2002 3.12301 1272.13 2.29495 0.05199
SD 0.64865 44.7459 177.0973 1.58291 1479.477 0.63081 0.02961

BDA (Mirjalili 2016a, b) Mean 0.282 0.0589 14.2 0.248 23.6 0.0953 0.0122
SD 0.418 0.0693 22.7 0.331 34.7 0.13 0.0146

BPSO (Kennedy and Eberhart 1997) Mean 5.59 0.196 15.5 1.9 86.4 6.98 0.0117
SD 1.98 0.0528 13.7 0.484 65.8 3.85 0.00693

BGSA (Rashedi et al. 2010) Mean 83 1.19 456 7.37 3100 107 0.0355
SD 49.8 0.228 272 2.21 2930 77.5 0.0565

SCA (Mirjalili 2016a, b) Mean 0 0 0.0371 0.0965 0.0005 0.0002 0
SD 0 0.0001 0.1372 0.5823 0.0017 0.0001 0.0014

SSA (Mirjalili et al. 2017) Mean 0 0.2272 0 0 0 0 0.0028
SD 0 1 0 0.6556 0 0 0.007

hGWO-PS Mean 1.72E−24 2.34E−10 6725.768 1.34E−06 90.39373 5.64E−09 0.021224
SD 6.57E−24 1.23E−09 5499.656 1.98E−06 195.3498 5.22E−09 0.025111
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Fig. 6  Convergence curve of hGWO-PS for unimodal benchmark functions
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algorithm. The comparison results for unimodal benchmark 
functions are shown in Table 2, which are compared with 
other recently developed meta-heuristics search algorithms 
GWO (Mirjalili et al. 2014), PSO (Kennedy and Eberhart 
1995), GSA (Rashedi et al. 2009), DE (Storn and Price 
1997), FEP (Yao et al. 1999), SMS (Cuevas et al. 2012a, 
b, 2014), BA (Yang 2010a), FPA (Yang 2012), CS (Yang 
and Deb 2009; Yang 2010a), FA (Yang 2010a, b, c), GA 
(John 1992), BA (Yang 2010a), SMS (Cuevas et al. 2014), 
MVO (Mirjalili et al. 2016), BDA (Mirjalili 2016), BPSO 
(Kennedy and Eberhart 1997), BGSA (Rashedi et al. 2010), 
SCA (Mirjalili 2016), BA (Yang 2010a), FPA (Yang et al. 

2014), SSA (Mirjalili et al. 2017), FEP (Yao et al. 1999) and 
DE (Storn and Price 1997) in terms of average and stand-
ard deviation. The convergence curve of hGWO-PS for uni-
modal benchmark functions is shown in Fig. 6 and the trial 
solutions for unimodal benchmark functions are shown in 
Fig. 7. To validate the exploration phase of proposed algo-
rithm, the multi-modal benchmark functions F8, F9, F10, 
F11, F12 and F13 are taken into consideration, as these func-
tions have many local optima with the number increasing 
exponentially with dimension. Table 3 shows the solution 
of multi-modal benchmark function using hGWO-PS algo-
rithm. The comparison results for multi-modal benchmark 

F1 F2 F3 F4 

F5 F6 F7 

Fig. 7  Trial solutions for unimodal benchmark functions

Table 3  Results of hybrid 
GWO-PS algorithm for multi-
modal benchmark function

Benchmark 
functions

Parameters

Mean value SD Worst value Best value Wilcoxon

F8 − 2799.98 1242.646 − 688.069 − 5551.63 1.73E−06
F9 0 0 0 0 1
F10 4.41E−11 1.01E−10 4.34E−10 8.88E−16 1.73E−06
F11 0.169666 0.156101 0.589168 0 2.56E−06
F12 8.91E−10 7.76E−10 2.4E−09 5.73E−14 1.73E−06
F13 0.009408 0.019843 0.108359 6.84E−11 1.73E−06
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functions are shown in Table 4, which are compared with 
other recently developed meta-heuristics search algorithms 
GWO (Mirjalili et al. 2014), PSO (Kennedy and Eberhart 
1995), GSA (Rashedi et al. 2009), FEP (Yao et al. 1999), 
SMS (Cuevas et al. 2012a, b, 2014), BA (Yang 2010a), FPA 
(Yang 2012), CS (Yang and Deb 2009; Yang 2010a), FA 

(Yang 2010a, b, c), GA (John 1992), BA (Yang 2010a), 
SMS (Cuevas et al. 2014), MVO (Mirjalili et al. 2016), DA 
(Mirjalili 2016), BDA (Mirjalili 2016), BPSO (Kennedy and 
Eberhart 1997), BGSA (Rashedi et al. 2010), SCA (Mir-
jalili 2016), BA (Yang 2010a), FPA (Yang et al. 2014), SSA 
(Mirjalili et al. 2017), FEP (Yao et al. 1999), and DE (Storn 

Table 4  Comparison of multi-modal benchmark functions

Algorithms Parameters Multi modal benchmark functions

F8 F9 F10 F11 F12 F13

GWO (Mirjalili et al. 2014) Mean − 6.12E+03 3.11E−01 1.06E−13 4.49E−03 5.34E−02 6.54E−01
SD − 4.09E+03 4.74E+01 7.78E−02 6.66E−03 2.07E−02 4.47E−03

PSO (Kennedy and Eberhart 1995) Mean − 4.84E+03 4.67E+01 2.76E−01 9.22E−03 6.92E−03 6.68E−03
SD 1.15E+03 1.16E+01 5.09E−01 7.72E−03 2.63E−02 8.91E−03

GSA (Rashedi et al. 2009) Mean − 2.82E+03 2.60E+01 6.21E−02 2.77E+01 1.80E+00 8.90E+00
SD 4.93E+02 7.47E+00 2.36E−01 5.04E+00 9.51E−01 7.13E+00

DE (Storn and Price 1997) Mean − 1.11E+04 6.92E+01 9.70E−08 0.00E+00 7.90E−15 5.10E−14
SD 5.75E+02 3.88E+01 4.20E−08 0.00E+00 8.00E−15 4.80E−14

FEP (Yao et al. 1999) Mean − 1.26E+04 4.60E−02 1.80E−02 1.60E−02 9.20E−06 1.60E−04
SD 5.26E+01 1.20E−02 2.10E−03 2.20E−02 3.60E−06 7.30E−05

SMS (Cuevas et al. 2014) Mean − 4.21E+00 1.33E+00 8.88E−06 7.06E−01 1.23E−01 1.35E−02
SD 9.36E−16 3.26E−01 8.56E−09 9.08E−01 4.09E−02 2.88E−04

BA (Yang 2010a) Mean − 1.07E+03 1.23E+00 1.29E−01 1.45E+00 3.96E−01 3.87E−01
SD 8.58E+02 6.86E−01 4.33E−02 5.70E−01 9.93E−01 1.22E−01

FPA (Yang 2012) Mean − 1.84E+03 2.73E−01 7.40E−03 8.50E−02 2.66E−04 3.67E−06
SD 5.04E+01 6.86E−02 7.10E−03 4.00E−02 5.53E−04 3.51E−06

CS (Yang and Deb 2009, Yang 2010a) Mean − 2.09E+03 1.27E−01 8.16E−09 1.23E−01 5.60E−09 4.88E−06
SD 7.62E−03 2.66E−03 1.63E−08 4.97E−02 1.58E−10 6.09E−07

FA (Yang 2010a, b) Mean − 1.25E+03 2.63E−01 1.68E−01 9.98E−02 1.26E−01 2.13E−03
SD 3.53E+02 1.83E−01 5.08E−02 2.45E−02 2.63E−01 1.24E−03

GA (John 1992) Mean − 2.09E+03 6.59E−01 9.56E−01 4.88E−01 1.11E−01 1.29E−01
SD 2.47E+00 8.16E−01 8.08E−01 2.18E−01 2.15E−03 6.89E−02

MVO (Mirjalili et al. 2016) Mean − 1.17E+04 1.18E+02 4.07E+00 9.40E−01 2.46E+00 2.20E−01
SD 9.37E+02 3.93E+01 5.50E+00 6.00E−02 7.90E−01 9.00E−02

DA (Mirjalili 2016a, b) Mean − 2.86E+03 1.60E+01 2.31E−01 1.93E−01 3.11E−02 2.20E−03
SD 3.84E+02 9.48E+00 4.87E−01 7.35E−02 9.83E−02 4.63E−03

BDA (Mirjalili 2016a, b) Mean − 9.24E+02 1.81E+00 3.88E−01 1.93E−01 1.49E−01 3.52E−02
SD 6.57E+01 1.05E+00 5.71E−01 1.14E−01 4.52E−01 5.65E−02

BPSO (Kennedy and Eberhart 1997) Mean − 9.89E+02 4.83E+00 2.15E+00 4.77E−01 4.07E−01 3.07E−01
SD 1.67E+01 1.55E+00 5.41E−01 1.29E−01 2.31E−01 2.42E−01

BGSA (Rashedi et al. 2010) Mean − 8.61E+02 1.03E+01 2.79E+00 7.89E−01 9.53E+00 2.22E+03
SD 8.06E+01 3.73E+00 1.19E+00 2.51E−01 6.51E+00 5.66E+03

SCA (Mirjalili 2016a, b) Mean 1.00E+00 0.00E+00 3.80E−01 0.00E+00 0.00E+00 0.00E+00
SD 3.60E−03 7.30E−01 1.00E+00 5.10E−03 0.00E+00 0.00E+00

SSA (Mirjalili et al. 2017) Mean 5.57E−02 0.00E+00 1.95E−01 0.00E+00 1.42E−01 8.32E−02
SD 8.09E−01 0.00E+00 1.53E−01 6.51E−02 5.57E−01 7.06E−01

hGWO-PS Mean − 2799.98 0 4.41E−11 0.169666 8.91E−10 0.009408
SD 1242.646 0 1.01E−10 0.156101 7.76E−10 0.019843
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and Price 1997), in terms of average and standard deviation. 
The convergence curve of hGWO-PS for multi-modal bench-
mark functions are shown in Fig. 8 and their corresponding 
trial solutions are shown in Fig. 9. The over fitting of the 
curve in multi-model benchmark functions is due to pres-
ence of multiple optimal points. It has been experimentally 
observed that the computational time of the algorithm has 
been slightly increased due to increase in number of fitness 
evaluations.

The test results for fixed dimension benchmark problems 
are shown in Tables 5, 6, 7. The comparison results for 
multi-modal benchmark functions are shown in Tables 6 and 
7, which are compared with other recently developed meta-
heuristics search algorithms GWO (Mirjalili et al. 2014), 
PSO (Kennedy and Eberhart 1995), GSA (Rashedi et al. 
2009), FEP (Yao et al. 1999), SMS (Cuevas et al. 2012a, 
b, 2014), BA (Yang 2010a), CS (Yang and Deb 2009; Yang 
2010a), FA (Yang 2010a, b, c), GA (John 1992), BA (Yang 

Fig. 8  Convergence curve of hGWO-PS for multi-modal benchmark functions
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2010a), SMS (Cuevas et al. 2014), MVO (Mirjalili et al. 
2016), SCA (Mirjalili 2016), BA (Yang 2010d), SSA (Mir-
jalili et al. 2017), and FEP (Yao et al. 1999) in terms of 

average and standard deviation. The trial solutions for fixed 
dimension benchmark functions and their convergence curve 
are shown in Figs. 10, 11, respectively.

F8 F9 F10 

F11 F12 F13 
Fig. 9  Trial solutions of hGWO-PS for multi-modal benchmark functions

Table 5  Results of hybrid 
GWO-PS algorithm for fixed 
dimension benchmark function

Benchmark 
functions

Parameters Wilcoxon p value

Mean value SD Worst value Best value

F14 7.185953 4.610188 10.76318 0.998004 1.73E−06
F15 0.00471 0.007372 0.020749 0.000503 1.73E−06
F16 − 1.03163 1.32E−11 − 1.03163 − 1.03163 1.73E−06
F17 0.397887 2.30E−10 0.397887 0.397887 1.73E−06
F18 32.87515 37.77153 93.82315 3 1.73E−06
F19 − 3.4804 0.989199 − 1.00082 − 3.86278 1.73E−06
F20 − 3.30218 0.045066 − 3.2031 − 3.322 1.73E−06
F21 − 5.43869 2.790877 − 2.63047 − 10.1532 1.73E−06
F22 − 5.77697 2.91982 − 1.83759 − 10.4029 1.73E−06
F23 − 5.71963 3.260247 − 2.42734 − 10.5364 1.73E−06
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To verify the performance of proposed hGWO-PS algo-
rithm for engineering optimization, two biomedical engi-
neering problems (XOR, Iris) are taken into consideration 
and their corresponding results for GWO and hGWO-PS are 

evaluated for 30 trial runs and are reported in Table 8. The 
convergence curve and trial runs solutions for these biomedi-
cal engineering problems are depicted in Figs. 12 and 13, 
respectively.

Table 6  Comparison of fixed dimension benchmark functions

Algorithms Parameters Composite Benchmark functions

F14 F15 F16 F17 F18 F19

GWO (Mirjalili et al. 2014) Mean 4.04E+00 3.37E−04 − 1.03E+00 3.98E−01 3.000028 − 3.86263
SD 4.25E+00 0.000625 − 1.03163 0.397887 3 − 3.86278

PSO (Kennedy and Eberhart 1995) Mean 3.627168 0.000577 − 1.03163 0.397887 3 − 3.86278
SD 2.560828 0.000222 6.25E−16 0 1.33E−15 2.58E−15

FEP (Yao et al. 1999) Mean 1.22 0.0005 − 1.03 0.398 3.02E+00 − 3.86
SD 0.56 0.00032 4.90E−07 1.50E−07 1.10E−01 1.40E−05

SMS (Cuevas et al. 2014) Mean 776.4849 873.7522 9.61E+02 899.8578 740.9656 900.4848
SD 5.21E−12 9.716179 6.72E+01 1.99E−05 0.7858 0.8442

BA (Yang 2010a) Mean 182.476 487.2021 588.1938 756.9757 542.2006 818.5043
SD 117.0248 161.4107 137.7861 160.097 220.2014 152.501

CS (Yang and Deb 2009; Yang 2010a) Mean 110 140.6065 2.90E+02 4.02E+02 2.13E+02 8.12E+02
SD 110.0505 92.80327 8.61E+01 9.82E+01 2.06E+02 1.92E+02

FA (Yang 2010a, b) Mean 150.1696 314.4654 734.5372 818.5732 133.5203 862.2151
SD 97.15906 92.93417 203.9693 109.9663 215.6027 125.9599

GA (John 1992) Mean 114.6139 95.46331 325.4427 466.3074 90.36913 521.1935
SD 26.96248 7.163383 51.66827 29.56841 13.72977 27.98507

MVO (Mirjalili et al. 2016) Mean 10.00017 30.00705 50.00061 190.3 160.5312 440.005
SD 31.62288 48.30615 52.70461 128.6659 158.2887 51.64

SCA (Mirjalili 2016a, b) Mean 0.3908 0.023 0.0497 0 0.0129 0
SD 0.1924 0.0676 0.4921 0.1105 0.0134 0.2001

SSA (Mirjalili et al. 2017) Mean 0.0557 0 0.1952 0 0.1417 0.0832
SD 0.809 0 0.1527 0.0651 0.5571 0.7059

hGWO-PS Mean 7.185953 0.00471 − 1.03163 0.397887 32.87515 − 3.4804
SD 4.610188 0.007372 1.32E−11 2.3E−10 37.77153 0.989199

Table 7  Comparison of 
results for Fixed Dimension 
Benchmark functions

Algorithms Parameters Benchmark functions

F20 F21 F22 F23

GWO (Mirjalili et al. 2014) Mean − 3.28654 − 10.1514 − 10.4015 − 10.5343
SD − 3.25056 − 9.14015 − 8.58441 − 8.55899

PSO (Kennedy and Eberhart 
1995)

Mean − 3.26634 − 6.8651 − 8.45653 − 9.95291
SD 0.060516 3.019644 3.087094 1.782786

GSA (Rashedi et al. 2009) Mean − 3.31778 − 5.95512 − 9.68447 − 10.5364
SD 0.023081 3.737079 2.014088 2.60E−15

FEP (Yao et al. 1999) Mean − 3.27 − 5.52 − 5.53 − 6.57
SD 0.059 1.59 2.12 3.14

hGWO-PS Mean − 3.30218 − 5.43869 − 5.77697 − 5.71963
SD 0.045066 2.790877 2.91982 3.260247
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Conclusion and Future Scope

In present research, the authors has developed the hybrid 
version of existing grey wolf optimizer by combining pat-
tern search algorithm (local search algorithm) with grey 
wolf optimizer (global search algorithm), which improves 

the exploitation phase of the existing Grey Wolf Optimizer 
and named as hGWO-PS. Experimentally, it has been found 
that the exploitation phase of the existing GWO algorithm 
has been improved; however, there is no improvement in 
the exploration phase of the existing algorithm and hence it 
can be concluded that algorithm combining pattern search 

F14 F15 F16 F17 

F18 F19 F20 F21 

F22 F23 

Fig. 10  Trial solutions of hGWO-PS for fixed dimension benchmark functions
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Fig. 11  Convergence curve of 
hGWO-PS for fixed dimension 
benchmark functions
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algorithm with Grey Wolf Optimizer is not a good choice 
and it can be only used to exploit local search space.
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Appendix 1: Test Data for Benchmark 
Problems

See Tables 9, 10, 11.

Table 8  Solution of bio-medical-problems using GWO and hGWO-PS

Algorithm Biomedical 
problem

Mean value SD Best Worst Median Wilcoxon

GWO X-OR 0.0044 0.0123 2.1797e−07 0.0644 5.9842e−05 1.7344e−06
IRIS 2.5993e−11 1.3899e−10 4.6082e−25 7.6178e−10 1.1677e−17 1.7344e−06

hGWO-PS X-OR 0.1685 0.0744 0.0031 0.2506 0.1864 1.7344e−06
IRIS 2.0282e−04 7.8536e−04 2.9558e−16 0.0040 1.5670e−08 1.7344e−06

Fig. 12  Convergence of GWO and hGWO-PS for real world biomedi-
cal problems

Fig. 13  Trial runs solutions of GWO and hGWO-PS for real world 
biomedical problems

http://www.alimirjalili.com/GWO.html
http://www.alimirjalili.com/GWO.html
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Table 9  Unimodal benchmark 
function

Function Dim Range fmin

f1(x) =
n
∑

i=1

x2
i

30 [− 100, 100] 0

f2(x) =
n
∑

i=1

�
�
xi
�
�
+

n
∏

i=1

�
�
xi
�
�

30 [− 10, 10] 0

f3(x) =
n
∑

i=1

�
i
∑

j−1

xj

�2 30 [− 100, 100] 0

f4(x) = maxi{
|
|xi

|
|, 1 ≤ i ≤ n} 30 [− 100, 100] 0

f5(x) =
n−1
∑

i=1

[100(xi+1−x
2
i
)2 + (xi − 1)2]

30 [− 30, 30] 0

f6(x) =
n
∑

i=1

([xi + 0.5])2
30 [− 100, 100] 0

f7(x) =
n
∑

i=1

ix4
i
+ random[0, 1]

30 [− 1.28, 1.28] 0

Table 10  Multi-modal benchmark functions

Function Dim Range fmin

F8(x) =
n
∑

i=1

−xi sin

��

�
�
xi
�
�

�
30 [− 500, 500] − 418.9829 × 5

F9(x) =
n
∑

i=1

[x2
i
− 10 cos(2�xi) + 10]

30 [− 5.12, 
5.12]

0

F10(x) = −20 exp

�

−0.2

�

1

n

n
∑

i=1

x2
i

�

− exp

�

1

n

n
∑

i=1

cos(2�xi) + 20 + c

� 30 [− 32, 32] 0

F11(x) =
1

4000

n
∑

i=1

x2
i
−

n
∏

i=1

cos
�

xi
√

i

�

+ 1
30 [− 600, 600] 0

F12(x) =
�

n

�

10 sin(�y1) +
n−1
∑

i=1
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Appendix 2: 3D View of Benchmark 
Problems

See Figures 14, 15, 16.

Table 11  Fixed dimension benchmark function
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Fig. 14  3-D view of unimodal benchmark functions
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Fig. 15  3-D view of multi-modal benchmark test functions
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Fig. 16  3-D view of fixed dimension benchmark test functions
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