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Abstract
The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables. 
We first analyzed correlations between different nuclear matter parameters obtained from 119 effective Skyrme interaction 
sets. The values of the correlation coefficients illustrate that the magnitude of effective mass splitting is crucial for tight 
constraints on the symmetry energy via heavy-ion collisions. The 86 Kr + 208 Pb system at beam energies ranging from 25 
to 200A MeV was simulated within the framework of the improved quantum molecular dynamics model (ImQMD-Sky). 
Our calculations show that the slopes of the spectra of ln[Y(n)/Y(p)] and ln[Y(t)/Y(3He)], which are the logarithms of the 
neutron to proton and triton to helium-3 yield ratios, are directly related to effective mass splitting and can be used to probe 
the effective mass splitting.
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1 Introduction

The nucleon effective mass m∗
N
 is used to describe the motion 

of nucleons in a momentum-dependent potential, which is 
equivalent to the motion of a quasi-nucleon of mass m∗

N
 in a 

momentum-independent potential [1–4]. Isospin splitting of 
the nucleon effective mass indicates that the neutron effec-
tive mass is not equal to the proton effective mass, that is, 
m∗

n
≠ m∗

p
 , in isospin asymmetric nuclear matter. Both the 

effective mass and effective mass splitting are important 
quantities in the isospin asymmetric nuclear equation of 
state and serve as important microscopic inputs for the study 
of the thermal properties of protoneutron stars, such as ther-
mal conductivity [5, 6], specific heat [7], and neutrino reac-
tion rates [8–12]. Furthermore, effective mass splitting is 
important for improving symmetry energy constraints [13].

Much effort has been made to constrain effective mass 
splitting using heavy-ion collisions (HICs) [13–18], 
nucleon–nucleus optical potentials [19–21], and giant mono-
pole resonance [22–25]. An interesting finding is that the 
effective mass splitting obtained using the nucleon–nucleus 
optical potential analysis favors m∗

n
> m∗

p
 [19], whereas the 

HIC data support m∗
n
< m∗

p
 [13–15, 17, 26]. A possible rea-

son for this discrepancy is that the different probes reflect 
values of the effective mass splitting at different densities 
and momentum regions. Further understanding of the con-
straints of effective mass splitting by HICs requires new 
probes for neutron-rich HICs and comparison with experi-
mental observables in the future.

Currently, the new generation rare isotope facilities or 
planned facilities, such as the Heavy Ion Research Facil-
ity in Lanzhou (HIRFL/Lanzhou) [27], Facility for Rare 
Isotope Beams at Michigan State University (FRIB/MSU) 
[28], Radioactive Isotope Beam Factory (RIBF/RIKEN) 
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[29], Rare isotope Accelerator complex for ON-line exper-
iment (RAON/Korea) [30], and Beijing Isotope Separa-
tion On-line (BISOL/Beijing) [31], can produce rare iso-
tope beams from tens to hundreds MeV per nucleon for 
studying the dynamical evolution of neutron-rich nuclear 
systems. Some important neutron-rich HIC experiments 
[32–36] have been performed to extract information on 
the density dependence of symmetry energy and effective 
mass splitting by comparing the data with transport model 
simulations [34, 37].

Recently, an experiment on the 86 Kr + 208 Pb system 
was performed using the Compact Spectrometer for Heavy 
IoN Experiment (CSHINE) [38–41], which was installed 
at the final focal plane of the Radioactive Ion Beam Line 
in Lanzhou (RIBLL-I/HIRFL) [42, 43]. Both yield and 
kinetic variables of the A = 3 isobars, that is, t and 3He, 
were measured. This provides an opportunity to constrain 
the symmetry energy [44] at subsaturation densities and 
further verify the capability of the transport models. In 
addition, constraining effective mass splitting using the 
facilities in Lanzhou requires calculations to extend the 
beam energy of ∼100A–200A MeV, as this energy region 
has been found to be the optimal beam energy in previous 
calculations [13, 45].

In this study, we first analyze the correlations between 
different nuclear matter parameters to illustrate the sig-
nificance of the investigation of effective mass splitting. 
We then investigate the impacts of effective mass splitting 
on the HIC observables, such as neutron to proton yield 
ratios, triton to helium-3 yield ratios, of the 86 Kr + 208 Pb 
system at beam energies ranging from 25A to 200A MeV 
using ImQMD-Sky model.

2  Theoretical model

In the ImQMD-Sky model, each nucleon is represented by 
a Gaussian wave packet given by

where �r and ri0 denote the width and centroid of the wave 
packet, respectively; ki0 is the momentum of the nucleon; 
and the subscript ki0 corresponds to the state of the ith 
nucleon. For an N-body system, the system wavefunction is 
assumed to be a direct product of N coherent states:

By using the Wigner transformation, the phase-space density 
distribution of the system can be obtained as

(1)

�ki0
(ri) =

1

(2��2
r
)3∕4

exp

[
−
(ri − ri0)

2

4�2
r

+ i(ri − ri0) ⋅ ki0

]
,

(2)Ψ(r1,… , rN) = �k1
(r1)�k2

(r2)…�kN
(rN).

where �r�p = ℏ∕2 and ri and pi denote the position and 
momentum of the ith nucleon, respectively. The Hamiltonian 
of the nucleonic part is calculated as follows:

Where C(�r) =
1

2m

3ℏ2

4�2
r

 denotes the contribution of the wave 
packet width to the kinetic energy term and usky is the poten-
tial energy density in coordinate space.

For the nucleonic potential, the Skyrme-type nucleonic 
potential energy density without the spin-orbit term is used:

The local potential energy density is

where � = �n + �p is the nucleon density, � = (�n − �p)∕� 
is the isospin asymmetry, � is a parameter related to the 
two-body term, � and � are related to the three-body term, 
gsur and gsur,iso are related to the surface terms, and Asym 
and Bsym are the coefficients of the symmetry potential that 
originate from the two- and three-body interaction terms 
[46]. Their values can be obtained from the standard Skyrme 
interactions.

The nonlocal potential energy density or momentum-
dependent interaction term, that is, umd , is also considered as a 
Skyrme-type momentum-dependent energy density functional. 
It is obtained based on its interaction form �(r1 − r2)(p1 − p2)

2 
[47], that is,

(3)

fN(r1,… , rN ;p1,… , pN)

= Πi

1

(�ℏ)3
exp

[
−
(ri − ri0)

2

2�2
r

−
(pi − pi0)

2

2�2
p

]
,

(4)

H = ⟨Ψ�T̂ + Û�Ψ⟩

≡ �
i
�

p̂2
i

2m
fi(r, p)d

3rd3p

+
�
i<j

� v̂
ij

sky
fi(r, p)fj(r

�, p�)d3rd3pd3r�d3p�

=
�
i

�
p2
i0

2m
+ C(𝜎r)

�
+ � uskyd

3r.

(5)usky = uloc + umd.

(6)

uloc =
�

2

�2

�0
+

�

� + 1

��+1

�
�

0

+
gsur

2�0
(∇�)2

+
gsur,iso

�0
[∇(�n − �p)]

2

+ Asym

�2

�0
�2 + Bsym

��+1

�
�

0

�2,
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where C0 and D0 are parameters related to momentum-
dependent interactions. These are related to the standard 
Skyrme interaction as follows:

Further details can be found in Ref. [48]. The parameters 
in Eqs. (6) and (7) are obtained from the standard Skyrme 
interaction parameters as in Refs. [49, 50]. The Coulomb 
term was treated using the standard method in quantum 
molecular dynamics type models.

Initialization was performed in the same manner as in Ref. 
[46]. The centroids of the wave packets for neutrons and pro-
tons were sampled within the empirical radii of neutrons and 
protons [46]. After the positions of all nucleons are finally 
prepared, the density distribution is known. The momenta of 
nucleons were sampled using a local density approach.

It should be noted that the effects of the width of the wave 
packet on the momentum sampling in the initialization are con-
sidered in this work. Usually, C(�r) is omitted in the quantum 
molecular dynamics type models for the study of intermediate-
high energy HICs because it has no effect on the equation of 
motion, and its correction to the initial momentum is relatively 
small. However, this effect cannot be neglected, particularly 
when studying low-energy reactions. This is because C(�r) in 
the kinetic energy term reaches ∼25% of the Fermi energy at 
a normal density, ∼35 MeV. For example, C(�r) is 8.97 MeV 
when the width of the wave packet takes a typical value, that 
is, �r = 1.32 fm. For the expected momentum values of the 
nucleons sampled in the calculations, the width of the wave 
packet has no direct effect because ⟨�i�p��i⟩ = pi0 . To satisfy 
the requirements for reasonably describing the binding energy 
of the initial nuclei with Gaussian wave packets [51–53], the 
sampled pi0 should be reduced to a smaller value than that 
obtained without considering the width of the wave packet.

3  Results and discussion

To understand the importance of effective mass splitting on 
symmetry energy constraints, we first analyzed the correlations 
between different nuclear matter parameters. Subsequently, the 

(7)

umd = C0

∑
ij
∫ d3pd3p�fi(r, p)fj(r, p

�)(p − p�)2

+ D0

∑
ij∈n

∫ d3pd3p�fi(r, p)fj(r, p
�)(p − p�)2

+ D0

∑
ij∈p

∫ d3pd3p�fi(r, p)fj(r, p
�)(p − p�)2,

(8)
C0 =

1

16ℏ2

[
t1(2 + x1) + t2(2 + x2)

]

D0 =
1

16ℏ2

[
t2(2x2 + 1) − t1(2x1 + 1)

]
.

influence of effective mass splitting on the HIC observables is 
presented and discussed.

3.1  Nuclear matter parameters and their 
correlations

For the Skyrme effective interaction used in this work, the 
corresponding isospin asymmetric equation of state for cold 
nuclear matter is

where the density dependence of the symmetry energy S(�) 
is

The terms g�� in Eqs.  (9) and Csym in Eq. (10) originate 
from the energy density functional of the Skyrme-type 
momentum-dependent interaction, and its relationship to 
the standard Skyrme interaction can be found in Ref. [54]. 
The pressure in the nuclear fluid is calculated as follows:

The saturation density �0 for symmetric nuclear matter is 
obtained using

Correspondingly, the nuclear matter parameters at the satu-
ration density were obtained. For example, the binding 
energy E0 and the incompressibility K0 are

The symmetry energy coefficient S0 and slope of the sym-
metry energy L are

(9)
E∕A =

3ℏ2

10m

(
3�2

2
�

)2∕3

+
�

2

�

�0
+

�

� + 1

��

�
�

0

+ g��
�5∕3

�
5∕3

0

+ S(�)�2,

(10)
S(�) =

ℏ2

6m

(
3�2�

2

)2∕3

+ Asym

�

�0

+ Bsym

(
�

�0

)�

+ Csym(m
∗
s
,m∗

v
)

(
�

�0

)5∕3

.

(11)P = �2
�E∕A(�, �)

��
.

(12)P = �2
0

(
d

d�

E

A
(�, � = 0)

)
|�=�0 = 0.

(13)E0 =E∕A(�0),

(14)K0 =9�
2
0

�2E∕A

��2
|�0 .

(15)S0 =S(�0),
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The effective mass of neutron and proton is obtained from 
the neutron and proton potentials, respectively, as follows:

where Vq is the single-particle potential for a neutron or pro-
ton and the form of Vq can be found in Appendix A. For the 
Skyrme interaction, the neutron and proton effective masses 
are

The isoscalar effective mass m∗
s
 can be obtained at �q = �∕2 

from Eq. (18), and the isovector effective mass m∗
v
 can be 

obtained at �q = 0 , which represents the neutron (proton) 
effective mass in pure proton (neutron) matter, as in Refs. 
[22, 55]. They are

By using m∗
s
 and m∗

v
 , the effective mass splitting 

Δm∗
np

= (m∗
n
− m∗

p
)∕m can be expressed as

as in Ref. [22]. As described in Eq. (21), the exact value of 
Δm∗

np
= (m∗

n
− m∗

p
)∕m depends on the expansion and the 

isospin asymmetry of the system, � . To avoid dependence 
on the expansion and � , we define the quantity

to describe the isospin effective mass splitting, which has 
the opposite sign to Δm∗

np
.

Because the aforementioned nuclear matter parameters 
are obtained from the same energy density functional, one 
can expect correlations between them. For example, as 
expressed in Eq. (10), S(�) depends on the two-body, three-
body, and momentum-dependent interaction terms. These 
three terms are correlated with E0 , K0 , and m∗

s
 [55] and S0 , 

L, and m∗
v
 [50]. The correlation strength depends on the 

effective set of Skyrme interaction parameters used [55].

(16)L =3�0
�S(�)

��
|�0 .

(17)
m

m∗
q

= 1 +
m

p

�Vq

�p
, q = n,p,

(18)
m

m∗
q

= 1 + 4mC0� + 4mD0�q.

(19)
m

m∗
s

=1 + 4m

(
C0 +

D0

2

)
�,

(20)
m

m∗
v

=1 + 4mC0�.

(21)Δm∗
np

=
m∗

n
− m∗

p

m
= 2

m∗
s

m

∞∑
n=1

(
m∗

s
− m∗

v

m∗
v

)2n−1

�2n−1,

(22)fI =
1

2�

(
m

m∗
n

−
m

m∗
p

)
=

m

m∗
s

−
m

m∗
v

To describe the correlation between different nuclear 
matter parameters with less bias, one can calculate the 
linear correlation coefficient CAB between the nuclear mat-
ter parameters A and B from the published parameter sets, 
which satisfy the current knowledge of the nuclear matter 
parameters [50]:

The quantities A or B = {�0,E0,K0, S0, L,m
∗
s
,m∗

v
} and the 

correlation coefficient CAB are calculated as follows:

where cov(A,B) is the covariance between A and B, �(X) 
is the standard deviation of X, and ⟨X⟩ denotes the average 
values obtained from N = 119 standard Skyrme parameter 
sets, selected according to the criteria in Eq. (23).

The values of these parameters are listed in Table 1, 
and the correlation coefficients CAB are shown in Fig. 1. A 
positive value of CAB reflects a positive linear correlation, 
whereas a negative value indicates a negative linear correla-
tion. Correlations exist between the different nuclear matter 
parameters. Specifically, the correlations between S0 and �0 , 
L and S0 , m∗

v
and m∗

s
 , K0 and �0 , and S0 and E0 are stronger 

than those of the other nuclear matter parameter pairs. The 
‘strange’ correlation between �0 and S0 can be understood 
as follows: �0 can be determined using Eq. (12), which is 
related to the parameters � , � , � , and g�� , or to the nuclear 
matter parameters, as presented in Eq. (5) of Ref. [50]. These 
correlations indicate that obtaining tight constraints on the 
density dependence of the symmetry energy using HICs 
requires knowing information not only on S0 and L but also 
on m∗

s
 and m∗

v
 (or the effective mass splitting).

3.2  Symmetry potential

Based on Eq. (17), effective mass splitting is related to 
the symmetry potential, which plays an important role in 
HICs. The symmetry potential Vsym is also called the Lane 

(23)

200 MeV ⩽ K0 ⩽ 280 MeV,

25 MeV ⩽ S0 ⩽ 35 MeV,

30 MeV ⩽ L ⩽ 120 MeV,

0.6 ⩽ m∗
s
∕m ⩽ 1.0,

−0.5 ⩽ fI ⩽ 0.4.

(24)

CAB =
cov(A,B)

�(A)�(B)
,

cov(A,B) =
1

N − 1

�
i

(Ai − ⟨A⟩)(Bi − ⟨B⟩),

�(X) =

�
1

N − 1

�
i

(Xi − ⟨X⟩)2, X = A,B

⟨X⟩ = 1

N

�
i

Xi, i = 1,… ,N,
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potential, which equals the difference between the neutron 
and proton potentials:

where V loc
sym

= 2Asym
�

�0
+ 2Bsym(

�

�0
)� + ℏ2D0(

3�2

2
�)2∕3� and 

Ek = p2∕2m.
To quantitatively understand the momentum and den-

sity dependence of VLane on HIC observables, we investi-
gate VLane(�, p) for two typical Skyrme interaction param-
eter sets: SkM* and SLy4. These two Skyrme interaction 
parameter sets were selected for the following reasons: 
first, the incompressibility ( K0 ), symmetry energy coeffi-
cient ( S0 ), and isoscalar effective mass ( m∗

s
 ) should be 

within reasonable and commonly accepted ranges; that is, 
K0 = 230 ± 20  M e V,  S0 = 32 ± 2  M e V,  a n d 
m∗

s
∕m = 0.7 ± 0.1 . Second, the parameter sets have differ-

e n t  s i g n s  o f  e f f e c t i v e  m a s s  s p l i t t i n g : 
Δm∗

np
= (m∗

n
− m∗

p
)∕m > 0 or < 0 . The SLy4 set [55] has 

Δm∗
np

< 0 (or fI > 0 ) in neutron-rich matter, and the slope 
of the symmetry energy L is 46 MeV. The set SkM* has 
Δm∗

np
> 0 (or fI < 0 ) and L = 46 MeV. For convenience, 

the values of the nuclear matter parameters in SkM* and 
SLy4 are listed in Table 2.

(25)

VLane(�, p) =
Vn − Vp

2�

= 2Asym

�

�0
+ 2Bsym

(
�

�0

)�

+ ℏ2D0

(
3�2

2
�

)2∕3

� + D0�p
2

= V loc
sym

+ 2D0m�Ek,

In Fig. 2, we present VLane as a function of kinetic energy 
for cold nuclear matter with isospin asymmetry � = 0.2 at 
different densities. VLane increased (decreased) as the kinetic 
energy increased for 𝛿m∗

np
< 0 ( 𝛿m∗

np
> 0 ). They influence 

the neutron to proton yield ratio Y(n)/Y(p) as a function of 
the kinetic energy in HICs according to the following 
relationship:

where T is the temperature of the emitting source and �n 
and �p are the chemical potentials of neutrons and protons, 
respectively. The above relationship can be obtained using 
statistical and dynamic models [56–61]. Therefore, one can 
expect that the larger the Lane potential, the larger the neu-
tron to proton yield ratios. Similar effects on the triton to 
3 He yield ratios are also expected [62]:

In addition, one can expect that the slopes of the Y(n)/Y(p) 
ratios with respect to Ek will differ from the effective mass 
splitting according to Eq. (26) and a similar behavior is also 
expected for Y(t)/Y(3He).

3.3  Y(n)/Y(p) and Y(t)/Y(3He)

To observe the effects of effective mass splitting on HIC 
observables such as Y(n)/Y(p) and Y(t)/Y(3He), we performed 
a simulation of the 86 Kr + 208 Pb system at beam energies 
from Ebeam = 25A to 200A MeV. In the calculations, the 
impact parameter b = 1 fm and the number of events were 
100,000. The dynamic evolution time is stopped at 400 fm/c.

The left panels of Fig. 3 show the Y(n)/Y(p) ratios as func-
tions of the normalized nucleon center-of-mass energy 
Ek∕Ebeam . The errors of Y(n)/Y(p) are statistical uncertainties 
obtained using the error propagation formula from the errors 
of Y(n) and Y(p). By using Ek∕Ebeam , the shapes of Y(n)/Y(p) 
as a function of the kinetic energy can be compared and 
understood on a similar scale for different beam energies. 
The red lines correspond to the results obtained with SLy4 
( m∗

n
< m∗

p
 ) and the blue lines correspond to SkM* ( m∗

n
> m∗

p
 ). 

Our calculations show that the Y(n)/Y(p) ratios obtained with 

(26)

Y(n)

Y(p)
∝ exp

�
�n − �p

T

�

= exp

⎡
⎢⎢⎢⎣

2
�
V loc
sym

+ 2D0m�Ek

�
�

T

⎤
⎥⎥⎥⎦
,

(27)

Y(t)

Y(3He)
∝ exp

��t − �3He

T

�
≈ exp

�
�n − �p

T

�

= exp

⎡
⎢⎢⎢⎣

2
�
V loc
sym

+ 2D0m�Ek

�
�

T

⎤
⎥⎥⎥⎦
.
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Fig. 1  (Color online) Correlation coefficients between the different 
nuclear matter parameter pairs
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Table 1  Nuclear matter 
parameters calculated from 119 
Skyrme interaction sets

Parameter �
0

E
0

K
0

S
0

L m
∗
s

m
∗
v

BSk9 0.159 − 15.90 231.56 30.00 39.90 0.80 0.91
BSk10 0.159 − 15.89 238.17 29.98 37.34 0.92 0.81
BSk11 0.159 − 15.84 239.03 30.04 38.34 0.92 0.82
BSk12 0.159 − 15.84 238.99 30.04 37.98 0.92 0.82
BSk13 0.159 − 15.84 239.02 30.04 38.81 0.92 0.82
BSk14 0.159 − 15.83 240.29 30.04 43.92 0.80 0.78
BSk15 0.159 − 16.02 241.70 30.00 33.62 0.80 0.77
BSk16 0.159 − 16.03 242.63 30.03 34.83 0.80 0.78
BSk17 0.159 − 16.03 242.65 30.03 36.25 0.80 0.78
FPLyon 0.162 − 15.90 217.20 30.94 42.78 0.84 0.97
Gs 0.158 − 15.57 238.13 31.46 94.32 0.78 0.68
KDE 0.164 − 15.97 223.13 31.93 41.44 0.76 0.86
KDE0v 0.161 − 16.08 229.01 32.99 45.22 0.72 0.77
KDE0v1 0.165 − 16.21 228.33 34.62 54.74 0.74 0.81
LNS 0.175 − 15.29 211.47 33.48 61.55 0.83 0.73
MSk1 0.157 − 15.81 232.62 29.96 34.05 1.00 1.00
MSL0 0.160 − 15.86 230.26 29.98 59.97 0.80 0.70
NRAPR 0.161 − 15.83 226.52 32.84 59.73 0.69 0.60
RATP 0.160 − 16.02 239.84 29.27 32.41 0.67 0.56
Rs 0.158 − 15.57 237.94 30.63 85.88 0.78 0.68
Sefm074 0.160 − 15.79 239.17 33.33 88.59 0.74 0.63
Sefm081 0.161 − 15.66 237.24 30.79 79.48 0.81 0.68
Sefm09 0.161 − 15.53 240.24 27.80 70.05 0.90 0.75
SGI 0.154 − 15.87 260.52 28.27 63.76 0.61 0.58
SGII 0.158 − 15.57 213.95 26.81 37.70 0.79 0.67
SKa 0.155 − 15.97 262.15 32.86 74.56 0.61 0.52
Ska25s20 0.161 − 16.05 221.45 33.83 63.90 0.98 0.98
SkI2 0.158 − 15.75 241.98 33.47 104.71 0.68 0.80
SkI4 0.160 − 15.92 247.64 29.48 60.36 0.65 0.80
SkI6 0.159 − 15.90 248.40 30.07 59.67 0.64 0.80
SkM 0.160 − 15.75 216.00 30.72 49.39 0.79 0.66
SkMs 0.160 − 15.75 216.00 30.01 45.84 0.79 0.65
SkMP 0.157 − 15.54 230.74 29.88 70.33 0.65 0.59
SkO 0.160 − 15.81 222.41 31.90 79.00 0.90 0.85
SkOp 0.160 − 15.73 221.94 31.92 68.92 0.90 0.87
SKRA 0.159 − 15.75 216.08 31.28 53.07 0.75 0.63
SkS1 0.161 − 15.84 227.93 28.74 30.65 0.86 0.64
SkSC14 0.161 − 15.90 235.96 30.02 33.11 1.00 1.00
SkT1 0.161 − 15.96 236.10 32.02 56.22 1.00 1.00
SkT1s 0.162 − 15.95 239.83 32.23 56.27 1.00 1.00
SkT1a 0.161 − 15.96 236.10 32.02 56.22 1.00 1.00
SkT2 0.161 − 15.92 235.66 32.00 56.20 1.00 1.00
SkT2a 0.161 − 15.92 235.66 32.00 56.20 1.00 1.00
SkT3 0.161 − 15.92 235.70 31.50 55.35 1.00 1.00
SkT3a 0.161 − 15.92 235.70 31.50 55.35 1.00 1.00
SkT6 0.161 − 15.94 236.21 29.97 30.85 1.00 1.00
SkT6a 0.161 − 15.94 236.21 29.97 30.85 1.00 1.00
SkT7 0.161 − 15.92 236.45 29.55 31.08 0.83 0.71
SkT7a 0.161 − 15.92 236.45 29.55 31.08 0.83 0.71
SkT8 0.161 − 15.92 236.40 29.94 33.69 0.83 0.83
SkT8a 0.161 − 15.92 236.40 29.94 33.69 0.83 0.83
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Table 1  (continued) Parameter �
0

E
0

K
0

S
0

L m
∗
s

m
∗
v

SkT9 0.160 − 15.86 234.22 29.73 33.82 0.83 0.83
SkT9a 0.160 − 15.86 234.22 29.73 33.82 0.83 0.83
SKX 0.155 − 16.03 269.76 31.07 33.40 0.99 0.75
SKXm 0.159 − 16.03 238.37 31.21 32.07 0.97 0.75
Skxs15 0.161 − 15.73 200.01 31.83 34.95 0.97 0.94
SLy0 0.160 − 15.95 229.00 31.95 47.10 0.70 0.80
SLy1 0.160 − 15.96 229.10 31.95 47.06 0.70 0.80
SLy2 0.161 − 15.96 230.86 32.04 47.49 0.70 0.80
Sly230b 0.160 − 15.95 230.84 32.04 45.99 0.69 0.80
SLy3 0.160 − 15.95 228.96 31.95 45.30 0.70 0.80
SLy4 0.160 − 15.95 230.84 32.04 45.96 0.69 0.80
SLy5 0.161 − 15.96 230.77 32.05 48.18 0.70 0.80
SLy6 0.159 − 15.90 229.91 31.95 47.45 0.69 0.80
SLy7 0.158 − 15.88 228.98 31.95 46.93 0.69 0.80
SLy8 0.160 − 15.95 229.18 31.96 47.16 0.70 0.80
SLy9 0.151 − 15.77 229.41 31.95 54.82 0.67 0.80
SLy10 0.156 − 15.88 230.56 32.01 38.72 0.68 0.80
QMC600 0.174 − 16.40 221.21 34.65 46.81 0.81 0.61
QMC650 0.172 − 16.21 221.48 33.88 53.38 0.78 0.63
QMC700 0.171 − 16.11 223.89 33.69 59.49 0.76 0.64
QMC750 0.171 − 16.21 225.98 33.96 65.10 0.74 0.65
SV-bas 0.160 − 15.88 234.23 30.03 32.33 0.90 0.71
SV-K218 0.161 − 15.88 217.32 29.97 34.78 0.90 0.72
SV-K226 0.160 − 15.88 224.80 29.97 34.27 0.90 0.72
SV-K241 0.159 − 15.89 241.55 30.02 30.94 0.90 0.71
SV-kap20 0.160 − 15.88 234.08 30.03 35.52 0.90 0.83
SV-mas07 0.160 − 15.87 233.76 30.01 52.18 0.70 0.71
SV-mas08 0.160 − 15.88 233.64 30.02 40.17 0.80 0.71
SV-min 0.161 − 15.89 221.55 30.65 44.85 0.95 0.93
SV-sym32 0.159 − 15.92 232.74 31.95 57.11 0.90 0.72
SV-sym34 0.159 − 15.94 233.50 33.96 80.92 0.90 0.72
SV-tls 0.160 − 15.87 234.32 30.04 33.16 0.90 0.71
T11 0.161 − 15.99 229.46 31.97 49.45 0.70 0.80
T12 0.161 − 15.98 229.73 31.98 49.37 0.70 0.80
T13 0.161 − 15.98 229.83 31.99 49.53 0.70 0.80
T14 0.161 − 15.97 229.79 31.98 49.47 0.70 0.80
T15 0.161 − 15.98 229.48 31.97 49.63 0.70 0.80
T16 0.161 − 15.99 229.71 31.98 49.44 0.70 0.80
T21 0.161 − 16.00 228.97 31.94 49.74 0.70 0.80
T22 0.161 − 16.00 229.18 31.95 49.54 0.70 0.80
T23 0.161 − 15.99 229.35 31.96 49.57 0.70 0.80
T24 0.161 − 15.99 229.52 31.97 49.84 0.70 0.80
T25 0.161 − 15.97 230.24 32.01 49.14 0.70 0.80
T26 0.161 − 15.95 230.33 32.01 48.77 0.70 0.80
T31 0.161 − 16.00 229.32 31.96 49.73 0.70 0.80
T32 0.161 − 16.00 229.06 31.95 50.25 0.70 0.80
T33 0.161 − 16.00 229.47 31.97 49.64 0.70 0.80
T34 0.161 − 16.00 229.05 31.95 50.06 0.70 0.80
T35 0.161 − 15.98 230.12 32.00 49.60 0.70 0.80
T36 0.161 − 15.97 229.66 31.98 49.05 0.70 0.80
T41 0.162 − 16.04 230.24 32.01 50.62 0.71 0.80
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both SLy4 and SkM* decrease as the nucleon kinetic energy 
increases, owing to Coulomb effects. Furthermore, the 
Y(n)/Y(p) ratios obtained using SLy4 ( m∗

n
< m∗

p
 ) are larger 

than those obtained using SkM* ( m∗
n
> m∗

p
 ). At a beam 

energy of 200A MeV, a flatter Y(n)/Y(p) dependence on the 
nucleon kinetic energy was observed for SLy4. This is 
because SLy4 has stronger Lane potentials at high kinetic 
energies and enhanced neutron emission at high nucleon 
energies.

Specifically, the difference in Y(n)/Y(p) between SLy4 
( m∗

n
< m∗

p
 ) and SkM*(m∗

n
> m∗

p
 ) maintains a constant value 

with the nucleon kinetic energy at 25A MeV and increases 
with the nucleon kinetic energy at a beam energy of > 100A 
MeV. This can be understood from the Lane potentials 
shown in Fig. 2. At 25A MeV, the system is less compressed 
and excited than that at 100A or 200A MeV, and most of the 
emitted nucleons originate from the low-density region. The 
corresponding symmetry potentials for SLy4 and SkM* var-
ied weakly as a function of kinetic energy (see Fig. 2a). 
Therefore, one can expect that the difference in Y(n)/Y(p) 
between SLy4 ( m∗

n
< m∗

p
 ) and SkM* ( m∗

n
> m∗

p
 ) is small and 

changes weakly as the kinetic energy increases. At a beam 

Table 1  (continued) Parameter �
0

E
0

K
0

S
0

L m
∗
s

m
∗
v

T42 0.162 − 16.03 230.55 32.02 50.74 0.70 0.80
T43 0.162 − 16.02 230.88 32.04 50.62 0.70 0.80
T44 0.161 − 16.00 229.47 31.97 50.04 0.70 0.80
T45 0.161 − 16.00 229.14 31.95 49.63 0.70 0.80
T46 0.161 − 15.98 230.46 32.02 49.96 0.70 0.80
T51 0.162 − 16.03 230.73 32.03 50.73 0.70 0.80
T52 0.161 − 16.03 228.94 31.94 50.64 0.70 0.80
T53 0.161 − 16.00 229.40 31.97 50.01 0.70 0.80
T54 0.161 − 16.01 229.26 31.96 50.25 0.70 0.80
T55 0.161 − 16.01 228.95 31.94 50.20 0.70 0.80
T56 0.161 − 15.99 229.87 31.99 50.13 0.70 0.80
T61 0.162 − 16.05 230.27 32.01 50.81 0.71 0.80
T62 0.162 − 16.05 230.17 32.00 50.34 0.71 0.80
T63 0.162 − 16.04 230.34 32.01 51.09 0.70 0.80
T64 0.162 − 16.01 231.00 32.04 50.54 0.70 0.80
T65 0.162 − 16.02 230.73 32.03 50.54 0.70 0.80
T66 0.161 − 16.00 229.28 31.96 50.28 0.70 0.80

Table 2  Nuclear matter 
parameters of SLy4 and SkM*

The parameters E
0
 , K

0
 , S

0
 , and L are in MeV, and �

0
 is in fm−3

Parameter �
0

E
0

K
0

S
0

L m
∗
s
∕m m

∗
v
∕m

SLy4   0.160  − 15.97    230   32   46   0.69   0.80
SkM*   0.160  − 15.77    217   30   46   0.79   0.65
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energy of > 100A MeV, the system can be compressed to 
higher densities, where the magnitude of the splitting 
increases with the kinetic energy, as shown in Fig. 2b, c.

The right panels of Fig. 3 show the Y(t)/Y(3He) ratios as 
functions of the normalized nucleon center-of-mass energy, 
that is, Ek∕Ebeam . Similar to Y(n)/Y(p), the Y(t)/Y(3He) ratios 
are also sensitive to effective mass splitting. This can also be 
explained using Eq. (27). At a beam energy of 200A MeV, 
the sensitivity of the Y(t)/Y(3He) ratios to the kinetic energy 
becomes weak, which may be due to cluster effects and 
stronger nonequilibrium effects than those at lower beam 
energies.

Furthermore, Fig. 3 also shows that the Y(n)/Y(p) ratio 
decreases exponentially with respect to Ek∕Ebeam in the 
range 0.3 ⩽ Ek∕Ebeam ⩽ 1.0 . For t/3 He ratios, a similar 
behavior can be observed in 0.2 ⩽ Ek∕Ebeam ⩽ 0.5 since the 
kinetic energy per nucleon for the emitted tritons or 3 He 
is approximately one-half of the beam energy. According 
to Eqs. (26) and (27), the exponentially decreasing behav-
ior indicates that the emitted nucleons are in equilibrium in 

momentum space and can be described by the slopes of ln
[Y(n)/Y(p)] or ln[Y(t)/Y(3He)], and the slopes of ln[Y(n)/Y(p)] 
and ln[Y(t)/Y(3He)] are directly related to D0 as follows:

In the following analysis, we perform the linear fit of 
ln[Y(n)∕Y(p)] and ln[Y(t)∕Y(3He)]:

in the range of 0.3 ⩽ Ek∕Ebeam ⩽ 1.0 and

in the range of 0.2 ⩽ Ek∕Ebeam ⩽ 0.5 to obtain the slopes of 
Sn/p ( St∕3He ) and the intercepts of bn/p

0
 ( bt∕

3He

0
 ). To describe the 

goodness of linear fit of ln(Y(n)∕Y(p)) and ln(Y(t)∕Y(3He)) , 
we present the coefficients of determination, R2 [63] in 
Table 3.

Figure 4 presents Sn/p ( St/3He ) and bn/p
0

 ( bt∕
3He

0
 ) as func-

tions of the beam energy to determine the optimal energy 
for probing effective mass splitting. Panel (a) shows Sn/p 
and panel (c) shows St/3He . Our calculations show that the 
values of Sn/p ( St/3He ) obtained with SLy4 are higher than 
those obtained with SkM* except for the beam energy of 
25A MeV. Specifically, the impact of effective mass split-
ting on Sn/p becomes evident at a beam energy of 200A MeV. 
For St/3He , the impact of effective mass splitting is greatest 
at a beam energy of ∼ 100A MeV under the influence of the 
cluster formation mechanism. For the bn/p

0
 , the calculations 

show that it weakly depends on the effective mass splitting, 
except for the value of bn/p

0
 at beam energies Ebeam = 200A 

MeV. At this beam energy, the value of bn/p
0

 obtained using 
SkM* is larger than that obtained using SLy4. For bt∕

3He

0
 , 

the value obtained using SkM* was lower than that obtained 
using SLy4 at a beam energy of 25A MeV. At Ebeam > 100A 
MeV, the values of bt∕

3He

0
 obtained with SkM* were greater 

than those obtained with SLy4.

(28)
Sn/p =

� ln[Y(n)∕Y(p)]

�Ek

= 4D0m��∕T ,

St/3He =
� ln[Y(t)∕Y(3He)]

�Ek

= 4D0m��∕T .

(29)ln

[
Y(n)

Y(p)

]
= Sn/p

Ek

Ebeam

+ b
n/p

0

(30)ln

[
Y(t)

Y(3He)

]
= St∕3He

Ek

Ebeam

+ bt
0
∕3He
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Fig. 3  (Color online) Yield ratios of Y(n)/Y(p) and Y(t)/Y(3He) as 
functions of the normalized nucleon center-of-mass energy E

k
∕E

beam
 

at beam energies of E
beam

 = 25A, 100A, and 200A MeV

Table 3  Coefficients of determination, R
2 , for the linear fit of 

ln(Y(n)/Y(p)) and ln(Y(t)/Y(3He))

R
2 ln(Y(n)/Y(p)) ln(Y(t)/Y(3He))

SLy4 SkM* SLy4 SkM*

25A MeV 0.98767 0.98431 0.99073 0.97503
100A MeV 0.97342 0.98295 0.50164 0.84234
200A MeV        0.36945        0.96828        0.79116        0.66351
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4  Summary and outlook

In summary, we compiled 119 Skyrme interaction sets 
and their corresponding nuclear matter parameters to 
understand the correlations between different nuclear 
matter parameters. By analyzing the linear correlation 
coefficient, the strength of the correlation between differ-
ent nuclear matter parameters was quantitatively obtained. 
Furthermore, the correlations between different nuclear 
parameters indicates that obtaining tight constraints on 
the symmetry energy requires knowing not only the val-
ues of the symmetry energy coefficient S0 and the slope 
of the symmetry energy L but the isoscalar effective mass 
m∗

s
 and the isovector effective mass m∗

v
 or the effective 

mass splitting, given that K0 and E0 are well constrained.
To understand the impact of effective mass split-

ting on HIC observables, we simulated the 86 Kr + 208 Pb 
system at beam energies ranging from 25 to 200 MeV 
per nucleon. Two observables were analyzed: the emit-
ted neutron to proton yield ratio and the triton to 3 He 
yield ratio. Our results show that the energy spectra of 
Y(n)/Y(p) and Y(t)/Y(3He) can be used to distinguish the 
effective mass splitting, which is consistent with previous 
studies in Refs. [13, 45]. Furthermore, we constructed 
the characteristic variables, namely the slope and inter-
cept of ln[Y(n)/Y(p)] and ln[Y(t)/Y(3He)], respectively, 
which can be directly related to the effective mass split-
ting. The greatest effects were observed at 200A MeV for 
(Y(n)/Y(p)), whereas the greatest effects were observed 
at 100A MeV for (Y(t)/Y(3He)). This difference can be 
attributed to the cluster formation mechanism.

Appendix 1: Single‑particle potential

For the Skyrme interaction, the single-particle potential in 
uniform nuclear matter can be written as the summation 
of the local and nonlocal (momentum-dependent) parts 
as follows:

Based on the definition of the single-particle potential, Vq 
should be obtained from the derivatives of the net energy E 
of the system with respect to the number of particles. For 
the local part, V loc

q
 is

where ‘ + ’ is for neutrons and ‘−’ for protons. The nonlocal 
part of the single-particle potential depends not only on the 
position but also on the momentum, which can be obtained 
by taking the functional derivative of the energy density with 
respect to the phase-space distribution function of protons 
or neutrons fq(r, p):

where � is the kinetic energy density and is the summation 
of the kinetic energy densities of neutrons and protons 
(i.e.,� = �

n
+ �

p
 ) and �q =

3

5
k2
q,F

�q , with kq,F = (3�2�q)
1∕3.
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