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Abstract The widespread use of computed tomography

(CT) in clinical practice has made the public focus on the

cumulative radiation dose delivered to patients. Low-dose

CT (LDCT) reduces the X-ray radiation dose, yet com-

promises quality and decreases diagnostic performance.

Researchers have made great efforts to develop various

algorithms for LDCT and introduced deep-learning tech-

niques, which have achieved impressive results. However,

most of these methods are directly performed on recon-

structed LDCT images, in which some subtle structures and

details are readily lost during the reconstruction procedure,

and convolutional neural network (CNN)-based methods

for raw LDCT projection data are rarely reported. To

address this problem, we adopted an attention residual

dense CNN, referred to as AttRDN, for LDCT sinogram

denoising. First, it was aided by the attention mechanism,

in which the advantages of both feature fusion and global

residual learning were used to extract noise from the con-

taminated LDCT sinograms. Then, the denoised sinogram

was restored by subtracting the noise obtained from the

input noisy sinogram. Finally, the CT image was recon-

structed using filtered back-projection. The experimental

results qualitatively and quantitatively demonstrate that the

proposed AttRDN can achieve a better performance than

state-of-the-art methods. Importantly, it can prevent the

loss of detailed information and has the potential for clin-

ical application.

Keywords Low-dose CT � Sinogram denoising � Deep
learning � Attention mechanism

1 Introduction

Computed tomography (CT) has recently become one of

the most popular and indispensable medical imaging

modalities [1], and it can be utilized for the visualization of

anatomical structures of patients with high resolution

without invading the human body [2]. However, the

inherent X-ray radiation of CT induces potential cancer

risks to patients once the cumulative exposure exceeds a

certain value [3]. Therefore, the reduction of radiation dose

in CT has been a hot research topic that requires imperative

handling. Considering these radiation risks, researchers

have made efforts to decrease the X-ray dose that a patient

is exposed to during CT scanning [4]. In general, lowering
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the radiation dose can be implemented by controlling the

current of the X-ray tube or by reducing the exposure time

to reduce the number of X-ray photons [5]. Although

reducing the radiation dose significantly lowers the

potential health hazards, such a technique compromises the

quality of the reconstructed CT image owing to the low

signal-to-noise ratio metrics, which induce severe noise

and artifacts. Accordingly, the noise reduction technique

determines the success of low-dose CT (LDCT) to a great

degree.

To tackle the inherent problem of LDCT, researchers

have made significant efforts and proposed various meth-

ods. These methods can be categorized into three types [6]:

(a) projection data filtering before reconstruction, (b) iter-

ative reconstruction, and (c) image domain filtering after

reconstruction.

Projection domain filtering directly suppresses noise in

raw projection data before inputting it into the analytic

reconstruction. More than a decade ago, Balda et al. [7] and

Manduca et al. [8] proposed structural adaptive (Adp-str)

filtering and bilateral filtering, which are two efficient

approaches. Li et al. investigated the model to determine

the statistical property of projection data and presented a

penalized likelihood method for quantum noise suppression

for low-dose CT [9]. Wang et al. investigated the penalized

weighted least-squares approach to address sinogram

denoising and reconstruction for low-dose CT [10].

Although sinogram filtering is computationally effective

and noise characteristics are modeled in the projection

domain, the raw projection data of commercial CT scan-

ners are often not available for research. In addition, pro-

jection data should be processed carefully since new

artifacts may appear in the reconstructed CT images.

Iterative reconstruction approach estimates the recon-

structed CT image using previous information in the image

domain. Ordinarily, these methods optimize the objective

function by incorporating the statistical properties of the

system model, noise model, and previous image informa-

tion. Recently, compressive sensing [11] has been adopted

to address issues related to few-view, interior CT, and

LDCT. Total variation (TV) minimization constraint is one

of the most well-known methods used to concisely and

robustly improve the reconstructed CT images [12].

Without considering the complex structures, the TV regu-

larized method tends to cause blurred details and piecewise

artifacts in the reconstructed images. Subsequently,

researchers developed several methods that utilize a richer

image of previous knowledge. These methods include

dictionary learning [13], low rank [14], nonlocal mean

[15], and TV variants [16]. Iterative reconstruction meth-

ods have been used to improve the denoising performance

of LDCT images. Nevertheless, these iterative methods

involve a high computational cost in the projection and

back-projection calculation steps; hence, the reconstruction

procedure is time-consuming.

Image post-processing methods are an alternative to the

two categories of denoising methods mentioned above.

This technique directly manipulates the reconstructed

LDCT image and is completely independent of projection

data; it can be easily assembled into the workflow of the

current CT scanner. Extensive efforts have been focused on

exploring the image post-processing denoising techniques.

Li et al. adapted the nonlocal means filtering (NLM)

algorithm to reduce the noise for LDCT images [17]. The

block-matching 3D method was used to restore CT images

from a different type of noise on denoising tasks [18]. Chen

et al. developed a fast dictionary learning [19] by adapting

the K-SVD algorithm [20] for LDCT image denoising of

the abdomen. However, the mottle noise and artifacts in the

LDCT image are complicated and hardly modeled because

they do not obey any specific distribution in the image

domain. Hence, noise and artifacts in the LDCT image are

too complex to be completely treated using conventional

image post-processing methods.

In the past several years, there has been a rapid growth

of machine learning, especially deep-learning techniques,

in the fields of image processing and computer vision [21],

which also brings up novel thinking and enormous poten-

tial for the medical imaging area [22]. Through a hierar-

chical multilayer architecture, deep neural networks can

efficiently use high-level features at the pixel level [3].

Several deep network models have been presented for CT

image restoration, resulting in expressive experimental

results. For instance, Han et al. combined a U-Net with

residual learning to estimate the artifacts in sparse-view

reconstructed CT images [23]. Chen et al. were inspired by

the idea of the auto-encoder and designed a convolutional

neural network (CNN)-based residual encoder–decoder to

address the problem of LDCT image denoising [24].

Because of the mean square error over-smoothing the

denoised results, Ma et al. integrated the structural simi-

larity and MSE losses into a deep CNN block model to

prevent the over-smoothing issue [25]. A modularized deep

CNN proposed by Shan et al. obtained a competitive per-

formance for LDCT reconstruction compared with com-

mercial algorithms [26].

With the popularity of the generated adversarial net-

works (GANs) [27], several GAN-based algorithms were

also developed for LDCT image denoising and greatly

enhanced the image quality and improved the diagnosis

performance. Yang et al. [28] proposed Wasserstein GAN

with perceptual loss for low-dose CT image denoising. Ma

et al. [29] utilized a least-squares GAN with structural

similarity and L1 losses for low-dose CT image denoising.

However, these deep-learning methods are implemented in

the image domain and directly operate low-dose CT
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images, which easily lose partially detailed information

during CT image reconstruction from raw low-dose sino-

grams [29]. In addition, a previous study [26] pointed out

the importance of manipulating raw projection data. The

deep-learning method for sinogram denoising can improve

the signal-to-noise ratio of projection data in LDCT, which

can recover more diagnostic details in reconstructed low-

dose CT images.

Deep CNN-based methods for dealing with sinogram

data are an emerging direction for CT denoising. Claus

et al. restored contaminated projection data via a three-

layer neural network and obtained the initial results [30].

By aiding data inconsistency, Park et al. presented a sim-

plified U-Net (Sunet) to learn the correction of metal-in-

duced beam hardening [31]. In contrast to the

aforementioned deep-learning-based denoising methods for

LDCT in the image domain, deep CNN-based denoising

methods for low-dose projection data are scarcely reported

owing to the limited availability of raw sinogram data. To

improve the signal-to-noise ratio of LDCT projection data

and preserve more diagnosis details during LDCT image

reconstruction, we studied the deep-learning methods for

projection data denoising.

Inspired by the work [32], we utilized an attention deep

residual dense CNN, referred to as AttRDN, for low-dose

CT sinogram denoising. The AttRDN was aided by the

attention mechanism and used the dense connection blocks

(DCBs) and global residual dense network. The global

residual learning was followed by the attention block,

which is efficient for complex denoising tasks, to promote

extraction of the noise feature hidden in the LDCT sino-

gram. The AttRDN first extracted the noise from contam-

inated LDCT projection data. Next, the attention

mechanism is guided to extract the latent features from a

complicated noisy sinogram. Then, the clean sinogram is

recovered through the obtained noise and the given noisy

sinogram. Finally, the CT image can be reconstructed from

the denoised projection data.

The remainder of this article is organized as follows:

The method of AttRDN is illustrated in Sect. 2. The

experimental settings and results are presented in Sect. 3.

The discussion is in Sect. 4, and conclusions are summa-

rized in Sect. 5.

2 Methods

2.1 Model for noise reduction

Noise in the projection data originates from electronic

and quantum noise. The quantum noise is approximated to

a simple Poisson distribution in LDCT, and the electronic

noise can be ignored owing to the improved performance

of the CT scanner [33]. The projection data are directly

obtained by the CT scanner. If the signal-to-noise ratio of

the projection data in LDCT is improved, we could recover

more details in the reconstructed CT images, which is hard

to restore by denoising in the image domain.

Assuming that PLDCT is an LDCT projection measure-

ment and PNDCT is the corresponding normal-dose CT

(NDCT) projection, their relationship can be described as.

PLDCT ¼ rðPNDCTÞ; ð1Þ

where r : P !2 P is a complicated degradation process

involving photon starvation noise and other factors. Then,

the problem can be converted to search for a function f

argmin
f
jjf ðPLDCTÞ � PNDCTjj22; ð2Þ

where f denotes the optimal inverse function of r, which
can be estimated using deep-learning techniques.

2.2 Attention residual dense convolutional neural

network

2.2.1 Architecture of attention residual dense network.

As shown in Fig. 1,PLDCT and PDenoising represent the

low-dose CT and denoised projections, respectively, and

serve as the input and output of the attention residual dense

convolutional neural network (AttRDN). The first shallow

feature, F�1, was extracted from the input low-dose CT

sinogram by the first convolutional layer.

F�1 ¼ HSFE1ðPLDCTÞ; ð3Þ

where HSFE1ð�Þ denotes the first convolution operation.

Then, F�1 was used as the input for global residual

learning and the second convolutional layer. Hence, the

second shallow feature is obtained as follows:

F0 ¼ HSFE2ðF�1Þ; ð4Þ

where HSFE2ð�Þ and F0 represent the second convolution

operator and its output, respectively.

We used the extracted shallow feature F0 as the input to

the DCBs. Assuming that our AttRDN contains N DCBs,

the output of the n-th DCB is denoted by Fn. Fn can be

determined as follows:

Fn ¼ HDCB;n Fn�1ð Þ
¼ HDCB;n HDCB;n�1ð. . . HDCB;1ðF0Þ

� �� �
; ð5Þ

where HDCB;n represents the operations of the n-th DCB.

Each DCB included several layers for the convolution

operation, leaky ReLU, and dense feature fusion. Fn takes

advantage of each convolution layer contained in the block.

As a result, Fn can be considered a local feature.
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Noise-contaminated LDCT projection data can easily

conceal the noise features, which prevents the extraction of

key features when training deep neural networks. To

overcome this difficulty, we introduced an attention

mechanism to estimate the noise. The attention block takes

the dense feature map FDF as the input and outputs the

predicted latent noise. The operation of the attention

mechanism can be expressed as

PNoise ¼ HAttðFDFÞ: ð6Þ

The residual mapping of LDCT projection noise is

easier to learn than that of the original NDCT projections.

As shown in Fig. 1, the proposed AttRDN utilizes a

residual learning technique to reconstruct the predicted

clean projection data. This process is formulated as

follows:

PDenoising ¼ PLDCT � PNoise¼ PLDCT � HAttGRN PLDCTð Þ:
ð7Þ

The AttRDN contains mainly three components: a

shallow feature extractor, DCBs for local feature extraction

and fusion, and attentional global residual learning for

global feature fusion and attentional residual learning.

Figure 1 shows the overall architecture of the AttRDN.

2.2.2 Dense connection block

Residual learning [34] addresses the performance

degradation of training an extremely deep CNN, and a

dense network connects each layer to other later layers.

Each layer in the denseNet [35] benefits from both low-

level and high-level features, alleviating gradient explosion

and vanishment. The advantage of dense connection net-

works is its ability to fuse in dense connection blocks. A

dense connection block has a dense connection, local fea-

ture fusion, and contiguous memory mechanism. Figure 2

presents the details of the dense connection block.

As shown in Fig. 2, the input signal from the previous

DCB passes to every layer contained in the current DCB.

Thus, a contiguous memory mechanism is implemented.

Assume that Fn�1 denotes the input and Fn symbols the

output of the n-th dense connection block, respectively.

The output of the m-th convolution layer in the current (n-

th) DCB can be described as follows:

Fn;m ¼ rðWn;m Fn�1;Fn;1; . . .;Fn;m�1

� �
Þ; ð8Þ

where r denotes the activation function leaky ReLU. Wn;m

denotes the weights of the m-th convolution layer, in which

the bias is ignored for briefness. Fn�1;Fn;1; . . .;Fn;m�1

� �

represents the concatenation of the feature maps calculated

based on the previous (n-1)-th DCB and convolution layers

1; . . .;m� 1 included in the current (n-th) dense connec-

tion block. The outputs of the previous DCB and each layer

then directly concatenate to produce Fn;LF, which not only

extracts the local dense feature, but also retains the char-

acteristics of the feed-forward procedure.

For several convolution layers contained in one dense

connection block and to further improve the signal pro-

cessing flow, the feature output from each convolution

layer is fused before the output is produced; this is referred

to as local feature fusion. Finally, the output of the n-th

DCB is obtained.

The local feature fusion and contiguous memory

mechanisms can further enhance the representation ability

of the neural network, leading to better performance.

2.2.3 Attention mechanism

As illustrated in Fig. 3, our attention block takes feature

maps FDF as the input, first performs the channel attention,

and then follows the spatial attention. Both the channel and

Fig. 1 (Color online)

Architecture of the attention

residual dense CNN (AttRDN).

It contains shallow feature

extractor, dense connection

blocks (DCBs), global residual

learning, and attention network

Fig. 2 (Color online) Architecture of a dense connection block

(DCB). It integrates the advantages of both residual learning and

denseNet
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spatial attentions separately learn ‘‘what’’ and ‘‘where’’ of

the input feature maps to further push the model perfor-

mance. We eventually exploited the generated attention

feature maps to multiply the input feature maps FDF to

predict more significant features of LDCT projection noise,

which can be transformed using formula (9):

PNoise ¼ Catt � Satt � FDF; ð9Þ

where Catt and Satt denote the channel and spatial atten-

tion, respectively. By introducing the attention mechanism,

we can improve the efficiency and complexity of our

denoising model.

2.3 Loss functions

2.3.1 Multi-scale structural loss

In denoising tasks of LDCT projection data, a sinogram

serves as an image to be processed, which contains strongly

correlative features. The structural similarity index mea-

sure (SSIM) is a perceptual metric that is more suitable for

visual pattern recognition. To measure the structural sim-

ilarity between two images, SSIM is defined as follows:

SSIM x; yð Þ ¼
2lxly þ C1

l2x þ l2y þ C1

� rxz þ C2

r2x þ r2y þ C2

; ð10Þ

where x; y denote the two compared images; lx and ly
denote the means; rx, ry, and rxy represent the standard

deviations and the cross-correlation; and C1 and C2 are

constants for eliminating the singularity.

However, the SSIM is a single-scale metric; hence, we

introduced multi-scale SSIM (MS_SSIM) for more flexi-

bility in multi-scale variation. MS_SSIM is expressed

using the following formula:

MS SSIMðx; yÞ ¼
YM

i¼1

SSIMðxi; yiÞ; ð11Þ

where M is the scale level number, and xi; yi are the con-

tents of the i-th level local image. The MS_SSIM loss is

usually denoted as follows:

MS SSIMLoss ¼ 1�MSSSIM x;yð Þ: ð12Þ

Note that the MS_SSIM loss can back-propagate to

update the weights of the network model [36].

2.3.2 L1 loss

However, both L2 and L1 losses can effectively sup-

press the background noise and remove artifacts. L1 loss

does not excessively penalize large errors and treats all

errors linearly, which differs from L2 loss. Hence, in the

image denoising tasks, L1 loss can alleviate blurring and

unnaturalness, which cannot be performed well by L2 loss.

The L1 loss function is expressed using the following

formula:

L1Loss ¼
1

b � m � n x� yj j; ð13Þ

where x and y denote the denoised CT and NDCT sino-

grams, respectively, and b, m, and n denote the batch size,

height, and width of the sinogram, respectively.

In summary, we obtained the total joint objective

function of AttRDN as follows:

min
hAttRDN

Loss ¼ aL1Loss þ 1� að ÞMS SSIMLoss

where hAttRDN denotes the learnable parameters of the

proposed AttRDN, and a is the weight balancing L1 loss

and MS_SSIM loss. In the training process, the error

between the denoised sinogram and the corresponding

normal-dose version was calculated, and then, back-prop-

agation was performed to optimize our AttRDN.

2.4 Metrics

For low-dose and denoised sinogram measurements, we

used the root-mean-squared error (RMSE) and peak signal-

to-noise ratio (PSNR) to quantitatively assess the quality of

the projection data. For the reconstructed CT image, we

exploited the RMSE, PSNR, and SSIM for the quantitative

evaluation of the image quality.

3 Experiment designing and results

3.1 Data sources

To better understand the principle of low-dose CT and

the procedure of low-dose simulation, we decided to sim-

ulate the low-dose data. With the assumption of a

monochromatic X-ray source, the measured projection data

can be approximated to a simple Poisson noise distribution,

which is expressed as follows:

Fig. 3 (Color online) Diagram of attention mechanism utilized in the

proposed AttRDN. Attention mechanism can guide our model for

learning the noise information
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zi � Poisson z0iexpð�siÞ þ rif g; i ¼ 1; � � � ; I ð15Þ

where zi is the measurement along the path of the i-th X-

ray, z0i denotes the photon intensity of the incident X-ray,

si is the line integral of the attenuation coefficients, and ri
is the read-out noise. For low-dose simulation, we can

utilize the parameter z0i to control the noise level.

To evaluate the performance of the proposed AttRDN, a

set of projection data were obtained using Radon transform

from a realistic clinical CT dataset, which was created and

provided by Mayo Clinics for ‘‘the 2016 NIH-AAPM-

Mayo Clinic Low Dose CT Grand Challenge’’ [37]. This

CT dataset includes information on the cases of ten

patients, 2,378 normal-dose CT images, and the corre-

sponding simulated quarter-dose CT images with a reso-

lution of 512� 512 and slice thickness of 3 mm. In our

study, normal-dose sinograms were obtained using Radon

transform from 2,378 normal-dose CT images. Then, by

setting z0i ¼ 105 in Eq. (15), we added Poisson noise to the

normal-dose projection data to produce the corresponding

low-dose versions. We randomly chose 1,943 sinogram

pairs for training, 224 for validation, and 211 for testing.

Sinogram patches 55� 55 in size were used for the

training.

3.2 Implementation and parameter setting.

We implemented the AttRDN in Python with the

PyTorch 1.0 platform. All the experiments were performed

on a personal computer with Intel CPU i7 9700 configu-

ration and 32 G memory, and the training process was

accelerated by an NVIDIA RTX 2080 TI graphics pro-

cessing unit with 11 G video memory.

The AttRDN is an end-to-end deep-learning model

optimized by minimizing the objective function (15). We

adopted Adam to optimize the AttRDN. We set the base

learning rate to 10-4 and then gradually decreased it to

10-5. The mini-batch size was set to 75. All the convolu-

tional kernel sizes were set to 3 9 3 and padded zeros to

each side to maintain a fixed size, while the local and

global feature fusions were set to 1 9 1. The convolution

layers in each DCB were set to four, and each convolution

layer was followed by the activating function Leaky ReLU.

The input channels in each DCB were set to 64, and the

feature growth rates were 32. Because our task was sino-

gram denoising, the input and output channels of the entire

AttRDN were set to one. To determine the parameter a in

the loss function, the a was selected from the following

numbers: 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3,0.0.5, 0.7, and

1.0. The results show that a = 0.15 achieved the best per-

formance. This is in agreement with the results of a pre-

vious study [36].

3.2.1 Convergence performance

In contrast to conventional convolution operations, the

attention mechanism is utilized to excavate the noise

components hidden in an intricate background, which helps

handle complex denoising tasks, such as blind denoising

and real scenario noisy images. Effectively extracting and

selecting features are important for medical imaging

applications. In this study, we introduced an attention

mechanism to augment the representative capability of the

denoising CNN model. We assessed the convergence of the

network model with and without the attention mechanism,

as shown in Fig. 4. The convergence of PSNR with the

attention mechanism performed better than that without the

attention mechanism. The RMSE with the attention

mechanism was more stably convergent than that without

the mechanism during the training stage. The attention

mechanism improves the performance of the denoising

neural network model.

Fig. 4 Convergences of PSNR

and RMSE with and without

attention mechanism on the

testing dataset during training

stage. a Convergence of PSNR;

b convergence of RMSE
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3.3 Experimental results

3.3.1 Performance improving of sinograms

Two representative results of the processed sinograms

and the corresponding reconstructed CT images using the

filtered back-projection (FBP) method are selected to

demonstrate the denoising capability of the proposed

AttRDN. The two examples are shown in Figs. 5 and 6,

respectively.

Although it is difficult to observe the differences in the

sinograms from normal-dose CT data, low-dose CT data,

and those processed by different noise reduction methods,

one can easily differentiate the corresponding recon-

structed CT images. From Figs. 5 and 6, we can see that

various methods of projection domain suppress the noise to

various extents. AttRDN and Sunet removed the most noise

compared with other methods. The detailed textures indi-

cated by the red arrows in the zoomed regions of interest

(ROIs) shown in Figs. 5 and 6 demonstrate the advantages

of AttRDN over other methods. The absolute difference

maps of the proposed AttRDN are shown in Fig. 7.

AttRDN yielded the smallest difference from the normal-

dose sinogram data compared with the other methods in

our study.

The quantitative results in Figs. 5 and 6 in the projection

and image domains are listed in Tables 1 and 2, respec-

tively. From Tables 1 and 2, we observe that the quanti-

tative measurements for different sinogram denoising

methods followed similar trends with visual inspection, as

shown in Figs. 5 and 6. Table 3 shows that, for our sino-

gram testing set, which contains 211 low-dose sinograms

and the corresponding normal-dose targets, the average

PSNR increased by 23.3892%, while the average RMSE

decreased by 78.6915%. The AttRDN had the highest

PSNR and the lowest RMSE, outperforming the other

methods adopted in this study.

3.3.2 Visual evaluation on CT images

Regardless of both the projection and image domains,

the goal of denoising is to restore high-quality CT images

from LDCT data and meet wide clinical applications. We

compared the AttRDN with state-of-the-art methods, which

contain not only sinogram denoising approaches, but also

image domain methods. Bilateral filter, Adp-str, and

penalized weighted least-squares filtering (PWLS) are

conventional methods for projection data. The Sunet rep-

resents the representativeness of the deep-learning method

for sinograms. NLM is a popular conventional denoising

method for image domains. RED-CNN is one of the most

popular deep-learning methods that play an important role

in the image-domain denoising.

To assess the power of denoising of the proposed

AttRDN competing with the approaches mentioned above,

we presented two representative results from the testing set

and their corresponding zoomed ROIs shown in Figs. 8 to

11. Figure 8 shows a representative result from an

Fig. 5 Results of sinogram denoising of a pelvis slice using different

methods from the testing set. The first row shows sinograms including

normal dose, low dose, and those processed by different methods. The

second row shows the corresponding reconstructed CT images via

FBP. The third row shows the zoomed ROIs marked by a rectangle in

the second row. a Normal dose, b low dose, c bilateral filter,

d adaptive structural filter, e penalized weighted least-squares filter,

f Sunet, and g AttRDN. The display window ranges from -160 to

240 HU. Although hardly observing the differences of the sinograms

from normal dose, low dose, and those processed by different noise

reduction methods, one can easily differentiate the corresponding

reconstructed CT images
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Fig. 6 Results of sinogram denoising of an abdomen slice using

different methods from the testing set. The first row shows sinograms

including normal dose, low dose, and those processed using different

methods. The second row shows the corresponding reconstructed CT

images via FBP. The third row shows the zoomed ROIs marked by a

rectangle in the second row. a Normal dose, b low dose, c bilateral

filter, d adaptive structural filter, e penalized weighted least-squares

filter, f Sunet, and g AttRDN. The display window ranges from -160

to 240 HU. Although hardly observing the differences of the

sinograms from normal dose, low dose, and those processed by

different noise reduction methods, one can easily differentiate the

corresponding reconstructed CT images

Fig. 7 Absolute difference maps related to the normal-dose CT

projection data shown in Figs. 5 and 6. The first row corresponds to

the projection data shown in Fig. 5, and the second row corresponds

to Fig. 6. a Low-dose CT data, b bilateral filter, c Adaptive structural
filter, d Penalized weighted least-squares filter, e Sunet, and

f AttRDN

Table 1 Quantitative results for Fig. 5 utilizing different methods

Sinogram Reconstructed CT image

PSNR RMSE PSNR SSIM RMSE

Low dose 56.3112 0.5841 27.0602 0.8344 17.7439

Bilateral 65.4805 0.2033 30.3621 0.9151 12.1326

Adp-str 61.8737 0.3079 31.2678 0.8936 10.9312

PWLS 65.0111 0.2145 31.3632 0.9145 10.9151

Sunet 67.2282 0.1651 33.4923 0.9295 8.4614

AttRDN 70.1523 0.1187 33.9731 0.9347 8.0058

Table 2 Quantitative results for Fig. 6 utilizing different methods

Sinogram Reconstructed CT image

PSNR RMSE PSNR SSIM RMSE

Low dose 55.9987 0.6055 26.0864 0.7846 19.8490

Bilateral 65.4381 0.2042 30.1876 0.8836 12.3788

Adp-str 61.5618 0.3191 30.3136 0.8532 12.2005

PWLS 65.0101 0.2146 31.0616 0.8834 11.1939

Sunet 66.9040 0.1725 32.4579 0.8918 9.5316

AttRDN 69.5402 0.1279 32.7767 0.8966 9.1881
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abdominal CT image. In Fig. 8b, the noise is distributed in

the whole abdomen, and streak artifacts appear near the

tissues with high attenuation coefficient values, such as

bone materials. All denoising methods of projection and

image domains could remove noise and artifacts to some

extent. Although PWLS effectively removed noise and

outperformed NLM, adaptively structural, and bilateral

filtering, it was obviously subjected to a blocky effect. As

shown in Fig. 8f, PWLS filtering had a better effect than

the other conventional methods, while still exhibiting small

structural loss. Convolutional network-based deep-learning

methods not only effectively eliminated most noise and

artifacts, but also efficiently preserved the structural details

better than traditional methods. However, the RED-CNN

blurred the denoised CT image, leading to over-smoothing

of the subtle textures, because RED-CNN is based on the

mean absolute error (MSE). For the capability of noise

reduction and detail structure preservation, the proposed

AttRDN seemingly exceeded the Sunet, which shows less

noise in the top-left area in Fig. 8i than in Fig. 8h. Com-

pared with the Sunet based on MSE, AttRDN adopted

residual learning and dense connection, and aided by the

attention mechanism, which is trained based on MS-SSIM

and L1 losses. Hence, AttRDN performed better than the

Sunet.

To further demonstrate the performance of the AttRDN,

we provided zoomed images of the ROI labeled with a

rectangular dashed line in Fig. 8, as shown in Fig. 9. Here,

two white dots that are likely calcifications or calculi

within the red circle were hardly observed with other

methods, except for Sunet and AttRDN, and were also

overly smoothed by RED-CNN. Regardless of the con-

ventional projection domain or image domain approaches,

the slim pathologic structures are easily lost. In our study,

Sunet and the proposed AttRDN could partly recover them.

AttRDN restored them better than Sunet. The fine anatomic

textures indicated by the red arrow in Fig. 9 were also best

Table 3 Average quantitative results for testing set utilizing different

sinogram methods

PSNR RMSE PSNR RMSE

Low dose 56.9777 0.5533 PWLS 65.2113 0.2107

Bilateral 65.6640 0.1997 Sunet 67.3078 0.1652

Adp-str 62.3896 0.2948 AttRDN 70.3043 0.1179

Fig. 8 Results of an abdominal slice from the testing set using

different methods. a Normal dose, b low dose, c NLM, d bilateral

filtering, e adaptively structural filtering, f penalized weighted least-

squares filter, g RED-CNN, h simplified U-net, and i AttRDN. Note
bilateral, Adp-str, PWLS, Sunet, and AttRDN are denoising methods

in the projection domain. NLM and RED-CNN are denoising methods

in the image domain. The display window ranges from -160 to 240

HU

Fig. 9 Magnified region of interest (ROI) marked by a rectangular

dashed line in Fig. 8. a Normal dose, b low dose, c NLM, d bilateral

filtering, e adaptively structural filtering, f penalized weighted least-

squares filter, g RED-CNN, h Simplified U-net, and i AttRDN. Note
bilateral, Adp-str, PWLS, Sunet, and AttRDN are denoising methods

in the projection domain; NLM and RED-CNN are denoising methods

in the image domain. The display window ranges from - 160 to 240

HU
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preserved by the AttRDN with less remaining noise than

that of other methods in this study.

Another result of the testing set is presented in Fig. 10,

and its ROI is shown in Fig. 11. Because of the reduced

radiation dose, the noise inundated most of the small

pathological tissue structure, making it difficult to observe

them clearly. Although the NLM suppressed most of the

noise in the region indicated by the red arrow, the edges

between different organs and the details appear blurry in

Fig. 11. The subcutaneous fat structures or lipomata indi-

cated by the red arrows were also properly restored by the

proposed AttRDN. From Figs. 10 and 11, we observed that

the images processed by the adaptively structural filter

retained some noise in our study. The textures indicated by

the two red arrows were over-smoothed by NLM and RED-

CNN, which are consistent with the trends shown in Figs. 8

and 9. In summary, the Sunet and the proposed AttRDN,

which is based on the projection domain and deep-learning

techniques, directly processing the raw data, enable the

effective reduction of noise and preserve more clinical

information in contrast to the other methods, while the

AttRDN performs slightly better than the Sunet.

3.3.3 Quantitative evaluation on CT images

To quantitatively evaluate the different methods in this

study, we calculated the PSNR, SSIM, and RMSE of the

reconstructed CT images using different methods. For the

sinogram denoising methods, we reconstructed the images

from the predicted sinogram data via FBP. For image-post

processing methods, we first reconstructed the images from

the simulated low-dose projection data and then denoised

the reconstructed LDCT images using image-domain

denoising methods.

The quantitative measurements for the entire CT images

shown in Figs. 8 and 10 are listed in Table 4. The adaptive

structural filtering achieved low PSNR and SSIM and high

RMSE. In Figs. 8 and 10, the CT images processed with

adaptive structural filtering still had more remnant noise

than those processed using other methods. The AttRDN

obtained the best scores in both Figs. 8i and 10i. These

results were consistent with those of the visual evaluation.

The statistical average values for the metrics of the 211

samples included in the testing set are listed in Table 5.

AttRDN obtained the best PSNR, SSIM, and RMSE.

Fig. 10 Results of another abdominal slice from the testing set using

different methods. a Normal dose, b low dose, c NLM, d bilateral

filtering, e adaptively structural filtering, f penalized weighted least-

squares filter, g RED-CNN, h Sunet, and i AttRDN. Note bilateral,

Adp-str, PWLS, Sunet, and AttRDN are denoising methods in the

projection domain; NLM and RED-CNN are denoising methods in the

image domain. The display window ranges from - 160 to 240 HU

Fig. 11 Magnified region of interest (ROI) marked by a rectangular

dashed line in Fig. 10. a Normal dose, b low dose, c NLM, d bilateral

filtering, e adaptively structural filtering, f penalized weighted least-

squares filter, g RED-CNN, h Sunet, and i AttRDN. Note bilateral,

Adp-str, PWLS, Sunet, and AttRDN are denoising methods in the

projection domain; NLM and RED-CNN are denoising methods in the

image domain. The display window ranges from - 160 to 240 HU
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Moreover, the SSIM is a more suitable assessment of

clinical information in medical images.

The bar graphs of the quantities of the two measured

ROIs shown in Figs. 9 and 11 are shown in Fig. 12. The

measured results of the two ROIs followed the same trends

as those of the visual investigation mentioned above. The

AttRDN had the highest PSNR and SSIM and the lowest

RMSE for the two local ROIs.

4 Discussion

X-ray radiation may induce potential risks of cancer or

genetic disease in patients, but a low radiation dose will

decrease the signal-to-noise ratio of projection data in

LDCT. This study aimed to investigate the projection data

denoising in LDCT using a deep-learning method to obtain

high-quality CT images reconstructed by the denoised

projection data in LDCT. The LDCT denoising method

restores the CT images from LDCT to approach the NDCT

images as much as possible. In this study, we investigated

the integration of the advantages of residual learning, dense

networks, and attention mechanisms and proposed the

AttRDN for LDCT denoising in the projection domain.

CNN-based methods have the potential to overcome the

fundamental drawbacks of conventional methods. The

essential challenge of introducing deep learning into the

medical image field is to collect sufficient high-quality

labeled training data. We mitigate this difficulty by

adopting simulated sinogram training data from the Mayo

Clinic Low Dose CT Dataset as the basis for sinogram

denoising learning. To effectively suppress noise and

remove artifacts while recovering more perfect projection

data for subsequent CT image reconstruction, we utilized

multi-scale structural loss and L1 loss as the objective

function, which can achieve high performance and avoid

over-smoothed denoised sinograms. Importantly, the

introduced attention mechanism can guide the learning

process by focusing on regional attention on feature

extraction and augmenting the power of CNN for global

information.

The experimental results demonstrated that the trained

proposed AttRDN can effectively and efficiently restore

the projection data from noise-contaminated LDCT raw

data. Then, we can adopt a simple analytical reconstruction

method, such as FBP, to reconstruct the sinogram into the

image domain for diagnosis purposes. Although there are

no significant discrepancies in processed sinograms by

different methods, our results showed the best performance

in terms of PSNR and RMSE compared with other pro-

jection methods used in this study. By comparing the CT

images from the processed sinograms restored using dif-

ferent projection methods with those treated by the popular

image post-processing approaches, the AttRDN obtained

the best score on PSNR, SSIM, and RMSE compared with

other methods in our study. Significantly, the AttRDN can

restore slim structure and subtle detail from low-dose data.

Table 4 Quantitative

measurements for whole CT

images shown in Figs. 8 and 10

utilizing different methods

Figure 8 Figure 10

PSNR SSIM RMSE PSNR SSIM RMSE

Low dose 23.7817 0.7322 25.8806 28.7416 0.8530 14.6210

NLM 29.3363 0.8426 13.6535 31.8445 0.9111 10.2290

Bilateral 29.0859 0.8616 14.0529 30.8941 0.9221 11.4118

Adp-str 28.1601 0.8173 15.6334 32.7610 0.9057 9.2047

PWLS 29.8151 0.8619 12.8619 32.0379 0.9225 10.0038

RED-CNN 31.1732 0.8751 11.0510 34.4502 0.9353 7.5779

Sunet 30.9162 0.8770 11.3829 34.2774 0.9306 7.7301

AttRDN 31.2055 0.8819 11.0099 34.7131 0.9357 7.3520

Bilateral, Adp-str, PWLS, Sunet, and AttRDN are denoising methods in the projection domain; NLM and

RED-CNN are denoising methods in the image domain

Table 5 Average quantitative results for testing set utilizing different

methods

PSNR SSIM RMSE

Low dose 27.3008 0.8207 17.8004

NLM 31.7179 0.8918 10.9868

Bilateral 30.4159 0.9064 12.0971

Adp-str 31.4613 0.8821 10.9808

PWLS 31.3717 0.9050 10.8618

RED-CNN 33.7019 0.9174 8.3810

Sunet 33.4863 0.9171 8.6169

AttRDN 33.9796 0.9226 8.1682

Bilateral, Adp-str, PWLS, Sunet, and AttRDN are denoising methods

in the projection domain; NLM and RED-CNN are denoising methods

in the image domain
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(See Fig. 9; the two white dots indicating calcifications or

calculi surrounded by a red dotted circle were restored by

the AttRDN.) This weak but important texture information

is more significant for clinical diagnosis, which can be

easily lost by the image domain method, be it a traditional

or deep-learning method. However, the AttRDN performed

on the projection domain supplies only a gap for the

shortage.

The training data contain only a single noise setting.

Because the actual clinical situation is more complicated,

network models should be retrained or re-adjusted for

various samples to adapt to different noise levels. Mean-

while, the loss function of the AttRDN is a combination of

multiple structural and L1 losses; thus, they should be

carefully balanced. To some extent, although the proposed

AttRDN can remedy the weakness of the image post-pro-

cessing methods and generate a denoised sinogram

approximating the standard normal-dose version, the

reconstructed images do not completely match the corre-

sponding normal-dose CT images. Owing to the LDCT

projection data, there are many noises and artifacts in

Figs. 9b and 11b. Although the AttRDN could suppress

most of the noise, some noise or artifacts are still shown in

Figs. 9i and 11i. Designing a network model that directly

maps raw projection data into the final CT image is a better

method, by which the fitting capacity of deep CNN and the

CT data completeness can be perfectly integrated, which

should be our next target.

5 Conclusion

We have presented a CNN-based sinogram denoising

method known as AttRDN for LDCT, which integrates the

residual learning and dense network and is locally and

globally guided by the attention mechanism. In place of

concentrating on the intuitionistic image domain, great

efforts were made on the projection data. Residual and

dense networks leverage the advantage of feature fusion of

the local and global feature information, augmenting the

representative power. In addition, the attention mechanism

is utilized to guide the filtering of the sinogram data. The

experimental results demonstrated that the AttRDN out-

performed the state-of-the-art methods in the projection

domain or image domain and had the potential to improve

the quality of low-dose CT images. To some degree, the

AttRDN can cover a gap in the image post-processing

methods. In the future, we plan to make further efforts to

optimize the AttRDN, extend it to adversarial learning and

reconstruction, and even adapt it to other medical imaging

modalities.

Fig. 12 (Color online) Performance comparison of low-dose CT and different methods over the ROI images in Figs. 9 and 11. a Comparison of

PSNR, b comparison of SSIM, and c comparison of RMSE

123

41 Page 12 of 14 Y.-J. Ma et al.



Acknowledgements The authors would also like to thank Dr. Cyn-

thia McCollough, the Mayo Clinic, the American Association of

Physicists in Medicine, and grant EB017095 and EB017185 from the

National Institute of Biomedical Imaging and Bioengineering for

providing the Low-Dose CT Grand Challenge dataset.

Author contributions All authors contributed to the study concep-

tion and design. Material preparation, data collection, and analysis

were performed by Yin-Jin Ma, Peng Feng, Peng He, and Xiao-Dong

Guo. The first draft of the manuscript was written by Yin-Jin Ma, and

all authors commented on previous versions of the manuscript. All

authors read and approved the final manuscript.

References

1. G. Wang, H.Y. Yu, B.D. Man, An outlook on x-ray CT research

and development. Med. Phys. 35, 1051–1064 (2008). https://doi.

org/10.1118/1.2836950

2. P. Feng, W.X. Cong, B. Wei et al., Analytic Comparison between

X-ray Fluorescence CT and K-edge CT. IEEE Trans. Biomed.

Eng. 61(3), 975–985 (2014). https://doi.org/10.1109/TBME.2013.

2294677

3. H.K. Yang, K.C. Liang, K.J. Kang et al., Slice-wise reconstruc-

tion for low-dose cone-beam CT using a deep residual convolu-

tional neural network. Nucl. Sci. Tech. 30(59), 1–9 (2018).

https://doi.org/10.1007/s41365-019-0581-7

4. R.S.T. Kang, T. Wu, Z.H. Chen et al., 3D imaging of rat brain

neural network using synchrotron radiation. Nucl. Tech. 43(7),
070101 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.

070101 ((in Chinese))
5. I. Barreto, N. Verma, N. Quails et al., Patient size matters: Effect

of tube current modulation on size-specific dose estimates

(SSDE) and image quality in low-dose lung cancer screening. CT

J. App. Clin. Med. Phys. 21, 87–94 (2020). https://doi.org/10.

1002/acm2.12857

6. H. Chen, Y. Zhang, W.H. Zhang et al., Low-dose CT via con-

volutional neural network. Biomed. Opt. Exp. 8, 679–694 (2017).

https://doi.org/10.1364/boe.8.000679

7. M. Balda, J. Hornegger, B. Heismann, Ray contribution masks

for structure adaptive sinogram filtering. IEEE Trans Med Imag.

31, 1228–1239 (2012). https://doi.org/10.1109/Tmi.2012.

2187213

8. A. Manduca, L.F. Yu, J.D. Trzasko et al., Projection space

denoising with bilateral filtering and CT noise modeling for dose

reduction. CT. Med. Phys. 36, 4911–4919 (2009). https://doi.org/

10.1118/1.3232004

9. T.F. Li, X. Li, J. Wang et al., Nonlinear sinogram smoothing for

low-dose X-ray CT. IEEE Trans. Nucl. Sci. 51, 2505–2513

(2004). https://doi.org/10.1109/tns.2004.834824

10. J. Wang, T.F. Li, H.B. Lu et al., Penalized weighted least-squares

approach to sinogram noise reduction and image reconstruction

for low-dose X-ray computed tomography. IEEE Trans. Med.

Imag. 25, 1272–1283 (2006). https://doi.org/10.1109/tmi.2006.

882141

11. M.F. Duarte, Y.C. Eldar, Structured compressed sensing: From

theory to applications. IEEE Trans. Sig. Process. 59, 4053–4085
(2011). https://doi.org/10.1109/tsp.2011.2161982

12. H.W. Tseng, S. Vedantham, A. Karellas, Cone-beam breast

computed tomography using ultra-fast image reconstruction with

constrained, total-variation minimization for suppression of arti-

facts. Phys. Med. Eur. J. Med. Phys. 73, 117–124 (2020). https://

doi.org/10.1016/j.ejmp.2020.04.020

13. Y. Chen, L.Y. Shi, Q.J. Feng et al., Artifact suppressed dictionary

learning for low-dose CT image processing. IEEE Trans. Med.

Imag. 33, 2271–2292 (2014). https://doi.org/10.1109/tmi.2014.

2336860

14. J.F. Cai, X. Jia, H. Gao et al., Cine cone beam CT reconstruction

using low-rank matrix factorization: algorithm and a proof-of-

principle study. IEEE Trans. Med. Imag. 33, 1581–1591 (2014).

https://doi.org/10.1109/Tmi.2014.2319055

15. Y. Zhang, Y. Xi, Q.S. Yang et al., Spectral CT reconstruction

with image sparsity and spectral mean. IEEE Trans. Comput.

Imag. 2, 510–523 (2016). https://doi.org/10.1109/tci.2016.

2609414

16. L.Z. Deng, P. He, S.H. Jiang et al., Hybrid reconstruction algo-

rithm for computed tomography based on diagonal total variation.

Nucl. Sci. Tech. 29(3), 45 (2018). https://doi.org/10.1007/

s41365-018-0376-2

17. Z.B. Li, L.F. Yu, J.D. Trzasko et al., Adaptive nonlocal means

filtering based on local noise level for CT denoising. Med. Phys.

41, 011908 (2014). https://doi.org/10.1118/1.4851635

18. D. Kang, P. Slomka, R. Nakazato et al., Image denoising of low-

radiation dose coronary CT angiography by an adaptive block-

matching 3D algorithm. Proc. SPIE. 6869, 1–6 (2013). https://doi.
org/10.1117/12.2006907

19. Y. Chen, X.D. Yin, L.Y. Shi et al., Improving abdomen tumor

low-dose CT images using a fast dictionary learning based pro-

cessing. Phys. Med. Biol. 58, 5803–5820 (2013). https://doi.org/

10.1088/0031-9155/58/16/5803

20. M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for

designing overcomplete dictionaries for sparse representation

IEEE Trans. Sign. Process. 54, 4311–4322 (2006). https://doi.org/
10.1109/tsp.2006.881199

21. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521,
436–444 (2015). https://doi.org/10.1038/nature14539

22. G. Zhao, H.L. Xiong, G.D. Wu et al., Evaluation study on

comprehensive efficiency of physical protection system based on

neural network. Nucl. Tech. 43(2), 020602 (2020). https://doi.

org/10.11889/j.0253-3219.2020.hjs.43.020602 (in Chinese)
23. Y. S. Han, J. Yoo, J. C. Ye, Deep residual learning for com-

pressed sensing CT reconstruction via persistent homology

analysis. 2016.

24. H. Chen, Y. Zhang, M.K. Kalra et al., Low-dose CT with a

residual encoder-decoder convolutional neural network. IEEE

Trans Med Imag. 36, 2524–2535 (2017). https://doi.org/10.1109/

tmi.2017.2715284

25. Y. Ma, P. Feng, P. He et al., Low-dose CT with a deep convo-

lutional neural network blocks model using mean squared error

loss and structural similar loss. Proc. SPIE 11209I, 1–13 (2019).

https://doi.org/10.1117/12.2542662

26. H. Shan, A. Padole, F. Homayounie et al., Competitive perfor-

mance of a modularized deep neural network compared to

commercial algorithms for low-dose CT image reconstruction.

Nature Mach. Intel. 1, 269–276 (2019). https://doi.org/10.1038/

s42256-019-0057-9

27. I. J. Goodfellow, J. Pouget, M. Mirza et al, Generative adversarial

nets. 2014.

28. Q. Yang, P. Yan, Y.B. Yan et al., Low-dose CT image denoising

using a generative adversarial network with Wasserstein distance

and perceptual loss. IEEE Trans. Med. Imag. 37, 1348–1357

(2018). https://doi.org/10.1109/tmi.2018.2827462

29. Y. Ma, B. Wei, P, Feng et al, Low-dose CT image denoising

using a generative adversarial network with a hybrid loss function

for noise learning. IEEE Access 8, 67519–67529 (2020). https://

doi.org/10.1109/access.2020.2986388

30. B.E.H. Claus, Y. Jin, L.A. Gjesteby et al., (2017) Metal-artifact

reduction using deep-learning based sinogram completion: initial

results. Proc. Fully3D. 45: 631–635. https://doi.org/https://doi.

org/10.12059/Fully3D.2017-11-3110004

123

Sinogram denoising via attention residual dense convolutional neural network for low-dose Page 13 of 14 41

https://doi.org/10.1118/1.2836950
https://doi.org/10.1118/1.2836950
https://doi.org/10.1109/TBME.2013.2294677
https://doi.org/10.1109/TBME.2013.2294677
https://doi.org/10.1007/s41365-019-0581-7
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070101
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070101
https://doi.org/10.1002/acm2.12857
https://doi.org/10.1002/acm2.12857
https://doi.org/10.1364/boe.8.000679
https://doi.org/10.1109/Tmi.2012.2187213
https://doi.org/10.1109/Tmi.2012.2187213
https://doi.org/10.1118/1.3232004
https://doi.org/10.1118/1.3232004
https://doi.org/10.1109/tns.2004.834824
https://doi.org/10.1109/tmi.2006.882141
https://doi.org/10.1109/tmi.2006.882141
https://doi.org/10.1109/tsp.2011.2161982
https://doi.org/10.1016/j.ejmp.2020.04.020
https://doi.org/10.1016/j.ejmp.2020.04.020
https://doi.org/10.1109/tmi.2014.2336860
https://doi.org/10.1109/tmi.2014.2336860
https://doi.org/10.1109/Tmi.2014.2319055
https://doi.org/10.1109/tci.2016.2609414
https://doi.org/10.1109/tci.2016.2609414
https://doi.org/10.1007/s41365-018-0376-2
https://doi.org/10.1007/s41365-018-0376-2
https://doi.org/10.1118/1.4851635
https://doi.org/10.1117/12.2006907
https://doi.org/10.1117/12.2006907
https://doi.org/10.1088/0031-9155/58/16/5803
https://doi.org/10.1088/0031-9155/58/16/5803
https://doi.org/10.1109/tsp.2006.881199
https://doi.org/10.1109/tsp.2006.881199
https://doi.org/10.1038/nature14539
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020602
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020602
https://doi.org/10.1109/tmi.2017.2715284
https://doi.org/10.1109/tmi.2017.2715284
https://doi.org/10.1117/12.2542662
https://doi.org/10.1038/s42256-019-0057-9
https://doi.org/10.1038/s42256-019-0057-9
https://doi.org/10.1109/tmi.2018.2827462
https://doi.org/10.1109/access.2020.2986388
https://doi.org/10.1109/access.2020.2986388
https://doi.org/10.12059/Fully3D.2017-11-3110004
https://doi.org/10.12059/Fully3D.2017-11-3110004


31. H.S. Park, S.M. Lee, H.P. Kim et al., CT sinogram-consistency

learning for metal-induced beam hardening correction. Med.

Phys. 45, 5376–5384 (2018). https://doi.org/10.1002/mp.13199

32. Y. Zhang, Y. Tian, Y. Kong et al., Residual dense network for

image restoration. 2018.

33. I.A. Elbakri, J.A. Fessler, Statistical image reconstruction for

polyenergetic X-ray computed tomography. IEEE Trans. Med.

Imag. 21, 89–99 (2002). https://doi.org/10.1109/42.993128

34. K. He, X. Zhang, S. Ren et al, 2016 Deep residual learning for

image recognition. Proc. IEEE Conf. Comput. vis. Pattern

Recognit. (CVPR) 770–778 (2016). https://doi.org/https://doi.org/

10.1109/Cvpr.2016.90

35. G. Huang, Z. Liu, L. Maaten et al., Densely connected convo-

lutional networks. 2017.

36. H. Zhao, O. Gallo, I. Frosio et al., Loss functions for image

restoration with neural networks. IEEE Trans. Comput. Imag. 3,
47–57 (2017). https://doi.org/10.1109/Tci.2016.2644865

37. C. McCollough, Overview of the low dose CT grand challenge.

Med. Phys. 43(6), 3759–3760 (2016). https://doi.org/10.1118/1.

4957556

123

41 Page 14 of 14 Y.-J. Ma et al.

https://doi.org/10.1002/mp.13199
https://doi.org/10.1109/42.993128
https://doi.org/10.1109/Cvpr.2016.90
https://doi.org/10.1109/Cvpr.2016.90
https://doi.org/10.1109/Tci.2016.2644865
https://doi.org/10.1118/1.4957556
https://doi.org/10.1118/1.4957556

	Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
	Abstract
	Introduction
	Methods
	Model for noise reduction
	Attention residual dense convolutional neural network
	Architecture of attention residual dense network.
	Dense connection block
	Attention mechanism

	Loss functions
	Multi-scale structural loss
	L1 loss

	Metrics

	Experiment designing and results
	Data sources
	 Implementation and parameter setting.
	Convergence performance

	Experimental results
	Performance improving of sinograms
	Visual evaluation on CT images
	Quantitative evaluation on CT images


	Discussion
	Conclusion
	Acknowledgements
	Author contributions
	References




