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Abstract Neural network methods have recently emerged

as a hot topic in computed tomography (CT) imaging

owing to their powerful fitting ability; however, their

potential applications still need to be carefully studied

because their results are often difficult to interpret and are

ambiguous in generalizability. Thus, quality assessments of

the results obtained from a neural network are necessary to

evaluate the neural network. Assessing the image quality of

neural networks using traditional objective measurements

is not appropriate because neural networks are nonsta-

tionary and nonlinear. In contrast, subjective assessments

are trustworthy, although they are time- and energy-con-

suming for radiologists. Model observers that mimic sub-

jective assessment require the mean and covariance of

images, which are calculated from numerous image sam-

ples; however, this has not yet been applied to the evalu-

ation of neural networks. In this study, we propose an

analytical method for noise propagation from a single

projection to efficiently evaluate convolutional neural

networks (CNNs) in the CT imaging field. We propagate

noise through nonlinear layers in a CNN using the Taylor

expansion. Nesting of the linear and nonlinear layer noise

propagation constitutes the covariance estimation of the

CNN. A commonly used U-net structure is adopted for

validation. The results reveal that the covariance estimation

obtained from the proposed analytical method agrees well

with that obtained from the image samples for different

phantoms, noise levels, and activation functions, demon-

strating that propagating noise from only a single projec-

tion is feasible for CNN methods in CT reconstruction. In

addition, we use covariance estimation to provide three

measurements for the qualitative and quantitative perfor-

mance evaluation of U-net. The results indicate that the

network cannot be applied to projections with high noise

levels and possesses limitations in terms of efficiency for

processing low-noise projections. U-net is more effective

in improving the image quality of smooth regions com-

pared with that of the edge. LeakyReLU outperforms

Swish in terms of noise reduction.

Keywords Noise propagation � Convolutional neural
network � Image quality assessment

1 Introduction

In recent years, neural networks have been applied in

computed tomography (CT) imaging. Several studies on

the applications of such networks have been published, and

their potential in solving several problems in the field of

CT imaging has been extensively evaluated. Such networks

have been used in applications such as spectral distortion

correction [1, 2] for photon-counting X-ray CT, dual-do-

main learning for two-dimensional [3, 4] and three-di-

mensional [5–7] low-dose CT reconstruction, sparse-view

[8] and limited-angle [9] CT reconstruction, noise sup-

pression in the sinogram domain [10] and image domain

[11], dual-energy imaging with energy-integrating
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detectors [12] and photon-counting detectors [13], and CT

artifact reduction [14, 15]. However, neural networks have

not yet been widely used in practice owing to their confi-

dence scores. Hence, researchers have adopted objective

and subjective image quality assessments to evaluate the

feasibility of using neural networks in CT imaging [16, 17].

However, traditional metrics are preferred for objective

assessments. The commonly used contrast-to-noise ratio

measures the region of interest (ROI) clarity, signal-to-

noise ratio measures the noise level, noise power spectrum

(NPS) measures the noise correlation, and modulation

transfer function measures the spatial frequency [18, 19].

Neural networks are normally nonlinear, nonstationary, and

unexplainable; however, to the best of our knowledge,

limited research on theoretically tractable methods has

been conducted.

Subjective assessments are commonly used in the field

of CT imaging. Radiologists are invited to observe and

score images obtained from various methods [20, 21].

Because subjective assessments are time-consuming and

laborious, researchers study model observers to simulate

the evaluation behavior of radiologists. The assessment of

image quality carried out by a radiologist, that is, a human

observer is modeled as a classification problem solved by

hypothesis testing. The likelihood ratio is used as the

decision variable to obtain an ideal observer (IO). Because

the IO is intractable, a linear approximation of the IO is

assumed to obtain a Hotelling observer (HO). Combining

the human-eye model with HO, researchers have obtained

the most widely used channelized Hotelling observer

(CHO) [22]. The CHO agrees well with human observers

[23, 24]; however, it requires knowledge of the image

mean and covariance. Recently, neural networks have been

introduced to explore nonlinear model observers that

enable better approximation of the human observer or

better detectability for auxiliary diagnoses [25–27]. How-

ever, these methods only target traditional reconstruction

methods [28, 29]. The application of these methods to

neural network reconstruction has not yet been explored.

Noise propagation through a reconstruction neural net-

work is necessary for assessing the performance of the

network. Covariance prediction can reveal the uncertainty

in inference, thus providing a safer answer to the CT

reconstruction problem. Furthermore, it can be used in the

calculation of model observers and subjective assessments.

The covariance estimation of neural-network outputs is

currently of significant interest. Abdelaziz et al. [30]

studied the uncertainty propagation of deep neural net-

works for automatic speech recognition with the assump-

tion that the output was Gaussian. Lee et al. [31] used a

Gaussian process equivalent to a deep fully connected

neural network to obtain an exact Bayesian inference under

the assumption that the parameters and layer outputs follow

an independent and identical distribution. Tanno et al. [32]

simultaneously estimated the mean and covariance of high-

resolution outputs from low-resolution magnetic resonance

images based on the assumption of a Gaussian distribution.

However, for CT imaging, covariance estimation of the

neural network output has not yet been studied.

In this study, we propose a new analytical noise prop-

agation method, that is, covariance estimation, particularly

for a convolutional neural network (CNN) in CT imaging

of noisy projections. With a trained CNN ready for infer-

ence, we propagate the noise layer by layer. For linear

layers, the output covariance can be calculated accurately.

For nonlinear activation layers, we perform a Taylor

expansion to obtain a linear approximation, which enables

linear propagation of noise through the nonlinear layers.

Because a CNN is a stack of linear and nonlinear layers, its

covariance estimation is a combination of layer noise

propagations. We validate the results of the covariance

estimation method by comparing the results with those of

statistical estimations using noisy projection and recon-

struction samples with different phantoms, noise levels,

and activation functions.

2 Methods

2.1 Physical model for CT imaging

A simple model for data acquisition in a CT scan is

formulated as

I ¼ I0e
�p ¼ I0e

�
R

ldr; ð1Þ

where I represents detected photons, and I0 represents

incident photons. Projection p is a line integral of the linear

attenuation coefficient l. Usually, the noise distribution of

I is assumed to be Poisson or Gaussian, and the noise

distribution of p can be approximated as Gaussian with

mean p and variance expðpÞ=I0, that is,

p�N ðp; expðpÞ=I0Þ.
Analytical, iterative, and neural network methods can be

used to reconstruct a linear attenuation coefficient map l
from its projection p. A CNN is a commonly used recon-

struction method for CT imaging. A CNN typically con-

sists of five types of basic layers: convolution, activation,

batch normalization, pooling, and up-sampling layers. The

overall operation of the network is a cascade of these

layers, that is,

l ¼ UðpÞ ¼ uL uL�1 � � �ul � � � u2 u1ðpÞð Þð Þð Þð Þ; ð2Þ

where ul denotes the operation function of one layer, and U
denotes the overall function of the neural network. Evi-

dently, the noise in p will result in a noisy l, even though
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several networks are used to reduce noise. We discovered

that the noise propagation through ul’s to output l can be

studied step-by-step if a network model is ready to serve

for inference, that is, network parameters are set. The key

lies in sorting out the covariance estimation through the

five basic layers constituting the entire CNN.

2.2 Covariance propagation through basic layers

of a CNN

Let vector x 2 RM�1 be an arbitrary layer input, and let

y be the corresponding layer output. This section presents

the covariance estimation of y from x.

2.2.1 Convolution layer

For a convolutional layer, its output yconv 2 RN�1 can be

expressed as a linear combination of inputs:

yconv ¼
XC

i¼1

Wixi þ bi; ð3Þ

where C denotes the number of input channels, W 2 RN�M

represents the convolutional weighting matrix, and bi
denotes bias. The convolution is linear; hence, it is easy to

obtain:

CovðyconvÞ ¼
XC

j¼1

XC

i¼1

WiCovðxi; xjÞWT
j : ð4Þ

2.2.2 Activation layer

In an activation layer, an input is normally fed into a

nonlinear function, f ð�Þ:
yaf ¼ f ðxÞ: ð5Þ

Because it is nonlinear, we perform the 1st order Taylor

expansion to obtain its linear approximation:

yaf ¼ f ðxÞ ’ f ðxÞ þ f 0ðxÞ � ðx� xÞ
¼ FðxÞxþ ðf ðxÞ � FðxÞxÞ ð6Þ

where the Taylor-based coefficient matrix F 2 RM�M is

diagonal to ½F�m;m ¼ f 0ð½x�mÞ. Thus, the covariance of the

nonlinear transformation layer can be estimated by

CovðyafÞ ’ FCovðxÞFT: ð7Þ

2.2.3 Batch normalization layer

For a batch normalization layer, the input is normalized

as

ybn ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ e

q xþ b� cuBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ e

q

0

B
@

1

C
A: ð8Þ

Here, c and b are hyperparameters that are learned

during training and frozen when inferencing. uB and r2B
represent the batch mean and variance, respectively, which

are also frozen during inference. Hence, the covariance

propagating through the batch normalization layer is

CovðybnÞ ¼
c2

r2
B
þ e

CovðxÞ � gCovðxÞ: ð9Þ

2.2.4 Pooling layer

Average pooling is a widely used method in this field.

This can be interpreted as a convolution operation of kernel

size k with stride s, where the convolution kernel is a

constant matrix with value 1=k2. Similar to the operation of

a convolution layer, its output yap 2 RN�1 can be formu-

lated as a linear transformation of the input as follows:

yap ¼ Ax: ð10Þ

Here, the average pooling matrix A 2 RN�M is sparse

with N ¼ ðM � kÞ=sþ 1. Thus,

Cov(yapÞ ¼ ACovðxÞAT: ð11Þ

2.2.5 Up-sampling layer

For an up-sampling layer, each element of the input is

duplicated and can be expressed as a linear combination of

the input:

yup ¼ Ux; ð12Þ

where the upsampling matrix U 2 RN�M is a sparse matrix

with only one element in each row and N ¼ 2M. The

covariance estimated from an up-sampling layer is

CovðyupÞ ¼ UCovðxÞUT: ð13Þ

2.3 Example: U-net

We adopt a commonly used U-net structure to denoise

the projection, followed by reconstruction with the filter

back projection (FBP) method:

l ¼ UðpÞ ¼ O uL uL�1 � � �ul � � � u2 u1ðpÞð Þð Þð Þð Þð Þ: ð14Þ

Here, O represents the linear FBP operator. p 2 RM�1

denotes an input projection, and l 2 RN�1 represents the

corresponding reconstruction. The reconstruction
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flowchart is illustrated in Fig. 1. A concatenate layer and

residual layer are included in U-net. The concatenated

layer merges the feature map in the 1st layer to the 6th

layer, and the residual layer adds the input projection to the

9th layer to obtain the output projection.

We iteratively estimate the covariance of reconstruction

predicted from the trained U-net:

Covðzli;zljÞ’
gliF

l
i

PCl�1

j0¼1

PCl�1

i0¼1

Wl
i0;iCovðzl�1

i0 ;zl�1
j0 ÞðWl

j0;jÞ
T

" #

ðgljFl
jÞ
T; l¼1;3;4;5;8;9

AiCovðzl�1
i ;zl�1

j ÞATj ; l¼2

UiCovðzl�1
i ;zl�1

j ÞUTj ; l¼6

8
>>>><

>>>>:

ð15Þ

where z represents the latent variable in the hidden layer of

U-net. z0 ¼ p when l ¼ 1 and [CovðpÞ�n;n ¼ expðpÞ=I0.
The subscript Wl

i0;i denotes a convolutional weighting

matrix from the i0th channel input of the lth layer to its ith

channel output, where Cl represents the total number of

channels in the lth layer.

With a concatenation operation, the 7th layer contains

feature maps from the 1st and 6th layers. Thus, three types of

covariances for the 7th layer must be present: (1) covariance

between channels in the 6th layer, (2) covariance between

channels in the 1st layer, and (3) covariance between channels

in the 1st layer and 6th layer. The covariance of cases (1) and

(2) has already been estimated using Eq. (15), and the

covariance of case (3) can be estimated as

Covðz6i ; z1j Þ ¼ Covðz1i ; z6j Þ
T ¼ UiCovðz5i ; z1j Þ

where Covðzli; z1j Þ ¼ AiCovðzl�1
i ; z1j Þ; l ¼ 2

Covðzli; z1j Þ ’ gliF
l
i

XCl�1

i0¼1

Wl
i0;iCovðzl�1

i0 ; z1j Þ
" #

; l ¼ 3; 4; 5

ð16Þ

Therefore, the covariance estimation of the 7th layer is

Covðz7i ; z7j Þ ¼

Covðz6i ; z6j Þ; i; j ¼ 1; 2; 3

Covðz6i ; z1j Þ; i ¼ 1; 2; 3; j ¼ 4; 5; 6

Covðz1i ; z6j Þ; i ¼ 4; 5; 6; j ¼ 1; 2; 3

Covðz1i ; z1j Þ; i; j ¼ 4; 5; 6

8
>>><

>>>:

ð17Þ

With a residual operation, the output projection repre-

sents the sum of the input projection and output residue of

the 9th layer. Thus, the covariance of the output projection

also consists of three parts: (1) covariance of the input

projection, (2) covariance of the output residue of the 9th

layer, and (3) covariance between the input projection and

output residue. Only the covariance estimation of case (3)

should be calculated because cases (1) and (2) are esti-

mated using Eq. (15):

Cov(z9;pÞ¼Cov(p;z9ÞT ¼
XC8

i¼1

W9
i Covðz8i ;pÞ

where Covðzli;pÞ’gliF
l
i

XCl�1

i0¼1

Wl
i0;iCovðzl�1

i0 ;pÞ
" #

; l¼1;3;4;5;8

Covðzli;pÞ¼AiCovðzl�1
i ;pÞ; l¼2

Covðzli;pÞ¼UiCovðzl�1
i ;pÞ; l¼6

Covðzli;pÞ¼
Covðz6i ;pÞ; i¼1;2;3

Covðz1i ;pÞ; i¼4;5;6

(

; l¼7

ð18Þ

The covariance estimation of the 10th layer is then

calculated as

Cov(z10Þ ¼ CovðpÞ þ Covðz9Þ þ Covðz9; pÞ þ Covðp; z9Þ:
ð19Þ

Combining Eqs. (15)–(19), we obtain the final covari-

ance estimation of the reconstruction:

Fig. 1 (Color online) U-net

structure for CT reconstruction.

The projection is first filtered by

U-net and then reconstructed by

FBP. Two activation functions:

� LeakyReLU and` Swish, are

applied to U-net
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Cov(lÞ ¼ OCov(z10ÞOT: ð20Þ

A gradient discontinuous function, LeakyReLU, and a

gradient continuous function, Swish, are chosen as acti-

vation functions to detect the influence of activation

functions on the covariance estimation of the CNN.

2.3.1 LeakyReLU activation function

The LeakyReLU function and its corresponding gradient

are expressed as

fLRðxÞ ¼
x; if x[ 0

ax; if x� 0

�

f 0LRðxÞ ¼
1; if x[ 0

a; if x� 0

� ð21Þ

The Taylor-based coefficient matrix in Eq. (6) is

½FLR�m;m ¼ f 0LRð½x�mÞ. Plugging FLR into Eqs. (15)–(20), we

obtain the covariance estimation from U-net with

LeakyReLU.

2.3.2 Swish activation function

The Swish function is another commonly used activa-

tion function:

fSwðxÞ ¼
x

1þ expð�kxÞ : ð22Þ

Its gradient is

f 0SwðxÞ ¼ kfSwðxÞ þ
1� kfSwðxÞ

1þ expð�kxÞ : ð23Þ

Thus, the Taylor-based coefficient matrix is

½FSw�m;m ¼ f 0Swð½x�mÞ. Replacing F in Eqs. (15)–(18) with

FSw, we obtain the covariance estimation of the projection

by U-net with Swish using Eq. (19) and the covariance

estimation of its reconstruction by FBP using Eq. (20).

3 Experiments

The projection data used for training are generated from the

Grand Challenge dataset of the Mayo Clinic. We randomly

choose a reconstruction dataset of one patient and select var-

ious ROIs with sizes of 128 9 128 pixels as phantoms.

Geometrical parameters of the simulated system are listed in

Table 1. By setting the number of incident photons to

I0 ¼ 104, we add Poisson noise to the noise-free projections

simulated from phantoms to obtain noisy projections.

Using noise-free projections as labels and noisy pro-

jections as inputs, we train U-net by minimizing an L2

norm loss function between labels and outputs. In addition,

we fix the hyper-parameter a¼0:1 for LeakyReLU and

k¼0:5 for Swish. We simulate 1792 noisy projections for

the study. The dataset is randomly split into a training set

and a validation set, where 80% of the dataset represents

the training set and 20% represents the validation set. We

train the network with Keras on a GPU RTX8000 of 48G.

The loss function of U-net with LeakyReLU and Swish

decreases to approximately 10�4 during converging. Fur-

thermore, we randomly split the dataset into 5 folds to run a

fivefold cross validation on the trained network. The

average loss in the fivefold cross validation is also

approximately 10�4, which is similar to the loss of the

trained network. Thus, the dataset is sufficient for training

the small-size U-net in Fig. 1, and the trained network is

stable.

Noisy projections used for inference are generated from

another patient dataset in the same manner. We generate

noisy projections of different phantoms and noise levels to

validate the proposed analytical noise propagation method

and analyze the performance of U-net using the analyti-

cally estimated covariance. Information on the noisy pro-

jections generated for prediction is presented in Table 2.

Note that the number of incident photons increases linearly

from 103 to 5.05 9 104. The reconstruction of both phan-

toms using I0 ¼ 104 is illustrated in Fig. 2.

In addition, we conduct a practical experiment to vali-

date our proposed method. The experimental platform and

phantom are presented in Fig. 3. The scanning parameters

are presented in Table 3. We repeat the scan 450 times at

each angle and acquire projection data of 360 views using

2p. Considering the computational cost, every four pixels

of the detector are binned into one to obtain a projection

with a smaller size.

Covariance estimation from a statistical method is used

as a reference in this study.

Cov	ð p̂Þ ¼ 1

K � 1

XK

k¼1

ðp̂k � p̂Þðp̂k � p̂ÞT

Cov	ð l̂Þ ¼ 1

K � 1

XK

k¼1

ðl̂k � l̂Þðl̂k � l̂ÞT
ð24Þ

Table 1 System geometry of simulation experiments

Parameter Value

Source to origin distance (mm) 200

Origin to detector distance (mm) 200

Scanning angle 2p

Detector pixel size (mm) 0.5

Detector pixel number 240

Image pixel size (mm) 0.3

Image pixel number 128
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where the total number of noise realizations is K ¼ 1000.

The generalization error (GE) [33] represents the sum of

the bias and variance and measures the generalization

ability of a neural network:

[GE]n ¼ ð½l̂�n � ½l	�nÞ
2 þ ½Covðl̂Þ�n;n; ð25Þ

where l	 represents noise-free reconstruction.

A pixel-wise noise reduction percentage (NPR) is cal-

culated to analyze the denoising performance of U-net.

[NRP]n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Covðl̂Þ�n;n

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CovðlÞ�n;n

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CovðlÞ�n;n

q

�
�
�
�
�
�
�

�
�
�
�
�
�
�
� 100% ð26Þ

Table 2 Information on the noisy projections generated for inference

Number of generated noise realizations I0 ¼ 103 I0 ¼ 5:5� 103 I0 ¼ 104 I0 ¼ 3:25� 104 I0 ¼ 5:05� 104

Test phantom A – – 1000 – –

Test phantom B 1000 1000 1000 1000 1000

Fig. 2 Denoised projections of

a test phantom A and b test

phantom B for I0 ¼ 104

obtained from U-net and their

reconstructions obtained from

FBP

Fig. 3 (Color online) Experimental platform and phantom

Table 3 Scanning parameters of the practical experiment

Parameters Before binning After binning

Source to origin distance (mm) 750.2 750.2

Origin to detector distance (mm) 433.84 433.84

Detector pixel size (mm) 0.45 1.80

Detector pixel number 896 224

Image pixel size (mm) 0.48 1.92

Image pixel number 512 128

Tube voltage/current 110 kV/

2.5 mA

110 kV/

2.5 mA
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Here, l ¼ OðpÞ and Cov(lÞ ¼ OCovðpÞOT, according

to Eq. (20). We choose one low-attenuation point and one

high-attenuation point in test phantom B to present the

trend of GE with the noise level; the two points are marked

by red dots in Fig. 2b.

We also calculate the NPS to analyze the noise spatial

correlation of U-net in the Fourier domain:

NPS ¼ F ½Covðl̂Þ�; ð27Þ

where F denotes the Fourier transform operator.

4 Experimental results

Because the linear approximation of nonlinear activation

functions requires the mean of the input in Eq. (6), we only

use one noise realization as the mean of the input to ana-

lytically estimate the covariance of the projection acquired

by U-net and its corresponding reconstruction by FBP.

4.1 Validation of the proposed analytical covariance

estimation method for U-net

For test phantom A, the variance of the projections

obtained by U-net is illustrated in Fig. 4a, and its covari-

ance at the center of the projections is presented in Fig. 4b.

The results reveal that the variance estimation is in

agreement with the reference for both the activation

functions. The error between the variance estimation and

reference is not significant compared with the variance

itself. We observe that the variance obtained from Lea-

kyReLU varies sharply when approaching the boundary,

whereas that from Swish changes smoothly. Meanwhile,

the covariance estimation also agrees with the reference,

where the error is primarily statistical. The shape of the

covariance from the two activation functions is quite dif-

ferent; it is circular for LeakyReLU and elliptical for

Swish. For test phantom B, good agreement can still be

observed between the variance estimation and reference (as

shown in Fig. 4c). Sharp changes also occur near the

boundary in the projection variance from LeakyReLU. As

shown in Fig. 4d, the covariance estimation for both acti-

vation functions is in agreement with the reference.

The variance and covariance of the reconstructions

obtained by FBP from projections denoised by U-net are

presented in Fig. 5. For both phantoms and activation

functions, the variance estimation of the reconstructions

agrees with the reference because FBP is linear. Mean-

while, the error that propagates through the FBP is not a

concern. We discover that the central areas of variance

from the two activation functions have different appear-

ances. The central area appears dark for LeakyReLU and

bright for Swish in the same display window. The covari-

ance estimation is yet again in agreement with the refer-

ence, leaving only statistical noise in the error map.

The profiles of the variance and covariance for the

projections and reconstructions are plotted in Fig. 6. For

both phantoms and activation functions, the profiles of the

variance and covariance estimations match those of the

references. As shown in Fig. 6a1, c1, the profile of the

projection variance from Swish appears smooth, whereas

that from LeakyReLU appears sharp. The profile of

covariance (as shown in Fig. 6b1 and d1) from Swish

demonstrates a larger spread, whereas that from LeakyR-

eLU exhibits sharper changes. For the profiles of the

reconstruction variance, displayed in Fig. 6a2 and c2, we

discover that the noise from LeakyReLU is lower than that

from Swish. The variance gradually decreases from the

edge of the field of view (FOV) to its center for LeakyR-

eLU, whereas it demonstrates an opposite behavior for

Swish. Although the values of the projection covariance are

close, the absolute value of the reconstruction covariance

from LeakyReLU is much smaller than that from Swish;

this demonstrates that the covariance from Swish is more

structurally related and difficult to deal with.

In addition, we estimate the variance of the projections

obtained by U-net with LeakyReLU under different noise

levels for test phantom B. As shown in Fig. 7, the variance

estimation agrees with the reference for different noise

levels. Although the error between the variance estimation

and reference increases with the noise level, it is still

insignificant compared with its corresponding variance.

The noise estimation of U-net with LeakyReLU in the

practical experiment is illustrated in Fig. 8. It is apparent

that both the variance and covariance estimations from the

analytical method agree well with the references, which

strongly demonstrates the feasibility of the proposed ana-

lytical noise propagation method in practical usage.

4.2 Performance analysis with analytical covariance

Pixel-wise GE maps for test phantom B are illustrated in

Fig. 9. For both activation functions, GE increases for each

pixel with increasing noise levels, which indicates that U-

net is inapplicable for highly noisy projections. When I0
increases to a certain number, the decrease in GE is not

significant. The GE in the smooth region is smaller than

that at the edge when the number of incident photons

increases to 3:25� 104, indicating that U-net is more

effective in smooth regions. Compared with the GE for

LeakyReLU, the GE for Swish is relatively large in smooth

regions, whereas it is almost the same at the edge.

Further, noise reduction percentage (NRPs) are listed in

Table 4. For both activation functions, the increase in NRP
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from I0 ¼ 103 to I0 ¼ 5:5� 103 is approximately 20%, and

this increase quickly slows to approximately 5% or less.

For both low- and high-attenuation points, the noise

reduction effect of LeakyReLU is stronger than that of

Swish at various noise levels. The NRP of LeakyReLU is

approximately 10% higher than that of Swish, particularly

for the low-attenuation point at I0 ¼ 103, and the difference

decreases to approximately 1% for a low noise level with

I0 ¼ 5:05� 104. For the high-attenuation point, the dif-

ference in the NRP for both activation functions is smaller

than 3% and becomes even smaller when the number of

incident photons increases. The NRPs at both points for

LeakyReLU are comparable, which suggests that Lea-

kyReLU treats low- and high-attenuation areas equally

during noise suppression. The NRP at the low-attenuation

point for Swish is slightly smaller than that at the high-

attenuation point; however, the difference between the

NRPs at the low- and high-attenuation points gradually

reduces to approximately 1% with decreasing noise levels.

The NPS at the center of the reconstruction is illustrated

in Fig. 10. For each noise level, the NPS at the center of the

reconstruction from both activation functions decreases as

103 increases to 5:05� 104 and drops by approximately an

order of magnitude from 103 to 5:5� 103. The NPS from

LeakyReLU first increases to a maximum and then

decreases as the frequency increases, whereas that from

Swish continues to increase with increasing frequency.

Both LeakyReLU and Swish exhibit similar NPS shapes at

low frequencies, indicating that their performance in

dealing with low-frequency noise is comparable. The high-

frequency noise in the NPS from LeakyReLU gradually

reduces; however, it increases considerably for Swish,

suggesting that more structures are present in the recon-

struction noise propagated through U-net with Swish.

5 Discussion and conclusion

In this study, an analytical noise propagation method for

CNNs in CT imaging is proposed. The five basic layers that

comprise a typical CNN include the convolution, nonlinear

activation, batch normalization, average pooling, and up-

Fig. 4 Variance of the

projections obtained from U-net

and its covariance at the center

of projections when I0 ¼ 104.

a and c projection variance of

phantom A and B used for

testing, respectively. b and

d corresponding covariance at

the center of the projection
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sampling layers. Except for the nonlinear activation layer,

the other four layers are all linear, which simplifies the

estimation of the covariance of their output by linear

propagation. The 1st order Taylor expansion is used to

obtain the linear approximation of the nonlinear activation

layer for linear propagation of noise. By integrating the

noise propagation of both linear and nonlinear layers in the

CNN, we can estimate the covariance of reconstruction

from the projection in a step-by-step manner.

The results indicate that the covariance estimated by the

proposed analytical method agrees well with that estimated

by the statistical method, regardless of phantoms, noise

levels, and activation functions. We demonstrate that it is

feasible to propagate noise from only a single projection to

image reconstructed from CNN. The covariance of the

projection obtained from U-net with the gradient continu-

ous activation function Swish is smooth, whereas that with

the discontinuous gradient activation function LeakyReLU

exhibits sharp changes near the boundary. The noise in the

reconstruction from LeakyReLU is smaller than that in

Swish. They demonstrate opposite performances, where the

variance from Swish gradually decreases from the FOV

edge to its center. Therefore, LeakyReLU and Swish are

completely different in terms of noise suppression. The

covariance for Swish spreads wider than that for LeakyR-

eLU, which indicates that Swish uses the information of

more neighborhood pixels in denoising.

We further qualitatively and quantitatively evaluate

network performance from three aspects. The GE, which

contains bias and variance, is a tradeoff between the

accuracy and noise of the network output and measures the

generalization of the neural network. Trained with data

under the condition of I0 ¼ 104, the network fails to reduce

the GE for projections with lower incident photons, which

renders it unacceptable for application in projection

denoising with high noise levels. This also limits its

application to projections with lower noise when I0
increases to a certain number because the improvement in

Fig. 5 Variance of the

reconstructions by FBP from

projections obtained from U-net

and its corresponding

covariance at the center of the

reconstructions for I0 ¼ 104.

a the reconstruction variance of

test phantom A and b its

covariance at the center of

reconstructions. c the

reconstruction variance of test

phantom B, and d its covariance

at the center of reconstructions
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Fig. 6 (Color online) Profiles of

the projection variance and

covariance obtained from U-net,

and profiles of its reconstruction

variance and covariance

obtained from FBP for I0 ¼ 104.

a1–d1 profiles of the projection

variance and covariance:

a profiles of the variance

marked by a red solid line in

Fig. 3a for test phantom A, and

b1 profiles of its covariance

marked by a red solid line in

Fig. 3b, c profiles of the

variance marked by a red

dashed line in Fig. 3c for test

phantom B, and d1 profiles of

its covariance marked by a red

dashed line in Fig. 3d. a2–d2
profiles of the reconstruction

variance and covariance: a2
profiles of the variance marked

by a red solid line in Fig. 4a for

test phantom A, and b2 profiles

of its covariance marked by a

red solid line in Fig. 4b, c2

profiles of the variance marked

by a red dashed line in Fig. 4c,

and d2 profiles of its covariance

marked by a red dashed line in

Fig. 4d
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GE is trivial. A pixel-wise NRP is defined to measure the

denoising ability of the network. The effect of noise sup-

pression is strong only when the noise level is sufficiently

high; otherwise, it quickly weakens as the noise level

decreases. An evident drop in GE can be observed in

smooth regions but not at the edge when the number of

incident photons increases, although the NPRs for smooth

regions and the edge are the same. Therefore, the accuracy

of the smooth regions is higher than that of the edges. In

addition, the spatial correlation of noise is analyzed using

the NPS. Consequently, it is discovered that there is no

significant difference in NPS between LeakyReLU and

Swish at low frequencies. However, the NPS at high fre-

quencies is completely opposite for these two activation

functions, where it weakens with increasing frequencies for

LeakyReLU. The variance in projection denoised by the

two activation functions is comparable; however, the NRP

of the reconstruction from LeakyReLU is larger than that

of Swish, and the NPS of the reconstruction from Swish

increases as the frequency increases. Thus, both activation

functions demonstrate comparable performance in projec-

tion denoising; however, their different noise distributions

lead to different effects of noise suppression in recon-

struction. Swish utilizes information from more adjacent

pixels in noise reduction; therefore, its noise is too struc-

tural to be handled by FBP. The noise correlation of Lea-

kyReLU is lower and easier to process. Therefore, the

image quality of the reconstructions from LeakyReLU is

better than that of Swish in terms of noise suppression.

In summary, the proposed analytical noise propagation

method is capable of providing a reasonable pixel-wise

noise property estimation from only a single sample,

whereas other noise estimation methods cannot present

comparable performance under the same conditions. Our

Fig. 7 Variance of projections

obtained from U-net with

LeakyReLU under different

noise levels for test phantom B
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proposed method can be applied to any inference-ready

CNN with a fixed structure and weight for noise estimation.

Because the convolution, batch normalization, average

pooling, and up-sampling operations are all linear, and the

nonlinear activation function is linearly approximated, the

noise of the network input propagates linearly in the net-

work. Evidently, the error in the noise estimation of the

network output results from the linear approximation of the

nonlinear activation function. Two activation functions,

LeakyReLU and Swish, are validated in this study; hence,

the proposed method is applicable to any network with

these two activation functions, regardless of the network

structure. Moreover, the noise property estimation of the

network output can be used to evaluate the performance of

the reconstruction methods. We can characterize noise

features based on pixel-by-pixel noise estimation, which

also enables us to analyze the spatial correlation and

structural properties of noise. The experimental results

Fig. 8 (Color online) Noise

properties of reconstruction

from the projection produced by

U-net with LeakyReLU for the

practical experiment. a The

variance and profiles are marked

by the red solid line, and b the

covariance at the center of the

reconstruction and the profiles

are marked by the red solid line

Fig. 9 GE maps of U-net with

varying noise levels for test

phantom B

Table 4 NRPs of U-net with varying noise levels. Point � represents the low-attenuating point, and point ` indicates the high-attenuating point.

Both points are marked by red dots in Fig. 2(b)

NRP (%) Activation function I0 ¼ 103 I0 ¼ 5:5� 103 I0 ¼ 104 I0 ¼ 3:25� 104 I0 ¼ 5:05� 104

Point � LeakyReLU 64.78 84.99 88.87 93.82 95.04

Swish 55.66 81.16 86.02 92.25 93.78

Point ` LeakyReLU 63.93 84.61 88.59 93.67 94.93

Swish 60.42 83.11 87.48 93.05 94.43
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reveal the significant value of this method in evaluating the

output from CNN methods. In future studies, we aim to

study the application of covariance estimation to a model

observer for subjective image quality assessment. How-

ever, the computational cost is expected to increase with

increasing network complexity and dimensions. Hence,

efficient noise propagation methods for complex and high-

dimensional networks must be studied.
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