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Abstract Neutrons have been extensively used in many

fields, such as nuclear physics, biology, geology, medical

science, and national defense, owing to their unique pen-

etration characteristics. Gamma rays are usually accom-

panied by the detection of neutrons. The capability to

discriminate neutrons from gamma rays is important for

evaluating plastic scintillator neutron detectors because

similar pulse shapes are generated from both forms of

radiation in the detection system. The pulse signals mea-

sured by plastic scintillators contain noise, which decreases

the accuracy of n–c discrimination. To improve the per-

formance of n–c discrimination, the noise of the pulse

signals should be filtered before the n–c discrimination

process. In this study, the influences of the Fourier trans-

form, wavelet transform, moving-average filter, and Kal-

man algorithm on the charge comparison method, fractal

spectrum method, and back-propagation neural network

methods were studied. It was found that the Fourier

transform filtering algorithm exhibits better adaptability to

the charge comparison method than others, with an

increasing accuracy of 6.87% compared to that without the

filtering process. Meanwhile, the Kalman filter offers an

improvement of 3.04% over the fractal spectrum method,

and the adaptability of the moving-average filter in back-

propagation neural network discrimination is better than

that in other methods, with an increase in 8.48%. The

Kalman filtering algorithm has a significant impact on the

peak value of the pulse, reaching 4.49%, and it has an

insignificant impact on the energy resolution of the spec-

trum measurement after discrimination.

Keywords Fourier transform � Wavelet transform �
Moving average � Kalman filter � Charge comparison

method � Fractal spectrum method � Back-propagation
neural network

1 Introduction

For more than half a century, with the rapid develop-

ment of nuclear technology, neutron detection technology

has been required in several fields, including nuclear power

plant control [1] and safety [2], nuclear decommissioning,

irradiation facilities [3], medical applications such as boron

neutron capture therapy, neutron logging, and nuclear

security against illicit transportation of nuclear materials

[4]. However, when it comes to the applications of neutron

measurement, as a result of the fission process as well as

the interaction between neutrons and the surrounding

environment (e.g., inelastic scattering and slow neutron

capture), gamma rays always accompany neutrons. Gen-

erally, both neutrons and gamma rays are easily detected

but difficult to discriminate; therefore, discrimination of

neutrons from gamma signals is necessary [5, 6]. With

regard to this problem, the pulse shape discrimination
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(PSD) method has been widely used in many fields such as

neutron flux monitoring, neutron diagnosis, nuclear medi-

cine, nuclear safety, and nondestructive testing. For

example, PSD is used in tokamak fusion devices [7] to

monitor the neutron flux and diagnose the energy spectrum.

This is an important and significant method. Specifically,

according to the different attenuation rates of n–c signals in
a scintillator [8], fractal spectrum [9], charge comparison

[10, 11], rise time, pulse gradient [12], and intelligent

screening methods [13, 14] are used for n–c discrimination.

In addition, the pulse signals detected by the detector

generally contain noise, and the difference between the

neutron and gamma signals is insignificant. Moreover, the

useless noise affects the performance and accuracy of

discrimination; consequently, the pulse signal should be

filtered and pre-processed beforehand, which can improve

the performance of discrimination. Recently, many filtering

methods have been developed; these include the Fourier

transform [15, 16], wavelet transform [17, 18], moving-

average filter [19], and Kalman filter [20]. The antinoise

performance of the classification spectrum method and

charge comparison method is discussed in Liu’s data [9].

Chen studied the time-domain discrimination method,

which is more suitable for a seven-point-average running

filter [11]. Based on the abovementioned previous studies,

in this work, we compare the influence of different filtering

methods on the performance of discrimination methods and

determine an optimized filtering method for different dis-

crimination methods.

The rest of our paper is organized as follows: The fun-

damental principles of the three discrimination methods

and four filtering methods are introduced in Sect. 2. The

valuation criteria and comparison of filtering effects are

given in Sect. 3. The influence of the discrimination

methods by using different filtering methods is discussed in

Sect. 4. The conclusion of the work is presented in Sect. 5.

2 Principles of discrimination and filtering
methods

2.1 Discrimination methods

2.1.1 Charge comparison

As a result of the inherent nature of n–c radiation, the

ratio of charge of the slow component to the total charge in

different pulse signals will be different for different decay

speeds and afterglow effects. The total charge of the pulse

signal and the charge of the slow component can be

obtained by processing the pulse signals using a computer

[21]. Then, the neutron and the c ray are discriminated by

comparing the difference of (charge of the slow

component)/(total charge) of different signals. The fol-

lowing is the formula for calculating the charge ratio R:

R ¼ QN

QM
; ð1Þ

where QN and QM are the charge of the slow component

and the total charge of the pulse signal, respectively.

Because of the slower attenuation speed of neutrons, the

R value is larger than that of gamma rays.

2.1.2 Fractal spectrum

Fractal theory is based on the internal similarity between

the same things, which means that, by selecting the

appropriate dimension, their internal law can be clearly

shown [22, 23]. The fractal spectrum method takes the

spectrum as the fractal dimension and then discriminates

the n–c pulse signal. After taking the logarithm of the

power spectrum and frequency of n–c signals, an approx-

imately linear relationship can be obtained. Through linear

regression analysis, different regression coefficients can be

obtained, by which n–c signals can be discriminated

against. The pulse signal is converted into a frequency-

domain signal by fast Fourier transform [24], whose for-

mula is as follows:

FðkÞ ¼
XN

j¼1

f ðjÞwðj�1Þðk�1Þ
N ; ð2Þ

where F is the data after the discrete Fourier transform, f is

the original data, N is the calculation time of the Fourier

transform, and

wN ¼ eð�2piÞ=N : ð3Þ

The power spectrum is the mean square of the amplitude of

the signal after the Fourier transform, which is defined as:

Pss ¼ jFðkÞj2=N: ð4Þ

The power spectral density function can be obtained from

formulas (2), (3), and (4), by which the logarithmic graph

of spatial frequency power and spectral density (logPss–

logw) is drawn. It exhibits an approximately linear rela-

tionship. Subsequently, it was fitted by the following

formula:

GðwÞ ¼ Gðw0Þ
w

w0

� ��a

; ð5Þ

where G(w) is the power spectral density of the signal, w is

the spatial frequency, w0 is the reference space frequency,

and Gðw0Þ is the signal conversion coefficient (which is the

signal power spectral density at w0), and a is the fitting

coefficient. The fractal dimension is defined as follows:
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D ¼ 2:5� a: ð6Þ

The n–c signals can then be discriminated according to the

different fitting coefficients of neutrons and gamma rays.

2.1.3 Back-propagation neural network

A back-propagation neural network (BPNN) is a specific

type of multilayer feed-forward network trained by an error

back-propagation algorithm. It can learn and store a large

number of input–output mapping relations and modify the

weights of the network by back-propagation [25]. The

model includes an input, a hidden layer, and an output

layer. The learning process consists of two processes:

forward propagation of the signal and backward propaga-

tion of the error. If the actual output of the output layer

does not match the expected output (training signal), it

enters an error back-propagation stage. The process of

weight adjustment is the process of network learning and

training, in which the hidden node output model is

Oj ¼ f
X

Wij � Xi � qj

� �
; ð7Þ

and the output node output model is

Yk ¼ f
X

Tjk � Oj � qk

� �
; ð8Þ

where Xi is the input, Yk is the output, f is a nonlinear

function, q is the threshold of the neural unit, and Wij and

Tjk are the weight matrices connecting Xi and Oj as well as

Oj and Yk, respectively.

2.2 Filtering methods

2.2.1 Fourier transform

The Fourier transform transforms the time-domain sig-

nal into a frequency-domain signal. The low-amplitude

frequency-domain information corresponding to the noise

signal is removed, and then the frequency-domain signal is

converted into the time-domain signal through the inverse

Fourier transform to realize filtering. Because the pulse

signal is discrete, a discrete Fourier transform (DFT) is

used [26]. The positive transform formula for the DFT is as

follows:

FðuÞ ¼
XN

x¼1

f ðxÞe�i2pN xu

¼
XN

x¼1

f ðxÞwxu
N ðx ¼ 1; 2; . . .;NÞ;

ð9Þ

and the inverse transform formula for the DFT is as

follows:

f ðxÞ ¼ 1

N

XN

x¼1

FðuÞei2pN xu

¼ 1

N

XN

x¼1

FðuÞw�xu
N ðx ¼ 1; 2; . . .;NÞ;

ð10Þ

where wN ¼ eð�2piÞ=N is the frequency, f(x) is the time-

domain signal, F(u) is the frequency domain signal, and

N is the length of the signal.

2.2.2 Wavelet transform

Wavelet analysis is the development and extension of

Fourier analysis. The Fourier transform is the superposition

of sine waves with different frequencies in the entire time

domain, whereas the wavelet transform decomposes the

signal into a series of attenuated wavelets [27], which can

be used for scale transformation [28]. The Fourier trans-

form of wðtÞ 2 L2ðRÞ, defined as wðwÞ. wðtÞ is called a

basic wavelet when wðwÞ satisfies the admissible condition

Cw ¼
Z

R

jwðwÞj2

jwj dw\1: ð11Þ

After stretching and shifting, the following wavelet

sequence is obtained:

wa;bðtÞ ¼
1ffiffiffiffiffiffi
jaj

p w
t � b

a

� �
a; b 2 R; a 6¼ 0; ð12Þ

where a is the stretching factor and b is the translation

factor. The formulas for the wavelet transform and inverse

wavelet transform are, respectively, as follows:

Wf ða; bÞ ¼hf ;wa;bi ¼
ffiffiffiffiffiffi
jaj

p Z 1

�1
f ðtÞw t � b

a

� �
dt; ð13Þ

f ðtÞ ¼ 1

Cw

Z

R

Z

R

1

a2
Wf ða; bÞw

t � b

a

� �
dadb: ð14Þ

2.2.3 Moving average

The moving-average smoothing filter is based on linear

smoothing, which regards continuous sampling data as a

queue with a fixed length of N. After a new measurement,

the first datum of the queue is removed, the remaining

N � 1 data are moved forward, and the new sampling data

are inserted as the tail of the new queue. Finally, an

arithmetic operation is performed on the queue to realize

filtering [29, 30]. If the input signal is x and the data after

the arithmetic operation are y, the calculation formula for

the moving smoothing filter is as follows:
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YðnÞ ¼ XðnÞ þ Xðn� 1Þ þ � � � þ Xðn� N þ 1Þ
N

: ð15Þ

Taking N ¼ 5 as an example gives

YðnÞ ¼ XðnÞ þ Xðn� 1Þ þ � � � þ Xðn� 4Þ
5

: ð16Þ

Equation (15) is the calculation formula for the moving-

average smoothing filter. In this study, n ¼ 5 was selected

to filter the pulse. This method is described as a moving-

average filter.

2.2.4 Kalman filter

The Kalman filter uses the state-space model of signal

and noise, updates the estimated value of the state variable

by using the estimation value of the previous time and the

observation value of the current time, and then it calculates

the estimated value of the current time [31, 32]. Through

the iterative operation, the filtering is completed. In prin-

ciple, the operation of the Kalman filter includes two

stages: prediction and update [33]. With regard to the

mathematical expression of the Kalman filter [34], the

evolution of the state sequence fxk; k 2 Ng of a target is

denoted by

xk ¼ Fkxk�1 þ vk�1; ð17Þ

where Fk is a known matrix, fvk; k 2 Ng is an independent

and identically distributed (i.i.d.) process noise sequence,

and N is the set of natural numbers. The objective of

tracking is to recursively estimate xk from the

measurements

zk ¼ Hkxk þ nk; ð18Þ

where Hk is also a known matrix that defines the linear

functions similar to Fk and fnk; k 2 Ng is an i.i.d. mea-

surement noise sequence. Based on the aforementioned

definitions, the recursive relationships of the Kalman filter

algorithm are given as

pðxk�1jz1;k�1Þ ¼Nðxk�1;mk�1jk�1;Pk�1jk�1Þ; ð19Þ

pðxkjz1;k�1Þ ¼Nðxk;mkjk�1;Pkjk�1Þ; ð20Þ

pðxkjz1;kÞ ¼Nðxk;mkjk;PkjkÞ; ð21Þ

where

mkjk�1 ¼Fkmk�1jk�1; ð22Þ

Pkjk�1 ¼Qk�1 þ FkPk�1jk�1F
T
k ; ð23Þ

mkjk ¼mkjk�1 þ Kkðzk � Hkmkjk�1Þ; ð24Þ

Pkjk ¼Pkjk�1 � KkHkPkjk�1; ð25Þ

In these equations, N(x; m, p) is a Gaussian density with

arguments x, mean m, and covariance P; p denotes the

posterior probability density function; and Qk�1 and Rk

represent the covariances of vk�1 and nk, respectively. The

covariances of the innovation term zk � Hkmkjk�1 and the

Kalman gain are, respectively, denoted as:

Sk ¼HkPkjk�1H
T
k þ Rk; ð26Þ

Kk ¼Pkjk�1H
T
k S

�1
k ; ð27Þ

where the transpose of a matrix M is defined by MT .

3 Valuation criteria and filtering effect

3.1 n–c pulse signals

In our study, an 241Am–Be isotope neutron source, with

an average energy of 4.5 MeV, was used as the radioactive

source. A plastic scintillator (EJ299-33) and a digital

oscilloscope with a 1 GS/s sampling rate and 200 MHz

bandwidth were used to measure the n–c superposed field

(with a trigger threshold set at 500 mV), in which 9414

pulse signals were obtained. The neutron pulse signals are

compared with the gamma-ray pulse signals in Fig. 1.

When the signals are normalized by their maximum

amplitudes, it was observed that the luminous attenuation

rate of the neutron pulse signals [35, 36] was significantly

lower than that of the gamma pulse signals, where the two

signals were normalized to their peak value.

3.2 Evaluation criteria for n–c discrimination effect

After discriminating the n–c pulse signals, two peaks

were obtained. These could be fitted by a Gaussian

Fig. 1 Comparison of normalized n–c pulses
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function, as shown in Fig. 2. To evaluate the screening

performance, the figure of merit (FOM) was introduced as

the criterion [36]:

FOM ¼ S

FWHMn þ FWHMc
; ð28Þ

where S is the distance between the two peaks and FWHMn

and FWHMc are the half-height widths of the neutron and

gamma-ray peaks, respectively. For this evaluation crite-

rion, the greater the FOM value, the better is the screening

effect.

3.3 Filtering effect of the filtering methods

In this work, 9414 pulse data were measured in the

experiment, and the subsequent algorithm analysis of the

experimental data was performed using MATLAB soft-

ware. Subsequently, the measured nuclear pulse signals

were filtered using the four methods mentioned above. A

comparison of the filtering results is presented in Fig. 3.

Figure 3a–c show the performances of the Fourier trans-

form filter (FTF), wavelet transform filter (WTF), moving-

average filter (MAF), and Kalman filter (KF) compared to

unfiltered original data (ORI). Figure 3a indicates that none

of the four filtering methods caused pulse signal distortion

on the whole. Figure 3c shows enlarged images of the

pulse noise area, revealing that these four filtering methods

reduced the noise in the pulse signals. The influence of the

four filtering methods on the peak value is given in

Table 1. From Table 1, it can be seen that the FTF based

on the spectrum, WTF, and the MAF based on a linear,

simple smoothing process will not cause peak distortion to

pulse signal filtering, whereas the Kalman algorithm based

on estimation causes a small amount of pulse peak

distortion.

Fig. 2 n–c screening effect evaluation criteria

Fig. 3 a Overall comparison of filtering effect. b Comparison of the

influences to the peak changes by different filtering methods.

c Comparison of the filtering effect of the falling edge by different

filtering methods
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4 Influence of different filtering methods on the n–
c discrimination algorithm

4.1 Charge comparison method

The rise time of the n–c pulse signals is � 13 ns, and

the attenuation time of the gamma pulse signals is

140� 10 ns. The decay time of neutron pulse signals is

170� 15 ns. The pulse signals between � 15 ns before the

peak and � 200 ns after the peak were selected as the total

component, and the pulse signals between T and 200 ns

after the peak were selected as the slow component, where

T, as mentioned previously, is the delay time. By changing

the value of T, the optimal FOM values of the various

charge comparison methods were obtained. MATLAB

software was used to process the data offline. First, the

original data were substituted into the charge comparison

method for n–c discrimination. Then, the original data

were filtered using the four filtering methods mentioned

above, and the filtered data were replaced by the charge

comparison method for n–c discrimination.

The discrimination of replacing a with b is shown in

Fig. 4a, which show the results of the charge comparison

method for the original data (ORI), FTF, WTF, MAF, and

KF. Figure 4b shows the Gaussian fitting curves of the

FOM distributions of neutrons and gamma rays, which are

discriminated by using the four methods. The peaks on the

left are gamma signals,and the peaks on the right are

neutron signals. The FOM values of the n–c discrimination

effect of the charge comparison method after filtering by

using different filtering methods were fitted and calculated,

and the screening times are given in Table 2.

Table 2 demonstrates that all four filtering methods have

improved the discrimination process compared with the

direct charge comparison method for the original data.

Among them, the FTF and WTF exhibited greater

improvement than did the other methods others, increasing

discrimination by 6.79% and 5.49%, respectively. It took

about � 20 s for the unfiltered charge comparison method

to distinguish 9414 pulse signals, and the time required for

filtering by different filtering methods was slightly

increased.

4.2 Fractal spectrum method

The results of many pulse signal discrimination intervals

revealed that the FOM value of discrimination performance

was better than the others when pulse signals between

38 ns after the peak and 130 ns after the peak were selected

as the discrimination interval. Therefore, in this work, the

pulse signals in this region were selected for n–c dis-

crimination using different fractal spectrum methods. The

filtered data were substituted into the fractal spectrum

method for n–c discrimination. The results of the dis-

crimination process are presented in Fig. 5a. Figure 5b

shows the Gaussian fitting curves of the FOM distributions

of neutrons and gamma rays screened by the corresponding

methods. The FOM values of the fractal spectrum method

for n–c screening after using different filtering methods

Table 1 Influence of the four

filtering methods
Filtering method ORI FTF WTF MAF KF

Maximum pulse amplitude 0.5501 0.5566 0.5496 0.5478 0.5254

Percentage change – 1.18% 0.09% 0.42% 4.49%

Fig. 4 a Comparison of the four screening methods with original

data. b Gauss fitting FOM curves for the four screening methods
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were calculated and are given with the screening times in

Table 3. Table 3 indicates that the MAF was only based on

the simple, linear smoothing processing and that the dis-

crimination between signals and noise was not significant;

therefore, the fractal screening effect of the MAF is only

0.086% higher than that of the original pulse directly. The

fractal discrimination effect after Kalman filtering

increased by 3.04%, which means that the KF can effec-

tively improve the effect of gamma-ray screening in the

fractal spectrum method. After wavelet transform filtering,

the effect of the fractal spectrum method was reduced, and

after Fourier transform filtering, the filtering effect of the

fractal spectrum method was improved by only 0.39%.

This minor improvement was possibly because the wavelet

transform and Fourier transform removed the useful fre-

quency-domain information of the pulse signal noise, and

the analysis dimension selected by the fractal spectrum

method is the frequency domain. Consequently, it has little

influence on the improvement of the discrimination effect.

Moreover, this discrimination method is not suitable for

real-time n–c discrimination because it takes � 7 min.

4.3 BPNN method

Before discriminating 9414 noisy pulse signals by using

the BPNN, 7216 pulse signals with neutron and gamma

characteristics were selected from 11,454 very-low-noise

pulse signals. The falling edge of the signals was removed,

which is attributed to the small difference between the

neutron’s and gamma’s rising edges and the pulse signals

to be discriminated containing more noise, which lowers

the discrimination of the rising edge. Therefore, the falling

edge and the corresponding charge ratio R were selected as

the training set.

The FOM value of the n–c screening effect of the BPNN
after using different filtering methods was calculated, and

these, along with the screening times, are listed in Table 4

and shown in Fig. 6a, b. The filtering effect of the BPNN

degrades after Kalman filtering. This is because signals

with low noise that were smoothed by the Fourier trans-

form were used as the training set, and the Kalman algo-

rithm based on estimation has a poor smoothing effect on

Table 2 Discrimination time

and FOM value of charge

comparison method with

different filtering methods

Charge comparison method ORI FTF WTF MAF KF

Discrimination time (s) 19.4 22.9 31.3 27.5 31.6

Optimal delay time, T 23 16 16 16 21

Optimal discrimination effect (FOM value) 1.4855 1.5875 1.5681 1.5352 1.5411

Improvement percentage of discrimination effect – 6.87% 5.49% 3.35% 3.7%

Fig. 5 a Comparison of the four screening methods with original

data. b Gauss fitting FOM curves for the four screening methods

Table 3 Discrimination time

and FOM value for the fractal

method with different filtering

methods

Charge comparison method ORI FTF WTF MAF KF

Discrimination time (s) 400 403.6 414.7 406 407.4

Optimal discrimination effect (FOM value) 1.091 1.0953 1.0816 1.1040 1.1242

Improvement percentage of discrimination effect – 0.39% -0.86% 0.086% 3.04%
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the signals, whereas the BPNN requires that the training set

be highly similar to the prediction set. Consequently, it is

not suitable for n–c screening in BPNNs. The other three

filtering methods can improve the effect of n–c screening

in the BPNN. The moving-average smoothing filter

exhibited the most significant improvement on the n–c
screening effect of the BPNN, and its FOM value reaches

1.5116, which is 8.48% higher than that of the original

data.

5 Conclusion

In this work, based on EJ299-33 plastic scintillation

data, four filtering algorithms were used to filter the

detected neutron and gamma signals. Three n–c screening

methods were then applied to complete the filtering oper-

ation for the filtered pulse signals. By comparing the fil-

tering performance with the final filtering effect, a better

filtering method was found with each n–c screening algo-

rithm. According to the calculation, in the charge com-

parison method, the Fourier transform filtering algorithm

had the best adaptability, with an increase in 6.87%, the KF

had the best adaptability effect of 3.04% in the fractal

spectrum method, and the adaptability of the moving-av-

erage smoothing filter in BPNN screening exhibited an

increase in 8.48%. Furthermore, the Kalman filtering

algorithm has a significant influence on the peak value of

the pulse, reaching 4.49%, and it has a certain impact on

the energy resolution of the spectrum measurement after

screening. In addition, the calculation time of the fractal

spectrum method is the longest; this is not conducive to

rapid realization of n–c discrimination, as it requires high

performance of instrument calculations and is thus not

suitable for real-time applications.
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