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Abstract Artificial neural networks (ANNs) are a core

component of artificial intelligence and are frequently used

in machine learning. In this report, we investigate the use

of ANNs to recover the saturated signals acquired in high-

energy particle and nuclear physics experiments. The

inherent properties of the detector and hardware imply that

particles with relatively high energies probably often gen-

erate saturated signals. Usually, these saturated signals are

discarded during data processing, and therefore, some

useful information is lost. Thus, it is worth restoring the

saturated signals to their normal form. The mapping from a

saturated signal waveform to a normal signal waveform

constitutes a regression problem. Given that the scintillator

and collection usually do not form a linear system, typical

regression methods such as multi-parameter fitting are not

immediately applicable. One important advantage of ANNs

is their capability to process nonlinear regression problems.

To recover the saturated signal, three typical ANNs were

tested including backpropagation (BP), simple recurrent

(Elman), and generalized radial basis function (GRBF)

neural networks (NNs). They represent a basic network

structure, a network structure with feedback, and a network

structure with a kernel function, respectively. The saturated

waveforms were produced mainly by the environmental

gamma in a liquid scintillation detector for the China Dark

Matter Detection Experiment (CDEX). The training and

test data sets consisted of 6000 and 3000 recordings of

background radiation, respectively, in which saturation was

simulated by truncating each waveform at 40% of the

maximum signal. The results show that the GBRF-NN

performed best as measured using a Chi-squared test to

compare the original and reconstructed signals in the

region in which saturation was simulated. A comparison of

the original and reconstructed signals in this region shows

that the GBRF neural network produced the best perfor-

mance. This ANN demonstrates a powerful efficacy in

terms of solving the saturation recovery problem. The

proposed method outlines new ideas and possibilities for

the recovery of saturated signals in high-energy particle

and nuclear physics experiments. This study also illustrates

an innovative application of machine learning in the

analysis of experimental data in particle physics.
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1 Introduction

In particle physics experiments, various inherent prop-

erties of the detection medium, photomultiplier tube

(PMT), range of analog-to-digital conversion, and gain

circuitry sometimes result in the saturation of the signals

associated with high-energy particles. These saturated

signals are often discarded during the processing of the

experimental data, and therefore, potentially useful infor-

mation is lost. There has been notable research activity

with respect to the restoration of saturated signals including

the application of statistical techniques based on maximum

likelihood analysis or minimum Chi-squared fitting, and

pulse analysis based on the identification of measurable

values that are related to the appropriate physical variables

[1]. However, the efficiency of the former approach is

relatively low, especially when the saturation is severe. The

latter technique is adequate in terms of energy recovery,

but it is not ideal for waveform recovery. Examples of

related studies include the work of Xie et al. [2] that

involved the recovery of spurious signals via linear

extrapolation in the frequency domain and that of Huang

et al. [3] on the recovery of unknown weak signals via

polynomial fitting and the variance of the time difference

sequence. Among these approaches, the most typical and

most likely to be implemented in a practical setting is the

use of a signal model or normalization to fit the saturated

signals [4, 5]. However, the nonlinearity of the system

waveforms and the conversion of the deposited energy may

result in differences between the signals recovered via the

aforementioned method and the actual unsaturated signals.

These differences will affect waveform discrimination and

the application of accurate energy information. However,

there is an alternative method that can avoid the saturation

of waveforms based on a direct measurement of the

amplitude using the time-over-threshold technique [6].

However, this results in a loss of waveform information.

In terms of mathematical theory, the recovery of satu-

rated signals is essentially a regression problem of pre-

dicting global data from partial data. To solve such a

regression problem, apart from model fitting and statistical

regression, machine learning in the form of artificial neural

networks (ANNs) can be utilized. To date, some researches

have been conducted on the application of artificial neural

networks to perform multivariate analysis to address

problems in particle physics [7]. A neural network consists

of simple processing nodes or neurons that are intercon-

nected to each other in a specific order. After training and

the determination of the weight of each node, the neural

network can classify and fit complex functions. Moreover,

compared with traditional fitting methods, the artificial

neural network has advantages that include the following:

it requires less formal statistical training, can implicitly

detect complex nonlinear relationships between dependent

and independent variables, and can detect all possible

interactions between predictor variables. Moreover, multi-

ple training algorithms are available. There have been

several studies in which ANNs have been employed to

conduct multivariate analysis in particle physics [7]. For

nonlinear regression problems, ANNs can model the

inherent nonlinear relationships and utilize nonlinear data

[8].

In previous particle physics experiments, ANNs have

been used to discriminate between neutrons and c-rays in a

liquid scintillation detector [9], spectrometry analysis [10],

reconstruction of the neutron spectrum [11, 12], discrimi-

nation of signals from the background [13], optimization of

the concrete mixture for a thermal neutron shield [14],

classification of gravitational-wave signals [15], treatment

of intricate quantum many-body problems [16], energy-

dispersive X-ray fluorescence analysis [17], and the pre-

diction of the intensity of solar radiation using neuro-fuzzy

inference systems [18]. In this study, we investigate the

possibility of using ANNs to recover saturated particle

detection signals. Several different neural networks were

used to test the performance of saturated signal recovery

including backpropagation (BP), simple recurrent (Elman),

and generalized radial basis function (GRBF) neural net-

works (NNs). Backpropagation neural networks represent a

basic network structure and are the most widely used and

the most mature training algorithm. The Elman neural

network represents a network structure with feedback and

has a memory function in addition to dynamic expression

capability. As such, the results of each learning step con-

tain all the previously learned contents. The GRBF neural

network is a network structure with a kernel function and

can be used to map low-dimensional data to high-dimen-

sional spaces for further analysis. Although other neural

networks may be feasible for saturated signal recovery, the

aforementioned three network types were considered as

representative models. To the best of our knowledge, no

attempt has been made to recover complete signals from

saturated signals using machine learning. This work is the

first study to apply ANNs to the problem of signal wave-

form processing.

2 Data sources

The data in this research were obtained from a liquid

scintillation detector consisting of an organic liquid scin-

tillator (EJ-335, produced by Eljen Technology [19]) and

8-inch-diameter PMTs (HamamatsuR5912-02). The data

acquisition system (DAQ) consisted of an analog-to-digital

converter (FADC,MOD.V1721) operating at a sampling
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frequency of 500 MHz and an accuracy of 8 bits. The data

acquisition site was a deep underground laboratory named

the China Jinping Underground Laboratory (CJPL). It is

the world’s deepest underground laboratory at present and

is covered by 2400 m of rock [20]. The detected signals

include background radiation. The sampled waveforms are

transmitted via an optical fiber and stored on a computer.

Few saturated signals were observed during the data

acquisition period of this study. In addition, waveforms

with different energies have a nonlinear relation with the

signal amplitude [21]. In this case, the waveforms of dif-

ferent neutrons or gamma rays were added to the data set

without any discrimination. This report focuses on the

algorithm for the reconstruction of saturated signals using

ANNs. As such, the reason for the saturation of the signals

and the nonlinearity of the waveforms is not discussed.

3 Construction of training set and test set
for the ANNs

The original data from the detectors were processed via

a preliminary exclusion step. Given that signals with two or

more peaks can cause the method to fail, these signals were

removed. Signals in the low-energy range cannot be

properly distinguished from noise, and therefore, they were

also eliminated. The inclusion of too many sampling points

will increase the computational load of the neural network

and may lead to local convergence. Therefore, under the

condition that the integrity of the signal is ensured, the

range from 60 ns before the maximum sampling point of

the signal to 120 ns after the maximum sampling point for

the entire 480 ns sampling range of the ADC was selected

as the sampling range of the neural network.

After the initial processing of the original data, the

training and test sets were constructed. ANNs are suit-

able for approximating complex relationships between

input and output variables, including nonlinear optimiza-

tion [22]. Therefore, saturated signals with continuous

energy distributions and corresponding complete wave-

forms were used as input and output, respectively, to train

the ANN to automatically recover saturated signals wave-

form from the test set. The raw data were divided into two

parts according to the energy of the signals. Thirty percent

of the data with high energy values were assigned to the

test set, and the remaining seventy percent 70% were

placed into the training set. Given that the amplitude and

the actual shape of the saturated signals are not known,

artificial saturated signals were generated so that the

complete waveforms recovered by the ANN could be

compared with the original waveforms. Prior to the gen-

eration of the saturated signals, the cutoff value of the

saturation was determined. The largest signal in the

training set was selected, and the cutoff value was set to

40% of the amplitude of this signal. In this study, saturated

signals were generated by truncating the signal in the peak

region of standard waveforms and replacing the omitted

region with a horizontal linear trace. An example is shown

in Fig. 1.

The choice of 40% of the amplitudes cutoff value for

high cutoff values reduces the number of saturated signals

in the training set, whereas the utilization of low cutoff

values reduces the number of effective sample points in a

waveform. The use of both high and low cutoff values

affects the training of the neural network.

According to this process, the original signals were

truncated to generate the saturated signals including in the

training set. The same procedure was repeated for the test

set.

4 Neural networks considered in this work

The performance of different ANNs was investigated.

For practical use, the ANNs must satisfy two important

criteria: the output (i.e., recovered) waveform must be as

close as possible to the original waveform in terms of both

the shape and magnitude. Given that the presented work is

similar to signal fitting, it is important to examine the

degree of compliance between the original signal and the

recovered signal. Thus, a deformation of the Chi-squared

test (the evaluation benchmark for signal fitting) was used

to evaluate the performance of the ANNs considered in this

work. A comparison based on this benchmark can identify

the method with the best reliability and accuracy. In par-

ticular, the value of the corrected Chi-squared statistic

(CCS) was computed as follows:

Fig. 1 Complete signal and the corresponding cutoff signal. The red

points represent the original data for a gamma signal, and the blue

points represent the corresponding saturated signal after cutoff
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ccs ¼
PN¼f�b

i¼b mi � m0
i

� �2
=mi

f � b
; ð1Þ

where mi represents the value of the ith sampling point in

the original signal, m0
i represents the value of the ith sam-

pling point in the recovered signal, N represents the total

number of sampled points, b represents the number of the

first sampling point in the cutoff region, and f represents

the number of the last sampling point of the cutoff region.

This equation differs from the standard Chi-squared test in

that an extra factor of 1
f�b

is added to consider the variation

in the cutoff range with the signal energy.

4.1 Backpropagation neural network

Backpropagation neural networks (BP-NNs) are the

most basic and widely used class of ANNs. They have a

hierarchical feed-forward structure in which the outputs of

each layer are sent directly to every neuron of the next

layer. There are at least three layers and sometimes several

more. The structure of a typical three-layer BP-NN is

shown in Fig. 2.

The core idea of BP-NN is to distribute the output error

to all units of each layer using some form of back-trans-

mission from the hidden layer to the input layer. In this

way, it is possible to correct the weight of each unit.

Therefore, the learning process of BP neural network

includes two sub-processes: the forward propagation of the

signal and the backpropagation of the error. The process

continues until the network output error has decreased to an

acceptable level or a preset number of learning steps have

been reached.

If the input layer has p neurons, the hidden layer has q

neurons, and the output layer has o neurons, the input

vector and expected output vector can be expressed as

follows:

x mð Þ ¼ x1 mð Þ þ x2 mð Þ þ � � � þ xi mð Þ þ � � � þ xq mð Þ; ð2Þ

t mð Þ ¼ t1 mð Þ þ t2 mð Þ þ � � � þ ti mð Þ þ � � � þ to mð Þ: ð3Þ

The relationship between the input layer and the input

vector of the hidden layer can be expressed as Eq. (4):

yin mð Þ ¼
Xp

i¼1

x1ixi mð Þ � by; ð4Þ

where x1i is the weighting factor between the input layer

and the hidden layer and by is the threshold of the hidden

layer neurons. The output of the hidden layer after calcu-

lating the activation function can be expressed as Eq. (5):

yout mð Þ ¼ f1 yin mð Þð Þ; ð5Þ

where f1(�) is the activation function selected for the hidden

layer. The activation function needs to be differentiable

everywhere; the ‘‘sigmoid’’ function is often used.

The input and output vectors of the output layer are the

same as those of the hidden layer.

The error between the expected output vector and the

actual output vector of the network can be defined as

follows:

E mð Þ ¼ 1

2

Xo

i¼1

t mð Þ � zout mð Þð Þ2: ð6Þ

After the forward propagation of the network, the con-

nection weights between the hidden layer and the output

layer (x2) need to be corrected according to the error

between the expected output and the actual output. This

process typically uses some form of the gradient descent

method, such as Eq. (7):

Dx2 ¼ �g
oE

ox2

¼ �g
oE

ozin

ozin

ox2

¼ g t � zoutð Þf z0in
� � ozin

ox2

¼ g t � zoutð Þf z0in
� �

yout;

ð7Þ

where g is the preset learning efficiency, which is set in

advance and used to adjust the speed of learning.

The same approach is then applied to correct the con-

nection weights between the hidden layer and the output

layer (x1) as follows:

Dx1 ¼ �g
oE

ox1

¼ �g
X

q

X

o

oE

ozin

ozin

oyout

oyout

ozx1

¼ g
X

o

t � zoutð Þf y0in
� �

x2f z0in
� �

x: ð8Þ
Fig. 2 Topology of a three-layer BP-NN. The nodes of the input

layer (xi) and the hidden layer (yj) are connected one by one with a

weight of x1 and a transfer function, and the nodes of the hidden layer

(yj) and the output layer (zk) are connected one by one with a weight

of x2 and a different transfer function
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The forward and backpropagation processes are repe-

ated until the output error has decreased to an accept-

able level or a preset number of learning steps have been

reached.

4.2 Elman neural network

The Elman NN is based on BP-NN, but it includes a

feedback loop. The version of the Elman NN used in the

present study is a partially recurrent network and lies

somewhere between a classic feed-forward perception

network and a purely recurrent network. The feed-forward

loop consists of an input layer, a hidden layer, and an

output layer. In addition, the weights that connect two

neighboring layers can be varied. In contrast to the tradi-

tional feed-forward loop, the back-forward loop includes a

context layer that is sensitive to the history of the input data

and has fixed connections between the context layer and

the hidden layer [23]. The context layer receives feedback

signals from the hidden layer, whereby it can ‘‘remember’’

the output value of hidden layer neurons from previous

time steps. The output of the context layer neurons is

delayed and stored before being inputted to the hidden

layer. This causes the neural network to be sensitive to

historical data and increases its ability to process dynamic

information. The structure of a typical three-layer Elman

NN is shown in Fig. 3.

Apart from the addition of a connection layer, the Elman

network operates similar to the BP network. Thus, in the

forward propagation step, only the input and output of the

hidden layer are different from that of BP-NN.

yin mð Þ ¼
Xp

i¼1

ðx1ixiðmÞ þ x1ciyciðmÞÞ; ð9Þ

where yci mð Þ ¼ yout m� 1ð Þ ¼ f1
Pp

i¼1

x1ixi m� 1ð Þ þ x1cið
�

yci m� 1ð ÞÞÞ is the output of the context layer.

The values of x2 and x1 are modified in the same

manner as for BP-NN, and the modified value of x1c can be

expressed as Eq. (10):

Dx1c mð Þ ¼ �g
oE

ox1

¼ g
X

o

t � zoutð Þf y0in
� �

x2

oyout mð Þ
ow2

;

ð10Þ

where
oyout mð Þ
ow2

¼ f z0in
� �

x m� 1ð Þ þ a
oyout m�1ð Þ

ow2
. This demon-

strates that each adjustment of the Elman NN relies on all

previous training.

These modifications to the Elman NN improve the

accuracy of the training process and make it easier to

achieve the training purpose. However, as the size of the

context layer increases, the number of calculations and the

training time also increases.

4.3 Generalized radial basis function neural

network

The generalized radial basis function neural network

(GRBF-NN) is derived from the radial basis function

neural network (RBF-NN). The RBF-NN usually consists

of a single feed-forward input layer and a single hidden

layer, and the output takes the form of an RBF. As the

kernel function, the RBF maps low-dimensional data to a

high-dimensional space. This projection of complex pattern

classification problems to higher-dimensional space via the

kernel function makes them more likely to be linearly

separable. GRBF-NN also can map low-dimensional data

to high-dimensional space. Therefore, certain rules that

cannot be found in low-dimensional data may appear once

the data are mapped to more dimensions.

The RBF-NN has the major advantages of being simple

to design, generalizable, robust, and tolerant to input noise

[24]. Unlike BP-NN and Elman NN, it is not necessary to

construct the structure of the network: this is automatically

determined based on the input and output data. As a kind of

RBF-NN, GRBF-NN is relatively computationally simple,

provides high model accuracy, avoids local minima during

training, exhibits fast convergence and robustness [25, 26],

and is predicted to be best suited to solve the problem of

reconstructing saturated signals.

Fig. 3 Topology of a three-layer Elman NN. The nodes of the input

layer (xi) and the context layer (ycj) are connected with the nodes of

the hidden layer (yj) one by one by with a weight of x1 and a transfer

function, and the nodes of the hidden layer (yj) and the output layer

(zk) are connected one by one with a weight of x2 and another transfer

function
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For GRBF-NN, the input layer and the hidden layer

perform the same operation as in a normal RBF-NN.

However, in the GRBF-NN, the output is produced by

weighting and averaging of the hidden layer. The structure

of a typical three-layer GRBF-NN is shown in Fig. 4.

These RBF units are usually probability density func-

tions, such as the Gaussian function expressed in Eq. (11):

u rð Þ ¼ e�r2=2r2 ; ð11Þ

where r is referred to as the extension or width of the basis

function. The smaller this width, the more selective is the

RBF. In a GRBF-NN, the independent variable is the

Euclidean distance between the input vector and the center

vector. Thus, r can be replaced by ||dist||, and Eq. (11) is

modified to give Eq. (12):

ui Xð Þ ¼ e� X�cij jj j2=2r2i ; ð12Þ

where ci is one of the centers of the radial function in the

input space, ||X - ci|| is the Euclidean norm of the centered

vector X, and ri is the parameter that controls the disper-

sion of ui(X) around its center.

When a GRBF-NN has a multi-dimensional input, a

generalization of Eq. (12) is used that includes different

dispersion parameters for each dimension of the input

space. This is expressed as Eq. (13):

ui Xð Þ ¼ e
� X�cið ÞT�

P�1

i

� X�cið Þ
; ð13Þ

where
P�1

i ¼ diag r2i;1; r
2
i;2; . . .r

2
i;n

� �
. Radial symmetry is

lost in this case, but this is preferable in problems where

the values of the input vector cover different dynamic

ranges.

Finally, the output result of an RBF-NN can be

expressed as Eq. (14):

Y Xið Þ ¼
X

j¼0:k

xi;je
� X�cij jj j2=2r2i ; ð14Þ

where Y(Xi) is the output result of the RBF-NN and xi,j is

the connection weight between the hidden layer and the

output layer of the RBF-NN.

Using Eq. (13) to replace the kernel function in

Eq. (14), we obtain the result for the GRBF-NN, which is

expressed as Eq. (15):

Y Xið Þ ¼
X

j¼0:k

xi;je
� X�cið ÞT�

P�1

i

� X�cið Þ
: ð15Þ

By definition, the regression of a dependent variable

Y on an independent variable X estimates the most probable

value for Y, given X and a training dataset. The regression

method will produce the estimated value of Y that mini-

mizes the mean squared error (MSE). GRBF-NN is a

method for estimating the joint probability density function

(PDF) of X and Y given only a training dataset. The system

is perfectly general because the PDF is derived from the

data with no preconceptions about its form.

In this work, X refers to the sampled points of the sat-

urated waveform and Y refers to the sampled points of the

recovered waveform. The basis function corresponds to the

Euclidean distance between the sampled point of the input

saturated waveform and the data center as the independent

variable of the function. Using the ‘‘newgrnn’’ function in

MATLAB 2017 [27] and inputting the training and test

datasets, the function automatically calculates the hidden

nodes of the network, the data center and extension con-

stant of the RBF, and the modified output weights of the

GRBF-NN.

5 Results and Discussion

The performance of the various ANNs in recovering the

saturated signal waveforms is described in the following

section. All neural network algorithms were executed using

MATLAB.

5.1 Results for backpropagation neural network

The results obtained by applying BP-NN (with two

hidden layers of 400 9 400 nodes, ‘‘tansig’’ as the transfer

function, and 5000 training epochs performed in 565 s) to

recover the saturated signal waveforms are shown in Fig. 5.

Apart from the output from the BP-NN, the corre-

sponding input that was arbitrarily selected from the test

dataset and the original signals before cutoff are shown for

comparison. It is evident that the amplitude of the recov-

ered signal waveform is different from that of the original

Fig. 4 Neuronal structure of GRBF-NN. The nodes of the input layer

(xi) and the hidden layer (yj) are connected one by one according to

the Euclidean distance between the input vector and the center vector,

and the nodes of the hidden layer and the output layer (tm) are

connected one by one with a weight of x and a summation process (z)
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waveform. For other typical recovered waveforms, there

are discontinuities and random fluctuations near the max-

imum value, and the connection between the sampling

points is not sufficiently smooth. Generally, the output

from BP-NN does not have the shape of the corresponding

original signal. Although the weighting of the BP-NN can

be adjusted during training, it is still difficult to determine

the most appropriate value.

5.2 Results for Elman neural network

The results obtained by applying the Elman NN (with

two hidden layers of 400 9 400 nodes, ‘‘tansig’’ as the

transfer function, and 5000 training epochs in 3712 s) to

recover the saturated signal waveforms in a dataset arbi-

trarily selected from the test dataset are shown in Fig. 6.

The Elman NN performed better than BP-NN, but the

results are still not consistent with the shape of the original

signal, especially near the maximum value. Some

improvements in performance could be obtained by mod-

ifying the network parameter, but the difference in peak

position remains. Further improvements may be possible,

but there is no theory to guide the adjustments and the

convergence speed of the Elman NN is unfortunately slow.

The learning efficiency of the Elman NN is another limi-

tation on the recovery of saturated signals.

5.3 Results for generalized radial basis function

neural network

The results for the application of the GRBF-NN (with

the spread of the RBF set to 0.14) for recovery of the

saturated signal waveforms in a dataset arbitrarily selected

from the test dataset are shown in Fig. 7.

By adjusting the parameters of these three neural net-

works to optimize their performance and comparing the

results from the CCS test, it is apparent that GRBF-NN is

superior to Elman NN and BP-NN in terms of reliability

and accuracy. The fitting curve is essentially identical to

the original signal waveform, except that the maximum

value is slightly and negligibly different. In most cases,

GRBF-NN is successful and suitable for restoration of the

saturated signal waveforms.

A comparison of the previous three figures indicates that

the signal waveforms recovered by GRBF-NN are much

better than those obtained using the other two NNs. The

CCS test results are also better. GRBF-NN not only per-

formed well but also has a simple structure and fast training

speed. It has a solid theoretical basis, a concise mathe-

matical form, and intuitive geometry and can solve small

sample, nonlinear problems without becoming stuck near

local minima. Thus, it is widely used in data approximation

and regression analysis. Moreover, GRBF-NN has proved

to be a universal approximate, and it is considered the most

powerful type of network for highly nonlinear systems

[28]. In this work, the investigated problem is highly

nonlinear. Therefore, it is reasonable that GRBF-NN can

solve this problem and produce the best results.

In recent years, there have been rapid developments in

deep learning. As a class of deep neural networks, con-

volutional neural networks (CNNs) are widely used and

have demonstrated their ability to solve many complex

problems with high dimensionality and large-scale data

such as image segmentation, object detection, and object

verification. Solving these problems typically requires a

Fig. 5 Illustration of the performance of BP-NN. a Red points refer

to the original waveform of the gamma signal, blue points refer to the

corresponding saturated signal after application of the cutoff, and the

green points refer to the waveform recovered using a four-layer BP-

NN. b Distribution of the results of the CCS test between the original

and recovered waveforms for BP-NN. (Color figure online)
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complex network structure and a large dataset. For exam-

ple, Google’s Inception is a 22-layer network trained using

the Image Net Large-Scale Visual Recognition Challenge

2014, which contains approximately 1.2 million images

[29]. However, in this study, the main problem is the

accurate prediction of a nonlinear function based on rela-

tively few samples. CNNs are not well suited to this task,

as they require large-scale data, have a complex network

structure, and are difficult to debug. Therefore, a CNN was

not considered in the present work.

6 Conclusion

In this study, three ANNs were applied to the restoration

of saturated signal waveforms recorded by liquid scintil-

lation detectors. Based on the results presented in the

previous section, it is evident that GRBF-NN produced the

best CCS test results, followed by Elman NN and then BP-

NN. GRBF-NN provides efficient, reliable, and accurate

recovery of saturated signals. Of the three ANNs, BP-NN

could not successfully restore some saturated signal

waveforms, whereas Elman NN required substantial

debugging and was relatively time-consuming. GRBF-NN

Fig. 6 Illustration of the performance of Elman NN. a Red points

refer to the original waveform of the gamma signal, blue points refer

to the corresponding saturated signal after application of the cutoff,

and the green points refer to the waveform recovered using a four-

layer Elman NN. b Distribution of the results of the CCS test between

the original and recovered waveforms for the Elman NN. (Color

figure online)

Fig. 7 Illustration of the performance of GRBF-NN. a Red points

refer to the original waveform of the gamma signal, blue points refer

to the corresponding saturated signal after application of the cutoff,

and the green points refer to the waveform recovered by GRBF-NN.

b Distribution of the results of the CCS test between the original and

recovered waveforms for GRBF-NN. (Color figure online)
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was determined to produce excellent performance. With

the rise in artificial intelligence, neural networks and their

applications have developed rapidly. There are many kinds

of structures and methods to choose from, and other net-

work structures may also achieve good results in the

recovery of saturated signals. For instance, neuro-fuzzy

networks have powerful predictive [30] and function

approximation [31] abilities and may be suitable for

recovery of saturated signals. This will be examined in a

future work.

In summary, by choosing the appropriate ANN struc-

ture, incomplete signals can be successfully reconstructed.

This restoration of saturated signal waveforms recorded by

liquid scintillation detectors allows information to be

extracted from high-energy signal waveforms, thereby

providing more helpful information for further analysis. In

future work, the proposed method will be used to recover

and identify the waveforms of very few saturated signals

obtained from the long-term data of CJPL and investigate

the sources of these saturated high-energy signals. This

study offers a new perspective on the combination of

ANNs with particle physics experiments. The widespread

application of this method in high-energy particle and

nuclear physics experiments is worthy of further

investigation.
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