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Abstract The present study explored the 18-kDa translo-

cator protein radioligand 18F-PBR06 as a PET imaging

biomarker for diagnosis of inflammation and compared it

with 18F-FDG for differentiation of inflammation and lung

tumors in animals. 18F-PBR06 was synthesized with an

average decay-corrected radiochemical yield of 30–40%

(end of synthesis, EOS), and the radiochemical purity was

greater than 99%. The inflammation-to-blood ratio of 18F-

PBR06 (3.53 ± 0.26) was higher than the tumor-to-blood

ratio (1.77 ± 0.35) (P\ 0.001). The inflammation-to-

muscle ratio of 18F-PBR06 (2.33 ± 0.64) was also higher

than the tumor-to-muscle ratio (1.45 ± 0.14) (P = 0.036).

Micro-PET/CT images showed high uptake of 18F-FDG in

both inflamed muscles and lung tumor tissues. However,
18F-PBR06 uptake in inflamed muscles remained higher

than that in the lung tumor tissues, following 90 min of

dynamic Micro-PET/CT imaging. Further, macrophages in

the inflammatory regions showed a higher fluorescence

signal than in lung tumor tissues. Results of the study

confirmed that 18F-PBR06 PET/CT imaging allowed for

diagnosis of inflammation. Moreover, 18F-PBR06 uptake in

the inflammatory regions was significantly higher than in

lung tumor tissues, suggesting that 18F-PBR06 PET/CT

imaging has potential to differentiate between peripheral

lung cancer and inflammation nodules.
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1 Introduction

Inflammation is a common defense reaction to injury in

vascularized living tissues, which is shared by many dis-

eases [1]. Positron emission tomography (PET) imaging

using fluorine-18-fluorodeoxyglucose (18F-FDG) has been

widely used to evaluate focal and generalized infectious

and inflammatory disorders [2]. Further, 18F-FDG PET/CT

imaging has been widely used in tumor detection, staging,

and therapy response monitoring [3, 4]. Therefore,

inflammation-specific imaging tracers are needed to pro-

vide more accurate diagnosis of inflammatory diseases and

better understanding of the pathological process.

Accurate pulmonary nodule detection is a crucial step in

diagnosing pulmonary cancer [5]. Currently, differentiating

peripheral lung cancer and inflammation nodules remains a

fundamental unsolved problem [6]. Alternative methods

for distinguishing between peripheral lung cancer and

inflammation nodules include delayed PET/CT imaging of
18F-FDG uptake [7]. However, results of delayed 18F-FDG

PET/CT imaging may provide additional false positive
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results due to its low specificity. Thus, it is essential to

develop an inflammation-specific tracer to provide more

accurate diagnosis of pulmonary cancer.

Furthermore, macrophages play a significant role in

inflammation progression [8]. In inflammation progression,

macrophages are activated to defend against invasive

pathogens. Following activation, the recruited macro-

phages act either as defenders against invasive pathogens

or promoters to stimulate local inflammatory responses by

releasing various chemokines and cytokines, thereby

serving as appropriate biological targets for inflammation-

specific PET imaging tracers [9, 10].

The translocator protein (TSPO), also known as

peripheral benzodiazepine receptor (PBR), is a 18-kDa

outer mitochondrial membrane protein that participates in

the regulation of numerous cellular processes, including

cholesterol metabolism, steroid biosynthesis, cellular pro-

liferation, and apoptosis [11, 12]. This protein is localized

on the outer mitochondrial membrane of several cell types,

including macrophages, neutrophils, and glioma cells, and

has been shown to exhibit low expression in many tumor

cells [11, 12]. This evidence indicated that TSPO tracers

have greater potential as tracers to specifically target

inflammation and to differentiate between peripheral lung

cancer and inflammation nodules. 18F-N-fluoroacetyl-N-

(2,5-dimethoxybenzyl)-2-phenoxyaniline (18F-PBR06) is a

second-generation PET-targeting TSPO tracer, which has

been used in human studies, and has increased binding

affinity, higher signal-to-noise ratio, and low lipophilicity

[12–14]. Previously, 18F-PBR06 has displayed high uptake

in neuroinflammation [15]; however, the potential to detect

inflammation in peripheral tissues has not yet been

evaluated.

In this study, we performed Micro-PET/CT imaging

using 18F-PBR06 and 18F-FDG in rodent lung tumor and

inflammation models. Herein, we aimed to investigate the

feasibility of these tracers to detect and differentiate

between inflammation and lung tumors.

2 Materials and methods

2.1 Synthesis of PET tracers

The radiotracer 18F-FDG was manufactured via a fully

automated FDG MX module (GE Medical Systems, Ger-

many). The radiochemical purity of 18F-FDG was[ 98%.

An automated TRACERlab FXF-N radiosynthetic mod-

ule (GE Medical Systems, USA) was used to prepare 18F-

PBR06 as previously reported [16]. Further, 18F-PBR06

was synthesized using a novel tosylate precursor as

described previously [17]. The synthetic procedures of 18F-

PBR06 are shown in Fig. 1a. Radiosynthesis of 18F-PBR06

using the new tosylated precursor provided similar radio-

chemical purity, higher specific activity, and higher

radiochemical yield in comparison with radiosynthesis

using bromine precursor [17]. The decay-corrected radio-

chemical yields of 18F-PBR06 were 30–40% (end of syn-

thesis, EOS), and the radiochemical purity of 18F-PBR06

was greater than 99%.

2.2 Animal models

The animal study protocol was in accordance with the

principles and procedures outlined in the Guide for the

Care and Use of Laboratory Animals and approved by

Zhongshan Hospital. FVB/N (FVB) and athymic nude

mice (both female, 6–8 weeks) were purchased from Pek-

ing University Laboratory Animal Center (Beijing, China).

Each athymic nude moue was inoculated with 2 9 106

A549 lung cancer tumor cells to establish the lung cancer

model. When the A549 tumor volumes in athymic nude

mice reached 0.5 cm3, the FVB mice were injected with 20

lL turpentine into the muscles of their left hind legs to

establish the inflammation model. In total, 14 animals were

used in the whole study. Three mice each of inflammation

and lung cancer models were used for 18F-FDG Micro-

PET/CT imaging and 18F-PBR06 Micro-PET/CT imaging.

Subsequently, the animals were killed for immunofluores-

cence analysis (Fig. 1c). Further, additional four mice each

of inflammation and lung cancer models were used for the

biodistribution study. All mice were maintained in a tem-

perature-controlled environment under a 12-h light/dark

cycle with free access to food and water.

2.3 Biodistribution studies for 18F-PBR06

The inflammation and lung cancer models were intra-

venously injected with 5.56 MBq of 18F-PBR06 (n = 4)

and killed 120 min later by ethyl ether anesthesia. Blood

was collected from the heart, and normal tissues (kidneys,

brain, liver, spleen, intestine, lung, stomach, pancreas, and

muscles of the right hind leg), inflamed muscles, and A549

tumors were excised. All samples were weighed, and the

radioactivity was measured by a GC-1200 gamma counter

(HYMI-1403-015), followed by decay correction. Tracer

accumulations of a three-dimensional region of interest

(3D-ROI) for a volume were calculated as follows: 3D-

ROI = (radioactivity of organs/radioactivity of injected

drugs)/quality of organs. The results were expressed as the

percentage of injected dose per gram of tissue (% ID/g).

2.4 Micro-PET/CT imaging

A Siemens Inveon Micro-PET/CT scanner (Siemens

Preclinical Solutions, Knoxville, TN, USA) was used for
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Micro-PET/CT scans and imaging analysis. For the

inflammation models, 10-min PET images and 5-min CT

images were acquired on day 4 post-injection of turpentine

oil at 1 h following the 5.56 MBq 18F-FDG injection via

the tail vein. Furthermore, 1.5-h dynamic PET images and

5-min CT images were obtained on day 7 post-injection of

turpentine oil following the 5.56 MBq 18F-PBR06 injection

via the tail vein. For the lung cancer models, 10-min PET

images and 5-min CT images were performed at 1 h fol-

lowing the 5.56 MBq 18F-FDG injection via the tail vein

on day 25 post-inoculation. Subsequently, 1.5-h dynamic

PET images and 5-min CT images were performed fol-

lowing the 5.56 MBq 18F-PBR06 injection via the tail vein

on day 28. The data were reconstructed using a 3D OSEM

algorithm and segmented attenuation. 3D-ROIs were

placed on the inflamed lesions or tumor tissues, and a

threshold of 40% of the maximum uptake was used for the

final ROI drawing.

2.5 Immunofluorescence

The inflammatory regions on day 7 after turpentine

injection and lung cancer models on day 28 after

inoculation into mice were excised and embedded in

paraffin. The inflamed muscle slices and tumor tissue

sections were incubated with rabbit anti-CD68 antibody

(1:100, Abcam, USA) for 1 h, followed by Cy3-conjugated

anti-rabbit secondary antibodies (1:200, Jackson Immuno

Research Laboratories) for 30 min in the dark at room

temperature. After washing with PBS, the slices were

mounted with VECTASHIELD� mounting medium con-

taining DAPI and coverslipped before visualization by

epifluorescence microscopy (IX-81, Olympus).

2.6 Statistical analysis

The data are expressed as mean and standard deviation

(SD). P-values \ 0.05 were considered statistically

significant.

Fig. 1 a Synthetic procedures of 18F-PBR06 using a novel tosylate

precursor. b Radio-HPLC analysis of 18F-PBR06. c Flow chart of the

animal study design. Models of inflammation and lung cancer (n = 3

each) were used for 18F-FDG Micro-PET/CT imaging, followed by
18F-PBR06 Micro-PET/CT imaging 3 days later. Subsequently, the

animals were killed for immunofluorescence analysis (Color online)
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3 Results and discussion

3.1 Biodistribution of 18F-PBR06

The biodistribution data of 18F-PBR06 in the inflam-

mation and tumor models achieved at 120 min post-injec-

tion are presented in Fig. 2a. 18F-PBR06 displayed higher

uptake in the inflamed lesions (4.79 ± 0.48), whereas rel-

atively lower uptake in the lung tumor tissues

(1.55 ± 0.29) (P\ 0.001) was found. Considering that

accumulation in the brain, spleen, lung, blood, kidneys,

right hind leg muscles, and intestines of the inflammation

models was higher than of the lung cancer models (all

P\ 0.05), we used the target-to-nontarget ratios at

120 min post-injection in the animal models to explore the

potential of 18F-PBR06 to differentiate the inflamed lesions

from lung tumor tissues.

The ratio of inflammation to blood (I/B) was

3.53 ± 0.26, and the ratio of tumor to blood (T/B) was

1.77 ± 0.35 (P\ 0.001). The ratio of inflammation to

muscle (I/M) was 2.33 ± 0.64, and the ratio of tumor to

muscle (T/M) was 1.45 ± 0.14 (P = 0.036). The results

revealed that 18F-PBR06 had relatively high uptake in the

inflammatory regions, and accumulation of 18F-PBR06 in

the lung tumor tissues was lower than in the inflammatory

regions.

3.2 Micro-PET/CT imaging

The time activity curves obtained from the dynamic

Micro-PET/CT imaging of 18F-PBR06 are shown in Fig. 3,

indicating that 18F-PBR06 uptake in the inflamed muscles

remained higher than normal muscles during the 90 min of

dynamic Micro-PET/CT imaging (all P\ 0.05). More-

over, 18F-PBR06 uptake in the inflamed muscles remained

higher than tumor tissues. Based on the biodistribution

results, it further confirmed the specificity of 18F-PBR06

for TSPO evaluation.

Figure 4 shows the Micro-PET/CT images of both

tracers obtained from the inflammation and lung cancer

models. All images were viewed from the top. 18F-FDG

showed high uptake in both inflamed muscles and lung

tumor tissues. However, 18F-PBR06 showed high uptake in

inflamed muscles, but low uptake in lung tumor tissues.

The results revealed that, compared to 18F-FDG, 18F-

PBR06 showed superior specificity for inflammation.

3.3 Immunofluorescence

Immunofluorescence staining revealed macrophages in

all specimens of the inflammation and lung cancer models.

As shown in Fig. 5, macrophages in the inflammatory

regions showed a higher fluorescence signal than the lung

tumor tissue. These results revealed that the number of

macrophages in the inflammatory regions was significantly

higher than the lung tumor tissue. Therefore, the amount of

TSPO in the inflammatory regions was also significantly

higher than the lung tumor tissue. These results were

consistent with the biodistribution and Micro-PET/CT

imaging results.

3.4 Statistical analysis

The time activity curves obtained from the dynamic

Micro-PET/CT imaging of 18F-PBR06 revealed higher

uptake in the inflamed muscles than lung tumor tissues

during the 90-min imaging (all P\ 0.05). Biodistribution

demonstrated that the parameters of inflammation to blood

in 18F-PBR06 were significantly higher than those of tumor

to blood (P\ 0.001). Additionally, the parameters of

inflammation to muscle in 18F-PBR06 were higher than

those of tumor to muscle (P = 0.036).

4 Discussion

18F-FDG showed increased accumulation in the

inflamed muscles and lung tumor tissues in this study,

which was in agreement with previous reports, wherein
18F-FDG has high sensitivity but low specificity [5].

Fig. 2 a Biodistribution of 18F-

PBR06 at 2 h in inflammation

and lung cancer models.

b Parameters of target to

nontarget at 2 h after injection

in inflammation and lung cancer

models (Color online)
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However, 18F-PBR06 exhibited high uptake during

inflammation, but low uptake by the lung tumor tissues.

Thus, 18F-PBR06 can be considered as a higher specificity

inflammation imaging tracer compared to 18F-FDG. Fur-

thermore, 18F-PBR06 may have potential to differentiate

between lung cancer and inflammation.

18F-FDG has been used for diagnosis of inflammation

and detection of infectious loci [18–20]. In the experi-

mental inflammatory muscles, 18F-FDG uptake was sig-

nificantly higher than uptake in general muscle tissues.

However, 18F-FDG accumulated not only in the inflamed

lesions, but also in a variety of tumors, including lung

Fig. 3 a Time activity curves

(TACs) of inflamed muscles

during 90-min 18F-PBR06

dynamic Micro-PET/CT

imaging. b TACs of lung tumor

tissues during 90-min 18F-

PBR06 dynamic Micro-PET/CT

imaging (Color online)

Fig. 4 18F-PBR06 and 18F-FDG images of an inflammation model

and lung cancer model. a, d, g, j Coronal views; b, e, h, k transverse

views; and c, f, i, l sagittal views. 18F-FDG accumulation showed high

uptake during inflammation (g–i). 18F-FDG accumulation showed

high uptake in A549 tumor tissues (j–l). 18F-PBR06 accumulation

showed high uptake during inflammation (a–c). 18F-PBR06 accumu-

lation showed low uptake in A549 tumor tissues (d–f) (Color online)
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tumors [21, 22]. Furthermore, 18F-FDG leads to high local

uptake in inflammation and recurrent tumors for evaluation

of changes in lesions after radio- or chemotherapy.

Therefore, the inflammatory changes and recurrent tumors

could not be differentiated from inflammation by 18F-FDG

PET/CT imaging [23, 24].
18F-PBR06 is a novel radioligand that can characterize

inflammation by measuring TSPO receptors; thus, 18F-

PBR06 PET/CT imaging can be a new tool for character-

ization of inflammation. Studies of some of the TSPO-

specific tracers have been reported in neuroinflammatory

diseases [25, 26] and inflammatory diseases of the

peripheral tissues [27, 28]. In our study, we selected 18F-

PBR06 for its increased binding affinity, higher signal-to-

noise ratio, and low lipophilicity, and it has been used in

human studies.

In the current study, we used turpentine oil-induced

inflammatory models to investigate the feasibility of 18F-

PBR06 PET/CT imaging in diagnosing inflammatory dis-

eases. Thus, we selected day 7 after turpentine oil injection

as the window for the macrophage infiltration in the

inflammatory regions. In the acute inflammation phase, the

cell population within the inflammatory regions primarily

included lymphocytes and neutrophils, and the chronic

inflammation phase mainly displayed monocytes and

macrophages [29]. The turpentine oil would not be cleared

easily, and hence, on days 3–6 post-turpentine oil injection,

the inflammatory reaction would become chronic inflam-

mation [30]. Therefore, 18F-PBR06 uptake would reach a

high level on day 7, and combined with the immunofluo-

rescent images, we demonstrated that 18F-PBR06 PET/CT

imaging reflected macrophage infiltration during chronic

inflammation. Therefore, the findings of the current study

may indicate the feasibility of using 18F-PBR06 PET/CT

imaging for assessing inflammation via macrophage

infiltration.

Compared to 18F-FDG, 18F-PBR06 exhibited lower

uptake in lung tumor tissues, thereby designating 18F-

PBR06 as a specific tracer to characterize inflammation. In

addition, 18F-PBR06 showed low uptake in lung tumor

tissues (1.55 ± 0.29), but high uptake during inflammation

(4.79 ± 0.48). Previous reports showed elevated TSPO

Fig. 5 Immunofluorescence of a specimen excised from an inflam-

mation model and lung cancer model. A specimen from an inflamed

muscle (a–c) and A549 tumor (d–f) (all samples were stained with

CD68? and magnified 9 200). The nuclei were stained blue, and

TSPO was stained green. a, d Merged images, and the fluorescence

signal of TSPO in inflamed muscle was much higher than the A549

tumor (Color online)
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levels within some specific tumors, such as ovary, breast,

colon, and prostate cancer [31]. However, in this study,

lung tumor tissues exhibited significantly low uptake of
18F-PBR06 (T/B = 1.77 ± 0.35, T/M = 1.45 ± 0.14) as

compared to the inflamed muscles (I/B = 3.53 ± 0.26,

I/M = 2.33 ± 0.64). In 18F-PBR06 Micro-PET/CT imag-

ing, the lung tumor tissues showed lower uptake than the

inflamed muscles (Fig. 4). Combined with the

immunofluorescence results, the number of macrophages

and the amount of TSPO in the inflammatory regions were

significantly higher than the lung tumor tissues. There

would also be macrophage infiltration in pulmonary

inflammation nodules [32], suggesting that 18F-PBR06

PET/CT imaging may allow for diagnosis of pulmonary

inflammation nodules. Therefore, 18F-PBR06 may be uti-

lized to differentiate between peripheral lung cancer and

inflammation nodules, thus enhancing accuracy in detec-

tion of pulmonary nodules.

Nevertheless, the present study had some limitations.

For better comparisons of the data, this experiment could

be improved by using mice bearing both inflammation and

tumors in the same tissue. 18F-PBR06 showed increased

accumulation in the lung that was higher than uptake in the

inflamed muscles; however, a previous study reported that
18F-PBR06 showed very low uptake by the lung in the

biodistribution of humans [12]. Moreover, a previous study

reported that a TSPO-specific tracer might be a useful tool

for evaluating lung inflammation [28]. Turpentine was used

to induce inflammation in this study; however, turpentine

inhalation might lead to pulmonary inflammation and

empyema [33]. Therefore, pulmonary inflammation

induced by turpentine inhalation might be the reason why
18F-PBR06 showed increased accumulation in the lung in

our study. Taken together, further verification is essential

to evaluate the usefulness of 18F-PBR06 in differentiating

peripheral lung cancer and inflammation nodules.

5 Conclusion

In summary, 18F-PBR06 exhibited a significant uptake

in the inflamed muscles; however, uptake in the lung

tumors was low as compared to 18F-FDG. Therefore, this

study confirmed that 18F-PBR06 PET/CT imaging is useful

in diagnosing inflammation, and 18F-PBR06 can be con-

sidered as a superior inflammation imaging tracer of

greater specificity compared to 18F-FDG. Moreover, 18F-

PBR06 PET imaging may have potential in differentiating

peripheral lung cancer and inflammation nodules based on

its specificity, thereby enhancing the accuracy of pul-

monary nodule detection.
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