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Abstract This study proposes a ladder gradient method for

neutron and gamma-ray discrimination. The proposed

method exhibited state-of-the-art performance with low

time consumption, which incorporates two parts: infor-

mation extraction and discrimination factor calculation. A

quasi-continuous spiking cortical model was proposed to

extract information from the radiation pulse signals, thus

generating an ignition map corresponding to each pulse

signal. The ignition map can be used to calculate the dis-

crimination factor. A ladder gradient calculation was

introduced to obtain a discrimination factor with low

computational complexity. The proposed method was

compared with five other discrimination methods to eval-

uate its robustness and efficacy. Furthermore, the filter

adaptability of the pulse-coupled neural network and ladder

gradient methods was investigated. Possible reasons for

adapting the conditions with different discrimination

methods and filters were analyzed. Experiments were

conducted in 20 filtering situations with 11 types of filters

to determine the most suitable filters for discrimination

methods. The experimental results revealed that the three

most adaptive filters of the pulse-coupled neural networks

and ladder gradient methods are the wavelet, elliptic, and

median filters and the elliptic, moving average, and wavelet

filters, respectively.

Keywords n-c Discrimination � Pulse-shape
discrimination � Ladder gradient � Pulse-coupled neural

network � Filtering � Filter adaptability

1 Introduction

Neutrons have been used in many scientific fields since

they were discovered by Chadwick in 1932, making neu-

tron detection technology vital for a variety of applications.

Examples include nuclear reactors [1, 2], meteorology [3],

national security [4, 5], astronautics [6], biology [7], and

radiopharmaceuticals [8]. Detecting neutrons and moni-

toring neutron flux are vital tasks in the aforementioned

fields. However, several radiation detectors that are sensi-

tive to neutrons are additionally sensitive to high-energy

photons (gamma rays). These photons inevitably accom-

pany neutrons because of their interaction with the sur-

rounding environment. This concomitant phenomenon

causes difficulty in detecting neutrons because detectors

retrieve the radiation pulse signals of neutrons and gamma

rays simultaneously, making it particularly difficult to

count only neutrons per unit of time. To overcome this

obstacle, researchers have attempted to discriminate neu-

trons and gamma rays through their different interaction

characteristics with the sensitive volume of a radiation

detector, which can be presented by the differences in the

pulse shapes of these two particles [9]. Based on this
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discrimination principle, the pulse-shape discrimination

(PSD) technique has been developed [10, 11], which has

been commonly used in numerous scientific fields to satisfy

the neutron detection requirements [12, 13]. One of the

most important components of the PSD technique is its

discrimination algorithm. This algorithm is responsible for

the information extraction process of each radiation pulse

signal, generating a discrimination factor for each signal,

which is used to separate the neutron and gamma-ray pulse

signals (n-cPSs).
Many discrimination methods have emerged during the

past decades, such as the most commonly used charge

comparison (CC) method [14], fast discrimination-capable

zero-crossing (ZC) method [15, 16], frequency-domain-

based frequency gradient (FGA) method [17] and fractal

spectrum method [18]. The CC method is among the most

frequently used PSD methods. It exhibited good discrimi-

nation performance under various conditions with low time

consumption. The most significant advantage of the ZC

method is its low computational complexity, making it a

better option for real-time discrimination tasks. However,

the discrimination performance of the ZC method is usu-

ally unsatisfactory because its information extraction pro-

cess is too simple to fully determine the differences

between pulse signals. Frequency-domain-based methods

play an essential role in high-noise scenarios. Nevertheless,

their computational burden is usually high and they require

a long signal-processing time. In 2021, Liu et al. proposed

a novel discrimination method with outstanding discrimi-

nation performance [19], introducing a pulse-coupled

neural network (PCNN) into the neutron and gamma-ray

pulse-shape discrimination field for the first time. The

PCNN displayed breakthrough discrimination performance

and significantly outperformed conventional discrimination

algorithms, such as the CC and ZC methods. The out-

standing discrimination effect of the PCNN was attributed

to its dynamic information extraction ability. As a bio-

logical neurology research-based neural network, the

PCNN was initially conceived to imitate the working style

of the biological neuron cortex to obtain the capability of

processing dynamic information from pictures or videos

[20]. In the biological visual system, when external light

sources stimulate photoreceptor cells in the retina, these

cells generate electrical signals (spikes) and relay these

spikes to the adjacent optic nerves. These electrical signals

stimulate neurons in the cortex, causing further spike

generation and transmission between cell assemblies

[21, 22]. Biological neurology research has corroborated

that this spike behavior between cell assemblies can rec-

ognize the information contained by the original stimuli

received by the photoreceptor cells and makes the brain

understand features, details, and other information in

images or videos [23]. Inherited from this working style,

the PCNN can similarly extract the dynamic information of

images. As the PCNN was proposed by Johnson et al. in

1994, it has been used in numerous image-processing fields

[24]. Examples include object recognition [25, 26], image

shadow removal [27], and image feature extraction [28].

Although Liu et al. demonstrated the discrimination

effect of this PCNN-based method [29], its high compu-

tational complexity limited its rapid discrimination appli-

cations. This computational burden is a result of two

factors: the high number of iterations of the PCNN and the

integration process of the ignition map. Consequently, the

computational burden of the PCNN-based discrimination

method should be reduced, which requires a novel dis-

crimination technique with a high information extraction

ability and low computational complexity. In this study, a

ladder gradient (LG) method was proposed. It replaces the

integration process of the PCNN-based method with ladder

gradient calculations. Moreover, a quasi-continuous spik-

ing cortical model (QC-SCM) was proposed to generate

ignition maps required for the ladder gradient calculation

process. The QC-SCM can achieve a better-detailed

information extraction performance and noise-processing

ability than the PCNN, with fewer number of iterations and

manual parameters. Experiments were conducted to com-

pare the discrimination results of the LG method with those

of the other five conventional discrimination methods to

evaluate the proposed method’s efficiency and robustness.

Furthermore, the filtering process is a vital step in most

PSD algorithms, that is, reducing the noise level of n-cPSs
and improving the discrimination performance. However,

there are many optional filtering methods in the signal-

processing field. Zuo et al. revealed that various discrimi-

nation performances were presented for different discrim-

ination methods when coupled with various filtering

methods [30]. Consequently, several filtering methods with

the best discrimination performance were identified for

each discrimination algorithm. However, the filter adapt-

ability of PCNN has not yet been investigated. The most

suitable filtering method for PCNN is unknown. To

determine the most appropriate filtering method for the

PCNN and the newly proposed LG methods, we conducted

experiments to validate the performances of nearly every

standard filtering method in the PSD field when coupled

with these two methods. The performance of each filter is

evaluated using several objective criteria.

The layout of this study is arranged as follows. The LG

discrimination method principle is elaborated in Sect. 2.

The filtering methods used are described in Sect. 3. Sec-

tion 4 presents the evaluation criteria used to quantify the

performance of the different filtering methods. The detailed

structure of the experiments and experimental results are

presented in Sect. 5. Finally, in Sect. 6, the conclusions of

this study are presented.
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2 Fundamentals of the ladder gradient method

Figure 1 shows a flow chart of the ladder gradient (LG)-

based neutron and gamma-ray discrimination process. The

radiation pulse signals (n-cPSs) were first filtered to reduce

the negative impact of the noise. Then, the filtered n-cPSs
were fed to the quasi-continuous spiking cortical model

(QC-SCM), generating ignition maps with the extracted

dynamic information. Each ignition map corresponds to an

n-cPS and is a vector with the same length as n-cPS.
Finally, the ladder gradient value R is calculated based on

the n-cPS ignition map. The ladder gradient is defined as

the slope between the maximum point and the m̂th mode

after the maximum point in the ignition map, where m̂ is an

empirical parameter related to the characteristics of the

radiation pulse shapes. The formula for ladder gradient R is

as follows:

R ¼ YB � YA

XB � XA
; ð1Þ

where XA;YAð Þ and XB;YBð Þ are the coordinates of the

maximum point and the m̂th mode after the maximum point

in the ignition map, respectively. Compared with the

original PCNN, an integration process of the ignition

counts corresponding to the radiation signal’s falling edge

and delayed fluorescence parts is used to calculate the

discrimination factor. The calculation of LG’s discrimina-

tion factor, that is, the ladder gradient, is much less cum-

bersome. However, this computational complexity release

comes at the cost of higher noise sensitivity and poorer

information extraction performance. This is because the

influence of noise on the coordinates of the two points is

significantly heavier than that on the integration of ignition

maps, and the integration results contain more information

than the slope of the two locations. Consequently, an

optimized model with better anti-noise and information

extraction abilities is required for the ignition process of

the LG method that presents less noise and more infor-

mation in the ignition maps.

LG uses QC-SCM to generate the ignition maps of n-

cPSs. The QC-SCM is proposed based on recent advances

in PCNN image-processing fields. Yang et al. demonstrated

that the discrete PCNN model is different from the con-

tinuous characteristics of the mammalian visual cortex;

therefore, it is challenging to achieve high resolution in the

firing process. A non-integer step PCNN model to simulate

the continuous structure of biological neurons was also

proposed by them [31]. This model can better recognize

detailed information and process noise from images at the

cost of a relatively high computational burden compared

with the original PCNN. In this study, we propose a QC-

SCM that introduces a continuous structure into the spiking

cortical model, a simplified version of the PCNN, to

achieve a detailed processing ability and firing resolution

while maintaining a low computational burden. The

mathematical expression for the QC-SCM is as follows:

Uij t þ Dtð Þ ¼ f DtUij tð Þ þ Sij 1þ
X

kl

W ijklYkl tð Þ
 !

; ð2Þ

hij t þ Dtð Þ ¼ gDthij tð Þ þ hYij tð Þ; ð3Þ

Yij t þ Dtð Þ ¼ 1; if
1

1þ exp � Uij t þ Dtð Þ � hij t þ Dtð Þ
� �� � [ 0:5

0; otherwise

8
<

:

ð4Þ

where Uij is the membrane potential of a neuron located at

i; jð Þ; t is the number of iterations; Dt is a parameter that

determines the time continuous characteristic of QC-SCM,

whose value ranges between 0 and 1; the closer it is to 0,

the closer the QC-SCM is to a continuous time system; f is

the attenuation coefficient of Uij; Sij is the external stim-

ulus, that is, the radiation pulse signal; W ijkl is the synaptic

weight matrix that controls the connection between the

central neuron at i; jð Þ and its surrounding neurons at k; lð Þ;
Yij and Ykl are the outputs of the spikes of neurons located

at i; jð Þ and k; lð Þ, respectively.hij is the dynamic threshold;

g is the attenuation coefficient of hij; and h is the attenu-

ation coefficient of Yij.

Figure 2 shows a comparison of the pulse signals and

ignition maps. The difference between the neutron and

gamma-ray signals appeared in the falling edge (approxi-

mately 90 ns) and delayed fluorescence parts (approxi-

mately 180 ns), as shown in Fig. 2a. This difference was

successfully captured and amplified by the PCNN, as

shown in Fig. 2b, with generally higher ignition times in

these two parts. However, the ladder shape ignition maps

Fig. 1 (Color online) Flowchart of the ladder gradient method. The

radiation pulse signals are first denoised by a filtering method. Next,

the QC-SCM is used to generate the ignition maps. Finally, the

discrimination factor, the ladder gradient, is calculated for each

ignition map
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were unstable, with many fluctuations ranging from 100 to

200 ns. This fluctuation is caused by noise introduced by

the radiation detection system. Although an integration

process for the falling edge and delayed fluorescence parts

can compensate for the noise-induced fluctuation, the

computational complexity increment is an inevitable cost.

In contrast, the QC-SCM ignition maps, as shown in

Fig. 2c, did not show fluctuations in the ladder shapes. This

stabilized ladder shape is formed because of the better

noise-processing ability of the QC-SCM than that of the

PCNN. A more computationally convenient discrimination

factor than the integration, the ladder gradient, can be used

because of the smooth ladder shape. Moreover, the QC-

SCM can achieve a similar difference amplification per-

formance as that of the PCNN with fewer iterations

because of its better-detailed information extraction ability.

The number of QC-SCM manual parameters is much lower

than that of the PCNN. Similar to the PCNN, the QC-SCM

requires no training process before discrimination.

3 Filtering methods

A one-dimensional signal can be considered a useful

signal superposed by white Gaussian noise:

s nð Þ ¼ j nð Þ þ ke nð Þ; ð5Þ

where n is the time, s is the one-dimensional signal, j is the

useful signal, and ke is the Gaussian noise.

In practical applications, sampled signals are discrete-

time signals with equal time steps. Consequently, s nð Þ can
be denoted by an N-dimensional random vector:

s nð Þ ¼

j 0ð Þ þ re 0ð Þ
j 1ð Þ þ re 1ð Þ
j 2ð Þ þ re 2ð Þ

..

.

j N � 1ð Þ þ re N � 1ð Þ

0
BBBBB@

1
CCCCCA

¼

j 0ð Þ
j 1ð Þ
j 2ð Þ
..
.

j N � 1ð Þ

0
BBBBB@

1
CCCCCA

þ

ke 0ð Þ
ke 1ð Þ
ke 2ð Þ
..
.

ke N � 1ð Þ

0
BBBBB@

1
CCCCCA
: ð6Þ

The noise removal process extracts the useful signal j nð Þ
from the original signal s nð Þ. There is a significant differ-

ence between the conventional de-noising process and n-c
PS noise process. For the discrimination application of

neutrons and gamma rays, slight, sometimes even con-

spicuous, distortion of the denoised signal is acceptable if

the pulse shape difference between neutrons and gamma

rays is amplified. Filters with fewer signal distortions are

preferred under the same discrimination performance.

In this study, a total of 11 filtering methods and 20

filtering conditions were investigated to determine the

optimal filters for the PCNN and LG methods. The details

of these filtering methods are presented in Section S1 of

Supplemental Information. These methods incorporate the

Butterworth filter [32, 33], Chebyshev filter [34, 35],

elliptic filter [36], median filter [37], moving average filter

[38, 39], Fourier filter [40], wavelet filter [41–44], Wiener

filter [45, 46], least mean square adaptive filter [47],

morphological filter [48, 49], and windowed-sinc filter

[50, 51].

Fig. 2 (Color online) Comparison between pulse signals and ignition maps. a Neutron and gamma-ray pulse signals; b Ignition maps generated

by the PCNN; and c ignition maps generated by the QC-SCM
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4 Evaluation criteria

4.1 Figure of merit

The figure of merit (FoM) is a standard measurement

used to evaluate the discrimination effect of neutrons and

gamma rays [52]. The calculation of FoM first draws a

histogram of discrimination results, which contains two

groups corresponding to the gamma ray and neuron counts.

Then, a Gaussian fitting function is used to fit these two

groups, forming a fitting curve that can be further used to

calculate the distance between these two peaks, s and the

full width at half maximum of each group. Finally, the

FoM is defined by the following equation:

FoM ¼ S

FWHMn þ FWHMc
; ð7Þ

where FWHMn and FWHMc denote the full width at half

maximum of the neutron and gamma-ray groups, respec-

tively. If the discrimination performance is good, the dis-

tance s should be significant, and both FWHMn and

FWHMc should be small. The larger the FoM, the better

the discrimination performance.

4.2 Denoised signal similarity measurements

There are several objective measurements of the

denoising performance in image noise removal applica-

tions [53]. They can also be calculated in the one-dimen-

sional condition to evaluate the de-noising performance of

the radiation signals.

The peak signal-to-noise ratio (PSNR) measures the

similarity between the denoised signal y nð Þ and the original
signal s nð Þ and is defined as

PSNR ¼ 10log10
N2

MSE

� �
; ð8Þ

where N is the length of the original signal, and the mean

square error (MSE) is defined as

MSE ¼ 1

N

XN

n¼1

s nð Þ � y nð Þ½ �2: ð9Þ

The root mean square error (RMSE) can be calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
: ð10Þ

The DIV can be used to measure the de-noising per-

formance, which is defined as

DIV ¼ 1�
r2y
r2s

�����

�����; ð11Þ

where ry and rs represent the variance of the denoised and

original signals, respectively.

Shannon entropy (SE) is a concept in information theory

that can represent the average information contained in a

signal [54, 55]. It can be estimated as

SE ¼ �
X

n

s2 nð Þlog s2 nð Þ
� �

: ð12Þ

By calculating the SE of s nð Þ and y nð Þ, the entropy

difference (ED) was obtained as follows:

ED ¼ SE sð Þ � SE yð Þj j; ð13Þ

when the values of MSE, RMSE, and DIV are closer to 0,

and the PSNR value is considerable, and the denoised

signal is similar to the original signal, indicating a better

filtering result with less signal distortion. When the value

of ED is smaller, the amount of information corrupted in

the filtering process is less; hence, the filtering results are

better.

4.3 Time consumption

The time consumption of the LG method and several

other discrimination methods to process 9414 radiation

pulse signals was measured. Furthermore, the time con-

sumed by each filter to process all the signals was mea-

sured. Time consumption represents the computational

complexity of the discrimination and filtering methods,

indicating their implementation viability.

4.4 Discrimination accuracy

Determine whether the discrimination accuracy is

influenced when n-cPSs have been smoothed by a filter is

crucial. We recorded the total neutron pulse signal counts

(N-count) and gamma-ray pulse signal counts (G-count)

from each filter discrimination result. Furthermore, the

discrimination results of the Fourier filter-processed signals

were used as the standard reference. Fourier filters are

widely applied in the pulse-shape discrimination field. The

number of incorrectly discriminated pulse signals after

processing the other filters was recorded as an error. The

error ratio is defined as follows:

Error ratio ¼ Error

Total number of signals
: ð14Þ

Smaller values of error and error ratio indicate better

results.
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5 Experimental procedures

5.1 Experiment equipment and parameter settings

This study used a 241Am-Be isotope neutron source with

4.5 MeV average energy to produce the radiation-super-

posed field. The n-cPSs of this superposed field were col-

lected using an EJ299-33 plastic scintillator and a digital

oscilloscope (TPS2000B) with a sampling rate of 1 GS/s, a

vertical resolution of 8 bits, and a bandwidth of 200 MHz.

The trigger threshold was set at 500 mV, approximately

corresponding to a 1.6 MeVee energy (the definition of

MeVee can be found in [19]). The pulse duration was

160 ns, which does not corrupt the information inside the

signals with respect to the Shannon criteria [56]. All the

discrimination and filtering processes were conducted on

Windows 11 using an AMD 5900X CPU. The parameters

of the LG are: m̂ ¼ 20, t ¼ 50, Dt ¼ 0:5,

W ijkl ¼ 0:44; 0; 0:44½ �, f ¼ 0:38, g ¼ 0:8, and h ¼ 8:45.

Five methods were compared with the LG method:

falling edge percentage slope (FEPS) [57, 58], zero

crossing (ZC) [15, 16], charge comparison (CC) [59], fre-

quency gradient analysis (FGA) [17], and pulse-coupled

neural network (PCNN) [19]. The parameters of these

discrimination methods are presented in Sect. S2.1 of

Supplemental Information.

The parameters of the filtering methods used in this

study were optimized to achieve the near-best performance

of each filter and are presented in Sects. 2.2 and 2.3 of

Supplemental Information.

5.2 Discrimination results and comparison

Figure 3 shows the discrimination performance. Dis-

crimination is poorly performed by FEPS, as shown in

Fig. 3a. Numerous pulse signals are located between the

neutron and gamma-ray groups. The gradient of the two

points at the peak of the signal and the end of the falling

edge is used by the FEPS as the discrimination factor,

similar to process of the LG method. However, without an

information extraction process, noise significantly influ-

ences the discrimination performance of the FEPS. Addi-

tionally, the information inside the delayed fluorescence

parts was not considered by FEPS. Consequently, it exhi-

bits an unsatisfactory discrimination effect. Ignoring the

delayed fluorescence parts influences the performance of

the ZC method, as shown in Fig. 3b. Although the differ-

entiation and integration processes help the ZC reduce

noise interference, the incomplete pulse shape difference

still causes a considerable negative impact, with a better

Gaussian distribution of n-c groups than that of the FEPS;

however, many pulse signals are located between the two

groups.

The discrimination performances of CC, FGA, and

PCNN are better than those of the two aforementioned

methods, as shown in Fig. 3c–e. In the results of these three

methods, the n-c groups conform to a Gaussian distribution

while separating from each other. The reason for this good

performance is that they consider the information con-

tained in the delayed fluorescence parts and use the inte-

gration process to achieve anti-noise ability; the CC

integrates the amplitudes of pulse signals; the FGA uses the

first component of a pulse signal’s Fourier transformed

form, which corresponds to the average amplitude of the

whole pulse signal; and the PCNN integrates the ignition

times of ignition maps. However, the LG method’s per-

formance was similar to that of the three methods without

the integration process, as shown in Fig. 3f. The negative

impact of noise is preprocessed by the QC-SCM; therefore,

no integration process is required to obtain a discrimination

factor. Instead, a ladder gradient was used to significantly

reduce the computational burden. It is worth noting that all

discrimination methods use a Fourier filter to preprocess

the pulse signals, except for the LG method. The raw pulse

signals are used for the LG because the pre-denoising with

the Fourier filter reduces its discrimination performance.

Section 5.3 presents a detailed analysis of this

phenomenon.

The results of the objective evaluation are presented in

Table 1. The results of the FoM values are consistent with

the intuitive presentation of three-dimensional histograms.

FEPS and ZC have the worst performance, with FoM

values of approximately 1. The CC and FGA performances

were at the same level. LG exhibits the second-best per-

formance with a 1.54 FoM, which is slightly lower than the

1.75 FoM of the PCNN. The time consumption of each

method was defined as the total CPU processing time for

the 9414 pulse signals (the time consumption of the fil-

tering process was excluded). The LG reduced the time

consumption by approximately 37% compared with that of

the PCNN, approaching the level of other conventional

discrimination methods. These experimental results

demonstrate the efficiency and robustness of the proposed

LG method, which can achieve a better performance than

conventional methods without preprocessing by filters and

consumes less time than PCNN. The low computational

complexity of LG makes it possible to implement inte-

grated radiation detection systems, thereby realizing real-

time discrimination.

5.3 Filtering results and analysis

We conducted experiments to validate the performance

of the PCNN and LG coupled with each filter mentioned in
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Sect. 3. We evaluated their performance from four aspects:

(A) discrimination performance (which is crucial in neu-

tron and gamma-ray discrimination applications), (B)

denoised signal similarity (which measures the distortion),

(C) time (referring to the total CPU processing time of each

filter for all 9414 pulse signals), and (D) discrimination

accuracy (which uses the most widely used discrimination

and filtering method, that is, the CC method with a Fourier

filter, as the reference, comparing its discrimination results

with the results of other filters). There is no ground truth for

the discrimination results because the n-cPSs used in this

study are the actual measured signals. Although the CC

method with a Fourier filter has been demonstrated to be

robust, its discrimination results cannot be equated to the

ground truth. Consequently, discrimination was considered

successful when the discrimination error ratio was under

2%.

The distortion of a signal’s peak and falling edge caused

by different filters is shown in Fig. 4. As shown in Fig. 4a,

b, the elliptic filter displayed a maximum change in the

amplitude of the peaks, and the Butterworth filter smoothed

the falling edge the best. As shown in Fig. 4c, d, the

median filter significantly changed the shape of the signal’s

peak, and the moving average filter had the best perfor-

mance in smoothing the falling edge. As shown in Fig. 4e,

f, the distortion of the peak in all three methods remains at

the same level, whereas the wavelet filter outperforms the

others in smoothing the falling edge. As shown in Fig. 4g,

h, although the falling edges show the same characteristics

after processing three different LMS filter conditions, the

peak distortion of the model-reference condition is more

extensive than that of the others. As shown in Fig. 4i, j, the

morphological filters completely changed the characteris-

tics of the pulse shapes with different peak shapes and

locations. Finally, as shown in Fig. 4k, l, the model-refer-

ence Wiener filter significantly distorted the peak shape

and performed poorly during the falling edge smoothing

process. The distortion of signals is acceptable in neutron

and gamma-ray discrimination applications if the pulse

shape difference between the neutrons and gamma rays is

successfully preserved or amplified after the filtering

process.

The objective evaluation results for the three best filters

of the PCNN and LG are presented in Tables 2 and 3,

respectively. The detailed experimental results for all filters

coupled with the PCNN and LG are presented in Sect. S3

of Supplemental Information.

Pertaining to the PCNN, the experimental results

showed that the LMS and Wiener filters performed poorly

Fig. 3 (Color online) Three-dimensional histograms of discrimina-

tion results for the following methods: a FEPS, b ZC, c CC, d FGA,

e PCNN, and f LG. In each histogram, the shapes of two groups

conform to the Gaussian distribution and a wide and clean gap

between these groups indicates good discrimination performance

Table 1 Discrimination results and time consumption (the CPU

processing time for 9414 pulses)

Criteria/method FEPS ZC CC FGA PCNN LG

FoM (a.u.) 0.97 1.09 1.38 1.47 1.75 1.54

Time consumption (s) 1.28 1.36 1.30 1.31 2.78 1.76
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regardless of the reference signal used. The time con-

sumption of their model-reference conditions is inferior

because it takes a considerable amount of time to fit 9414

pulse signals using the three-decay-exponential function.

Although the filtered signals of these two filters are the

most similar to the original signals, with the best denoised

signal similarity measurements, they failed to preserve the

difference between neutrons and gamma rays and hence

showed an unsatisfactory discrimination effect. The mov-

ing average filter had the shortest discrimination time while

presenting an acceptable discrimination performance. The

Fourier filter is the most balanced filter, which showed

good discrimination results and the best denoised signal

similarity.

Furthermore, the three filters with the best discrimina-

tion performance, that are wavelet, elliptic, and median, are

shown in Table 2. The wavelet filter presented the FoM,

which significantly outperformed the other filters. It also

has small signal distortion and a low discrimination error.

The only drawback is that its time consumption is not the

highest among all the filtering methods. The elliptic filter

has the second-best discrimination performance, low

Fig. 4 (Color online) Peak and falling edge distortion. The solid line represents the gamma-ray pulse signals, and dotted line denotes the neutron

pulse signals. Filters with fewer signal distortion are preferred under the same discrimination performance

Table 2 Filtering performance

of the three best filters of PCNN
Filtering methods Evaluation criteria

Wavelet FoM MSE PSNR RMSE DIV ED

2.5915 7.83 9 10-5 41.4729 0.0086 0.0232 0.0233

Distort N-count G-count Error Error ratio Time (s)

0.0187 2050 7364 13 0.0014 5.7782

Elliptic FoM MSE PSNR RMSE DIV ED

2.1942 0.0053 22.7510 0.0728 0.1717 0.1567

Distort N-count G-count Error Error ratio Time (s)

0.1848 2065 7349 28 0.0030 1.2646

Median FoM MSE PSNR RMSE DIV ED

2.1811 0.0007 31.7574 0.0264 0.1937 0.0624

Distort N-count G-count Error Error ratio Time (s)

0.2231 2088 7326 51 0.0054 0.2351
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discrimination error, and a short filtering time requirement.

The main disadvantage of this filter is that its parameters

need to be reset for different neutron sources or scintilla-

tors, which makes its application inconvenient. The median

filter showed the third-best discrimination performance and

the second-best filtering time. The major drawback of this

filter is that signal distortion is relatively high.

LG cannot discriminate the n-cPSs when coupled with

morphological filters, with low FoM, high error, and

massive time consumption. The morphological filters

completely changed the pulse shape’s characteristics to

which LG was sensitive. Without the integration process,

the LG cannot manage heavily distorted signals, unlike the

PCNN. The same signal distortion problem leads to poor

performance of the median filter. Furthermore, LG exhibits

poor performance when coupled with Wiener, LMS,

Fourier, Butterworth, and Chebyshev Type-2 filters. This is

because the LG method has an intrinsic anti-noise ability,

which is attributed to the noise-processing ability of the

QC-SCM. This good anti-noise ability makes it unable to

benefit significantly from the noise reduction effect of these

filters while suffering from the negative influence caused

by information loss during the filtering process.

Table 3 lists the filters with the best discrimination

performance (elliptic, moving average, and wavelet). The

elliptic filter exhibited the best discrimination performance,

with the highest FoM, minimal signal distortion, and fast

discrimination time. The primary disadvantage is the

manual parameters. The moving average filter achieved the

lowest time consumption and the second-best FoM.

Finally, the wavelet filter presented the best discrimination

performance and denoised signal similarity. The primary

drawback of this method is its high computational

complexity.

6 Conclusion

This study proposes an LG method for neutron and

gamma-ray pulse-shape discrimination. This method uses a

computationally convenient process, that is, the ladder

gradient calculation process, to obtain the discrimination

factor. Furthermore, QC-SCM was proposed to generate

the ignition maps required by the ladder gradient calcula-

tion. Experiments were conducted to compare the proposed

method with five other discrimination methods: falling

edge percentage slope, zero crossing, charge comparison,

frequency gradient analysis, and pulse-coupled neural

network. The experimental results demonstrate the

robustness and efficacy of the LG method, with the second-

best FoM and low computational complexity.

Moreover, the filter adaptability of the PCNN and LG

methods was investigated. Their performance was evalu-

ated using both subjective figures and objective evaluation

criteria. The evaluation criteria had the following four

aspects:

• discrimination performance (FoM)

• denoised signal similarity (signal-to-noise ratio, mean

square error, root mean square error, DIV, and entropy

difference)

• time (total time consumption for each filter to process

all 9414 signals)

• discrimination accuracy (neutron pulse signal count,

gamma-ray pulse signal count, error, and error ratio)

The advantages and disadvantages of various filters and

the possible reasons for their adaptability were analyzed.

The experimental results revealed that the wavelet, elliptic,

and median filters were the most adaptive of the PCNN;

and the elliptic, moving average, and wavelet filters were

the most suitable for the LG. In future research, the LG

method will be further optimized and implemented on

integrated radiation detection systems, and the LG

Table 3 Filtering performance

of the three best filters of LG
Filtering methods Evaluation criteria

Elliptic FoM MSE PSNR RMSE DIV ED

2.1956 0.0143 18.447 0.1196 0.1200 0.1400

Distort N-count G-count Error Error ratio Time (s)

0.1201 1929 7485 126 0.0134 1.2646

Moving Average FoM MSE PSNR RMSE DIV ED

1.6637 0.0063 22.0353 0.0791 0.0959 0.0759

Distort N-count G-count Error Error ratio Time (s)

0.0926 1899 7515 150 0.0159 0.1897

Wavelet FoM MSE PSNR RMSE DIV ED

1.6587 7:83� 10�5 41.4729 0.0086 0.0232 0.0233

Distort N-count G-count Error Error ratio Time (s)

0.0187 2000 7414 107 0.0114 5.7782
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parameters will be studied to provide an automatic

parameter LG method.
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