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Abstract
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter. Based 
on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter (L) of symme-
try energy at the nuclear saturation density, an analysis of the calibrated slope parameter L was performed in finite nuclei. 
In this study, relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry 
energy through the available databases of the mirror-pair nuclei 36Ca–36 S, 38Ca–38Ar, and 54Ni–54Fe. The deduced nuclear 
symmetry energy was located in the range 29.89–31.85 MeV, and L of the symmetry energy essentially covered the range 
22.50–51.55 MeV at the saturation density. Moreover, the extracted L

s
 at the sensitivity density �

s
= 0.10 fm

−3 was located 
in the interval range 30.52–39.76 MeV.

Keywords Symmetry energy · Charge radii · Mirror nuclei

1 Introduction

Precise knowledge of nuclear symmetry energy (NSE), 
which is characterized as a component of the equation 
of state (EoS) of isospin asymmetric nuclear matter, can 
provide access to various physical phenomena relevant to 
a broad range of density profiles and energy scales [1, 2]. 
NSE plays an important role in understanding the nuclear 
structure. Moreover, the behavior of NSE may affect the 
properties of neutron stars [3–5] and help to comprehend the 
supernova explosion mechanism and stellar nucleosynthesis 
in astrophysical studies [6].

The density dependence of NSE, that is, Es(�) , can be 
expanded around the saturation density �0 ( ≃ 0.16 fm−3 ) as 
follows:

where L and Ksym are the slope and curvature of the symme-
try energy at the nuclear saturation density �0 , respectively. 
The symmetry energy is believed to be associated with the 
isovector-sensitive indicators in the EoS of isospin asym-
metric systems. Unfortunately, a direct connection between 
the experimental observables and the EoS is not possible. 
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Consequently, the microscopic implications of NSE can 
be extracted indirectly from the ground and the collective 
excited state properties of atomic nuclei, reaction observa-
bles, and detected dense astrophysical events [7, 8].

Thus far, enormous efforts have been undertaken to 
determine the EoS over the spread of density profiles and 
energy scales [9]. The neutron skin thickness (NST) of a 
heavy nucleus provides an available constraint on the EoS 
of neutron-rich matter around �0 [10–17]. In the laboratory, 
the radius of 208 Pb has been detected by measuring parity-
violating asymmetry in polarized elastic electron scattering 
experiments, for example, sequentially in the PREX-II [18]. 
The accuracy of NST has been further updated from the 
latest performance, namely R208

skin
= 0.283±0.071 fm. The 

behavior of Es(�) is mostly governed by the slope of the 
symmetry energy, L. The correlation between R208

skin
 and the 

slope parameter L leads to a value of L = 106± 37 MeV [19]. 
In addition, NSE can also be investigated using the isotope 
binding energy difference [20, 21] and double-magic nuclei 
[22, 23].

Significant progress has been made in evaluating NSE 
from the collective excited state properties of finite nuclei, 
such as isobaric analog states [24], pygmy dipole resonance 
(PDR) [25], electric dipole polarizability [26], giant dipole 
resonance (GDR) [27], isovector giant quadrupole reso-
nance (IVGQR) [28], and charge-exchange giant resonance 
[29–32]. The results for L extracted from PDR in 68 Ni and 
132 Sn were constrained to be in the intervals 50.3–89.4 MeV 
and 29.0–82.0 MeV [25], respectively. The deduced slope 
parameter from the weighted average can cover the range 
L =64.8±15.7 MeV. As suggested in Ref. [28], the slope 
parameter of the symmetry energy can be reduced to 37±18 
MeV by exploiting IVGQR energies.

Moreover, NSE offers a key requirement for our under-
standing of nuclear reactions under isospin diffusions and 
isotopic distributions [33–35]. Heavy-ion collisions (HICs) 
provide a sensitive probe to link the nuclear EoS, which 
depends on isovector potentials. In transport models, NSE is 
derived by simulating isospin-sensitive observables [36–40]. 
Hence, many simulation codes are desirable to determine 
the NSE [41–46]. More details about the transport simu-
lations can be found in a recent study [47]. Meanwhile, 
new observations of compact stellar objects have provided 
plentiful data that help discern the EoS across saturation 
densities [48, 49]. The range of L can be deduced from the 
observation of dense object events, such as the production of 
gravitational waves from the neutron star merger GW170817 
[50], resulting in L =11–65 MeV.

The density dependence of symmetry energy is fairly 
uncertain, except for the bulk properties at the saturation 
density �0 . This challenges us in reducing the intrinsic 
uncertainties of the model from multiple aspects of the 
isovector components. As demonstrated in Refs. [51, 52], 

the difference in the root-mean-square (rms) charge radii of 
mirror-pair nuclei ( ΔRch ) obtained using Skyrme function-
als provides an alternative opportunity for calibrating the 
density dependence of NSE.

A related linear correlation between ΔRch and the slope 
parameter L has been established. In Ref. [53], the differ-
ences in the charge radii of the mirror-partner nuclei 36
Ca–36 S and 38Ca–38 Ar were investigated with varied values 
of L. It is evident that the slope parameter lies in the range 
L =5-70 MeV. The latest precise determination evaluated 
the correlation between the difference in charge radii of the 
mirror-partner nuclei 54Ni–54 Fe and the slope parameter, 
which implied a range of L =21–88 MeV [54]. The rms 
charge radii of the nuclei 54 Ni and 54 Fe were obtained using 
Skyrme energy density functionals (EDFs) and covariant 
density functional theories (CDFTs), respectively.

As demonstrated above, ΔRch of mirror-pair nuclei can be 
employed to extract information about L. The latest results 
of the charge radii of 54 Ni can facilitate efficient exploration 
of the nuclear EoS. The experimental data for Rch and ΔRch 
of the corresponding mirror partners are listed in Table 1 
[53–55]. The NSE characterized as an isovector indicator 
in effective interactions should be systematically evaluated 
based on the latest experiments. To further obtain a com-
prehensive conclusion about the correlations between L and 
ΔRch , ΔRch for the pairs of mass numbers A = 36 , 38, and 
54 can be calculated using nonrelativistic and relativistic 
(covariant) EDFs. Although the correlations between the 
incompressibility coefficients and isovector parameters are 
generally weaker than the correlations between the slope 
parameter L and symmetry energy [56], the uncertainty 
suffered from nuclear incompressibility is inevitable in the 
evaluated process. Therefore, the values of incompressibility 
coefficients characterized as isoscalar parameters are almost 
identical for the two types of EDFs.

The remainder of this paper is organized as follows: in 
Sect. 2, we briefly report the theoretical models. In Sect. 3, 
we present the results and discussion. Finally, a summary 
and an outlook are provided in Sect. 4.

Table 1  R
ch

 and ΔR
ch

 database for the A = 36 , 38, and 54 mirror-pair 
nuclei. The parentheses beside the values of charge radii and the dif-
ference in charge radii are systematic uncertainties [53–55]

A R
ch

 (fm) ΔR
ch

 (fm)

36 Ca 3.4484(27)
S 3.2982(12) 0.150(4)

38 Ca 3.4652(17)
Ar 3.4022(15) 0.063(3)

54 Ni 3.7370(30)
Fe 3.6880(17) 0.049(4)
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2  Theoretical framework

In this study, we adopted two types of widely used nuclear 
density functionals to extract information about the nuclear 
matter EoS, namely the sophisticated Skyrme and covari-
ant EDFs. Both have achieved great success in describing 
the bulk properties of finite nuclei, such as binding energies 
and charge radii. For a detailed introduction to nonrelativ-
istic and relativistic EDFs, refer to Refs. [57–59]. In this 
paper, we briefly introduce the two nuclear density function-
als. The effective interaction in sophisticated Skyrme-type 
EDFs, which is expressed as an effective zero-range force 
between nucleons with density-dependence and momentum-
dependence terms, is as follows: [60, 61]

where r = r1 − r2 and R = (r1 + r2)∕2 are related to the 
positions of two nucleons, P = (∇1 − ∇2)∕2i is the relative 
momentum operator and �′ is its complex conjugate act-
ing on the left, 𝜎 = �⃗�1 + �⃗�2 , and �� = (1 + �⃗�1 + �⃗�2)∕2 is the 
spin exchange operator. The quantities � , ti , and xi ( i = 0-3) 
represent the parameters of the Skyrme forces.

For covariant EDFs, the interacting Lagrangian density 
has the following form: [62, 63]
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� , � , and � meson masses, respectively. The quantities g
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 , 
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�
 , g

�
 , g2 , g3 , c3 , and e2∕4� = 1∕137 are the coupling con-

stants for the � , � , � mesons, and photons. The parameter 
set Λv represents the coupling strength between the � and � 
mesons. Solving the Skyrme HF and Dirac equations on a 
spherical basis, one can obtain the eigenenergies and wave 
functions of the constituent nucleons, from which the bulk 
properties of the ground states can be obtained using this 
standard procedure [57–63].
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In our applications, two families of parameter sets were 
adopted: the asy family for Skyrme EDFs [64] and the 
IUFSU family for covariant EDFs [65]. All of these effective 
forces were calibrated by fitting the parameters to specific 
observables of finite nuclei, such as binding energies and 
charge radii, and the isovector part of the EoS was gener-
ated in such a way that the symmetry energy remained at a 
fixed value ( ≈ 26 MeV) around a sensitivity baryon density 
of �

s
≈ 0.10 fm−3 ; thus, the interactions were character-

ized by different values of the symmetry energy at satura-
tion density. This procedure ensures that the quality of the 
fit cannot be contaminated and that all isoscalar observa-
bles remain unchanged, for example, the incompressibility 
coefficient almost equals 230 MeV. In Fig. 1, the density 
dependence behaviors of the symmetry energies are plotted 
using the relativistic and Skyrme EDFs. With increasing 
symmetry energy at the saturation density �0 ≃ 0.16 fm−3 , 
the slope became larger for these two families of parameter 
sets. For the symmetry energy around the sensitivity density 
�s = 0.10 fm−3 , these values were almost unchanged. Further 
details can be found in Refs. [65, 66]. It is worth mentioning 
that both the symmetry energies and slope parameters can 
cover a wide range. To reduce the intrinsic uncertainties of 
the models, such parameterization sets should be expected 
to provide stringent constraints on observables that are 

Fig. 1  (Color online) Symmetry energies characterized by relativistic 
EDFS (a) and Skyrme EDFs (b) plotted as a function of density
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highly sensitive to the density dependence of the symmetry 
energy. The corresponding values of the bulk properties of 
the nuclear matter are shown explicitly in Table 2.

3  Results and discussion

The results for ΔRch are plotted as functions of L in Fig. 2. 
The nonrelativistic Skyrme approach and RMF theory were 
used to assess the correlation between ΔRch and L, which 
are shown by the open circles and crosses in Fig. 2, respec-
tively. The horizontal light blue bands indicate the uncer-
tainties of ΔRch , which correspond to 0.146–0.154 fm ( 36
Ca–36S), 0.060–0.066 fm ( 38Ca–38Ar), and 0.045–0.053 fm 
( 54Ni–54Fe). The linear fits in the correction for ΔRch are 
indicated by the dashed lines.

The results obtained using the Skyrme and covariant 
EDFs revealed an approximate linear correlation between 
ΔRch and L. Constraints on L were deduced by comparing 
the theoretical predictions with the experimental results in 
Fig. 2. Note that the results for A = 54 provided the slope of 
symmetry energy L relevant to the range 17.99–62.43 MeV, 
whereas those for A = 38 and A = 36 were in the intervals 
6.83–52.49 and 22.50-51.55 MeV, respectively. We can see 
that these values essentially cover the theoretical uncertain-
ties in Refs. [53, 54].

The NST of 48 Ca is regarded as a feasible isovector 
indicator to constrain the EoS of nuclear matter. The 
high-resolution E1 polarizability experiment performed at 
RCNP suggests that the NST of 48 Ca is located in the inter-
val 0.14 ∼ 0.20 fm [67]. Meanwhile, the CREX collabo-
ration has reported a new value through parity-violating 
electron scattering measurements, namely 0.071 ∼ 0.171 
fm [68]. The NST of 48 Ca allows a direct comparison to 

microscopic calculations using various slope parameters, 
L. In Refs. [69, 70], the linear correlation analysis of ΔRch 
of mirror-partner nuclei and the corresponding NST has 
been clearly illustrated. Therefore, it is essential to evalu-
ate the correlations between ΔRch of mirror-pair nuclei and 
the NST of 48Ca.

The correlations between ΔRch of the A = 36 , 38, and 54 
mirror-partner nuclei and the NST of 48 Ca ( ΔRnp ) are also 
shown in Fig. 3. The calculated ΔRch substantially cov-
ered the current uncertainties of ΔRnp(48Ca) for both types 
of EDFs. For the A = 54 mirror-pair nuclei, the Skyrme 
model gave a comparable correlation with respect to the 
RMF model. A high linear correlation between ΔRch of 

Table 2  Models used for the calculation of R
ch

 . The corresponding 
bulk properties of nuclear matter used in this study, such as symmetry 
energy E

s
 (MeV), the slope parameter L (MeV), and the incompress-

ibility K
∞

 (MeV) at saturation density, are given

Type Sets E
s
 (MeV) L (MeV) K

∞
 (MeV)

RMF IUFSU05 30.48 46.11 229.98
IUFSU04 31.52 52.09 229.98
IUFSU03 32.59 60.52 230.05
IUFSU02 33.85 71.83 230.01
IUFUS01 35.49 87.27 230.04
IUFSU00 37.16 108.76 229.88

Skyrme asy30 30.00 22.87 230.20
asy32 31.99 36.22 229.99
asy34 33.99 56.14 229.84
asy36 36.00 71.54 229.93
asy38 38.00 87.62 230.20
asy40 40.01 106.09 230.09

Fig. 2  (Color online) ΔRch of the mirror-partner nuclei 36Ca–36 S (a), 
38Ca–38 Ar (b), and 54Ni–54 Fe (c) as a function of the slope parame-
ter L at the saturation density �0 . The experimental result is shown 
as a horizontal light blue band. The crosses are results of relativistic 
EDFs, and the open circles are for the Skyrme EDF calculations. The 
dashed lines indicate theoretical linear fits
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A = 54 and ΔRnp of 48 Ca was found. These correlations 
were also obtained using nonrelativistic and relativistic 
EDFs for the A = 36 and 38 mirror partners, as shown in 
Figs. 3 a and b. This means that information on symmetry 
energy can be extracted from the differences in the charge 
radii of mirror-pair nuclei.

To obtain further constraints on the EoS of asymmet-
ric nuclear matter, the relationship between the symme-
try energy at saturation density and ΔRch of mirror-pair 
nuclei can also be evaluated as well as the relationship 
between L and ΔRch . Therefore, the “Data-to-data" rela-
tionships between the symmetry energies and the slope 

parameters are shown in Fig. 4 via various colored planes 
for the A = 36 (Ca–S), 38 (Ca–Ar), and 54 (Ni–Fe) mirror-
partner nuclei. The shadowed plane represents the result of 
the theoretical prediction. From this figure, it is noticeable 
that the deduced symmetry energy was located in the inter-
val Es = 29.89–31.85 MeV, and the slope of the symmetry 
energy covered the range L = 22.50–51.55 MeV. It should 
be mentioned that the present value provides a tighter con-
straint on L than those in Refs. [53, 54]. Although the 
mirror-partner nuclei for the masses A = 36 , 38, and 54 
were simultaneously considered in our evaluated proce-
dure, the effects of deformation and model uncertainties 
were not incorporated in our calculations as in Refs. [53, 
54]. In forthcoming investigations, we will carefully study 
the effect of deformation on the charge radius of finite 
nuclei and estimate the model uncertainties using a com-
prehensive set of modern density functionals, which may 
change the present results.

To facilitate the quantitative comparison of the extracted 
results with the theoretical calculations, various avail-
able estimates of the slope parameter L of the symmetry 
energy are shown in Fig. 5. It is evident that our present 
result has a remarkable overlap with the results obtained 
by various methods or observables. Our calculations pre-
dominantly covered the result for L extracted from PDR in 
132 Sn ( L = 29.0–82.0 MeV) but deviated from that of 68 Ni 
( L = 50.3–89.4 MeV) [25]. Figure 5 shows the weighted 
average value in the interval of 64.8 ± 15.7 MeV. In addi-
tion, the electric dipole polarizability of a heavy nucleus 
is highly sensitive to both the magnitude and slope param-
eter of symmetry energy, providing a value of L = 47.3±

7.8 MeV [26]. By exploiting this correlation together with 

Fig. 3  (Color online) “Data-to-data" relation between ΔRch of the 
A = 36 , 38, and 54 mirror-partner nuclei and the neutron skin thick-
ness ΔRnp of 48Ca. The labels and color coding are the same as those 
used in Fig. 2

Fig. 4  (Color online) Symmetry energy Es and the slope of symmetry 
energy L are limited by ΔRch of the A = 36 (yellow plane), 38 (light 
purple panel), and 54 (light blue plane) mirror-partner nuclei. The 
shadowed plane represents the result of the theoretical prediction in 
this study
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the experimental values of the isoscalar and isovector giant 
quadrupole resonance (GQR) energies, the slope parameter 
of the symmetry energy was estimated as L = 37± 18 MeV 
[28]. Both theoretical results essentially covered the current 
uncertainty in this study.

The NST Δrnp in heavy nuclei provides an alternative 
terrestrial probe to place restrictions on the nuclear EoS. 
In Ref. [71], an accuracy value of L = 58 ± 18 MeV was 
deduced by analyzing the neutron skin data on Sn iso-
topes and the observables originating from HICs. Our cali-
brated results covered the uncertainty of this value. The 
latest NST of 48 Ca detected by the CREX group yielded 
the slope parameter L = 0 ∼ 50 MeV [72], which is in 
accordance with this study ( L = 22.50-51.55 MeV). Sig-
nificantly, the NST of 208 Pb detected by the PREX-II group 

yielded a larger value of L = 76 ∼ 165 MeV. Reed et al. 
[19] reported a comparable interval of the slope param-
eter L = 106 ± 37 MeV. These values partially cover the 
interval range of L = 54 ∼ 97 MeV induced by HICs [73]. 
However, the evaluated range in this literature has no over-
lap with the slope parameter L obtained by PREX-II.

In Ref. [74], more information, such as heavy-ion col-
lision data, the neutron skin of 208Pb, tidal deformability, 
and the maximum mass of neutron dense objects, was used 
to calibrate the values of symmetry energy. This led to a 
symmetry energy slope of L = 59.57 ± 10.06 MeV, and the 
quantitative uncertainty was further reduced with respect 
to Ref. [71]. Moreover, the slope parameter L can be con-
strained by various observed astrophysical messages, 
except in terrestrial nuclear experiments. The currently 
available neutron star mass and radius measurements pro-
vide an important constraint on the EoS of neutron matter 
through quantum Monte Carlo simulations, in which the 
slope parameter L is located in the range 43–52 MeV [75]. 
The correlation of the tidal deformability of a neutron 
star with L was studied using the skΛ267 model, which 
gave the range L = 41.1±18.2 MeV [76]. Moreover, the 
range L = 11–65 MeV was extracted from the observation 
of a gravitational-wave event of the neutron star merger 
GW170817 [50]. Our calibrated range ( L = 22.50–51.55 
MeV) overlaps significantly with these deduced values.

Recently, emerging Bayesian frameworks have been 
developed widely to study the bulk properties of finite 
nuclei, for example, predictions in the nuclear charge radii 
[77, 78] and nuclear EoSs [79]. The existing database of 
neutron skin and the bulk properties of nuclear matter 
are characterized by prior input quantities, which leads 
to credible values of L = 40+34

−26
 MeV and L = 37+9

−8
 MeV 

[80], respectively. All the evaluated values are consistent 
with the range of L obtained in this study.

As mentioned in Refs. [81, 82], the density dependence 
of the symmetry energy at the subsaturation density is 
associated with nuclear mass differences and multifrag-
mentation production. Thus, it is also interesting to give 
the constraint of the slope parameter Ls at the sensitiv-
ity density �s = 0.10 fm−3 probed by the differences in the 
charge radii of mirror-partner nuclei ( ΔRch ). In Fig. 6, 
ΔRch of the mirror-partner nuclei 36Ca–36 S (a), 38Ca–38 Ar 
(b), and 54Ni–54 Fe (c) as a function of the slope param-
eter Ls at the sensitivity density �s = 0.10 fm−3 are plotted. 
The highly linear correlations between ΔRch and Ls are 
also presented. The extracted interval range of the slope 
parameter L

s
 at the sensitivity density �s = 0.10 fm−3 was 

approximately 30.52–39.76 MeV. This restricted value is 
relatively narrow compared to the interval range at the 
saturation density �0 ≃ 0.16 fm−3.

Fig. 5  (Color online) Comparison between the values of L extracted 
in this study and those from existing literature. We partly compare 
the values extracted from various models: Carbone et al. [25], Chen 
et al. [71], Steiner et al. [75], Roca-Maza et al. [28], Zhang et al [26], 
Mondal et al. [13], Raithel et al. [50], Brown et al. [53], Malik et al. 
[76], Zhang et  al. [74], Pineda et  al. [54], Newton et  al. [80], and 
Tagami, et al. [72]
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4  Summary and outlook

Microscopic methods based on families of nonrelativis-
tic and relativistic EDFs were employed to characterize a 
systematic variation of the isoscalar and isovector proper-
ties of corresponding nuclear matter EoSs. Our systematic 
analysis of the extraction of the slope parameter L from 
the differences in mirror-partner nuclei charge radii pro-
vided a new result. The slope parameter L covered the 
interval range 22.50–51.55 MeV at the saturation density. 
Moreover, the slope parameter L

s
 at the sensitivity density 

�
s
= 0.10 fm

−3 lay in the interval range 30.52–39.76 MeV. 
This led to us determining the density dependence of sym-
metry energy relatively accurately, which is a fundamental 

quantity for nuclear physics and for the implications in the 
study of neutron stars.

Linear fits were performed between the differences in the 
charge radii of mirror-partner nuclei and the slope parameter 
L. As suggested in Refs. [83–87], precise descriptions of 
the nuclear charge radii are influenced by various mecha-
nisms. Meanwhile, the precise measurement of the charge 
density distributions usually affects the NST of finite nuclei 
on a quantitative level. In Ref. [88], it is demonstrated that 
the differences in the charge radii of mirror-pair nuclei are 
systematically influenced by the pairing correlations. For 
weakly bound nuclei, configuration mixing should be dis-
creetly considered when tackling pairing correlations [89]. 
Hence, this study should be further reviewed.
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