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Abstract This work aims at evaluating the reliability of

the GEANT4 (GEometry ANd Tracking 4) Monte Carlo

(MC) toolkit in calculating the power deposition on the

Megawatt Pilot Experiment (MEGAPIE), the first liquid–

metal spallation target worldwide. A new choice of codes

to study and optimize this target is provided. The evalua-

tion of the GEANT4 toolkit is carried out in comparison

with the MCNPX and FLUKA MC codes. The MEGAPIE

is an international project led by the Paul Scherrer Institute

in Switzerland. It aims to demonstrate the safe operation of

an intense neutron source to power the next generation of

nuclear reactors, accelerator-driven systems (ADSs). In this

study, we used the GEANT4 MC toolkit to calculate the

power deposited by fast protons on the MEGAPIE target.

The calculation focuses on several structures and regions.

The predictions of our calculations were compared and

discussed with that of the MCNPX and FLUKA codes,

adopted by the MEGAPIE project. The comparison shows

that there is a very good agreement between our results and

those of the reference codes.
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1 Introduction

The Megawatt Pilot Experiment (MEGAPIE) is an

international project led by the Paul Scherrer Institute (PSI)

in Switzerland and supported by many international

research institutions, such as the Commissariat à l’énergie

atomique in France (CEA), Forschungszentrum Karlsruhe

in Germany (FZK), Centre national de la recherche sci-

entifique in France (CNRS), Agenzia Nazionale per le

Nuove tecnologie in Italy (ENEA), StudieCentrum voor

Kernenergie in Belgium (SCK-CEN), Department of

Energy in the USA (DOE), Japan Atomic Energy Research

Institute (JAERI), and Korea Atomic Energy Research

Institute (KAERI), and the European commission [1]. The

MEGAPIE initiative was launched in 1999 to design, build,

and operate a high-power 1-MW liquid lead–bismuth

(PbBi) spallation target [2]. This target is powered by a

high-energy proton beam (575 MeV) emitted by an

accelerator that consists of three units: the preaccelerator

(Cockroft–Walton; 860 keV), cyclotron injector

(272 MeV), and main ring cyclotron [3]. The power

deposited by protons on the target is one of the crucial

parameters for the design of this target. In fact, this

parameter affects the choice of materials, dimensions, and

heat removal. Moreover, the production of neutrons in the

target is also related to the rate of power deposition, par-

ticularly in the spallation region. This work explores the

power deposition in various areas and structures of the

MEGAPIE target (Fig. 1) using the GEANT4 [4–6] MC

code. The calculation focuses on structures such as the

liquid PbBi metal, main flow guide tube, lower target

container, two walls of the lower target enclosure, helium

gas of the insulation gap, safety hull D2O, and moderator

D2O. In addition to these structures, two very critical zones
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are analyzed, that is the target window and axial area of the

spallation zone.

Although GEANT4 has many advantages, it is very

difficult to handle. Advanced knowledge of C?? language

is necessary for optimal utilization of GEANT4. In addition

to the complexity of the code, the geometry and distribu-

tion of the primary particles are also complex. In fact, the

primary particles constitute a proton beam, which has a

nonregular, two-dimensional distribution. In general, the

simulation of the MEGAPIE target by the GEANT4 code

itself represents a challenge.

We used the two MC codes such as MCNPX [7] and

FLUKA [8, 9] as references to evaluate the predictions of

our calculations. This choice is based on the conclusions of

a benchmark exercise led by the X9 research group of the

MEGAPIE project [10]. Based on these conclusions,

MCNPX and FLUKA were adopted as reference codes for

the project. In addition, most neutronic studies regarding

the MEGAPIE target have been carried out with these two

codes.

2 Materials and methods

2.1 GEANT4 toolkit

The GEANT4 toolkit is a C?? library designed to

simulate the passage of particles using the MC method. It is

a universal code that is widely used worldwide. It covers

several physical areas: nuclear physics, particle physics,

astrophysics, and medical physics. The GEANT4 is not a

simple code, where the user only manipulates predefined

components, but a very flexible toolkit full of features. It

provides the users the possibility to fully customize their

application. It is always allowed to modify available

implementations and/or add others according to the prob-

lem and equipment needs. On the other hand, the GEANT4

toolkit is used as a basis for several specific codes such as

the Gate code [11, 12] and MCADS model [13–16]. The

Gate code is specifically used for medical applications,

whereas the MCADS model, which was developed by the

Frankfurt Institute for Advanced Studies in Germany

(FIAS), is intended to simulate the spallation targets.

In the present simulation, we used GEANT4 version

10.2 [17]. Several improvements were made in this version,

in particular, with respect to the compatibility with parallel

calculations. The GEANT4 code considers two types of

parallelism: clustering [18] and multithreading [19]. Clus-

tering refers to the parallelism with separate memory that

requires multiprocessor equipment, while multithreading

represents parallelism with shared memory, which requires

multicore processors. In this work, we adopted the multi-

threading technique, which is based on the optimization

approach of memory management. Based on this tech-

nique, it was possible to reduce the computation time by a

factor that is almost equal to the number of cores. Our

Fig. 1 (Color online) Geometry of the MEGAPIE target implemented by GEANT4. a Vertical cut of the lower part of the target. b Overview of

the geometry of the target. c Vertical cut of the upper part of the target
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simulation was performed using an application with many

input files. The physics, geometry, materials, source (pro-

ton beam), and methods of results extraction in these files

are all described using C?? language or command lines.

These elements are mentioned in our previous work [20]

and explained in more detail in the following sections.

To ensure the optimal functioning of the GEANT4

toolkit in this simulation, we built GEANT4 version 10.2 in

an environment consisting of the scientific Linux version

7.4 [21], a Class Library for High Energy Physics (CLHEP)

version 2.3.1.1 [22], data analysis framework ROOT ver-

sion 6.12 [23], and Qt development frameworks version

5.6.2 [24].

2.2 Modeling physics

As a toolkit, GEANT4 does not provide physics models

to use by default but provides a wide variety of several

models. It is up to the user to choose which model is

appropriate for the problem. The choice is made according

to the energy field and type of the particle followed. The

energy field of the MEGAPIE target is lower than 1 GeV.

Therefore, we chose the predefined physics list

FTFP_INCLXX_HP to treat the physics processes that may

be produced in the MEGAPIE target, which is one of the

reference physics lists provided by GEANT4. It was

already validated as the most appropriate physics list for

this type of problem [25]. This list includes the following

models: FRITIOF model (FTF) [26, 27] coupled with the

precompound one, Liège Intranuclear Cascade Model,

C?? version (INCL?? or INCLXX) version 5.2.9.5

[28, 29], and high-precision model (HP). The FTF is used

in GEANT4 to simulate the interactions between hadrons,

nucleus, antibaryons, and antinucleus–nucleus. It is suit-

able for energies higher than 3 GeV. The precompound

model is intended to manage the preequilibrium emission

of protons, neutrons, and light ions [30]. The INCLXX

model is used the most for spallation reactions. Its original

version, INCL [31] was written in Fortran 77 and translated

to C?? such that it can be implemented in GEANT4. The

translation was started by Kaitaniemi et al. [32] and

finalized by Mancusi et al. [29]. The Liège Intranuclear

Cascade Model is designed to govern medium-energy

reactions such as spallation reactions. It is permanently

maintained and extended to cover more energies. The

INCL?? version 5.2.9.5 implemented in GEANT4

10.2.03 has 20 GeV as an upper limit. As an intranuclear

cascade model, INCL needs to be coupled with a de-ex-

citation model to describe the two stages of the spallation

reactions. Such reactions are assumed to start and finish

with an avalanche of independent binary collisions and de-

excitation phase, respectively. The nucleus remaining at

the end of the first stage relaxes by emitting low-energy

particles or by fissioning [33]. To control the processes

corresponding to this stage, we coupled INCL?? with the

ABLA version 3 statistical de-excitation model [34–36].

This model is one of the best de-excitation models based on

the International Atomic Energy Agency (IAEA) bench-

mark of spallation models [37, 38]. As mentioned above,

the FTFP_INCLXX_HP physics list also includes the high-

precision model HP, which is appropriate for neutron

tracking below 20 MeV. Finally, note that it is necessary to

add the thermal neutron scattering model [39, 40] to the

previously mentioned models if one is interested in thermal

neutrons.

The threshold energy of secondary production (or Cut)

is one of the most important physics parameters. It has a

great impact on the calculation of the power deposition,

especially for narrow volumes. The smaller this energy is,

the more accurate the power deposition is. However, this

precision comes at a cost. The calculation time increases.

Therefore, a judicious choice of this parameter is essential

for an optimal calculation within a reasonable time.

2.3 Geometry and materials

The MEGAPIE target is a complex device with respect

to the geometry and materials. It consists of two parts that

include many components (Fig. 1). The lower part in

which the spallation reaction occurs is constituted by a

guide tube for the proton beam (AlMg3), double-walled

enclosure (AlMg3), safety hull (D2O) between the two

walls, lower liquid–metal container (martensitic steel T91),

guide tube for the main flow of the liquid metal, central rod

with microdetectors, bypass duct, and filling and draining

tubes. The last five elements are all made of austenitic

stainless steel SS316L. The upper part of the target that is

dedicated to heat removal mainly consists of two electro-

magnetic pumps (copper and ferromagnetic), upper

enclosure, upper liquid–metal container, heat exchanger,

two Diphyl-THT (DTHT) oil boxes, heavy water box, and

expansion tank. All these parts are made of stainless steel

SS316L. In addition to all the previously mentioned ele-

ments, there are shielding blocks (tungsten) and the target

head with its equipment. Figures of the geometry obtained

with GEANT4 were published in the previous work [19].

The dimensions of the above-mentioned elements and

other details can be found elsewhere [41, 42].

2.4 Proton beam

In the MEGAPIE target, a monoenergetic proton beam

with an energy of 575 MeV and intensity of 1.74 mA

induces the spallation reaction. As already mentioned, the

target is supplied with this beam by an accelerator with

three units. Each unit raises the energy of the protons to a
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given value until it reaches 575 MeV. The spatial distri-

bution of the proton beam (Fig. 2) is a parameter that

strongly impacts the functioning of the target. It affects the

production of neutrons, power deposition, and life of the

materials (mechanical stress). Consequently, the safety of

the device is affected by this parameter. On the other hand,

the results of the calculations are very sensitive to any

change in the distribution of the proton beam. Therefore, a

precise description of the proton beam profile is essential to

obtain correct results. The definition of the source (proton

beam) in the present simulation was a difficult task. The

difficulty is due to the complexity of the beam distribution

and the lack of a function describing it correctly. To

overcome this difficulty, we proceeded with a superposi-

tion of many sources, each with its own distribution and

probability/intensity. The description was made in a

macrofile, and the implementation was accomplished using

a dedicated class, that is, G4GeneralParticleSource. Note

that previous trials were made to determine a function that

can describe the proton beam profile. Equation (1) [10]

represents one of the functions adopted by the scientific

community in charge of the MEGAPIE project. However,

based on c mapping and the results obtained from the

MCNPX simulation, Eq. (1) does not accurately describe

the proton beam profile [43].
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3 Results and discussion

3.1 Power deposited on the target

The MEGAPIE target is designed in a way that the

maximum power of protons (1 MW) can be dissipated in

its lower part, particularly in the spallation region (Fig. 1).

The simulation shows that approximately 85.1% of this

power is dissipated in this part of the target. Approximately

71% of the power is deposited in the liquid PbBi metal

(actual target), whereas 14% of the power is divided

between the confining structures (SS316L, T91, and

AlMg3), coolant (D2O), and moderator (D2O).

The power deposited in each component depends on the

position, dimensions, and constituent material. Table 1

shows the power dissipated in the various elements of the

MEGAPIE target. The power values were previously cal-

culated with the FLUKA and MCNPX codes [44]; the

GEANT4 toolkit was used in this work. Table 1 indicates

that the GEANT4 results are all framed by those of

MCNPX and FLUKA, except for the power deposited on

the insulation gap ‘‘gas_Gap.’’ This difference is quite

normal because it is due to the type of gas used in this area

of the target. The MCNPX and FLUKA calculations were

based on argon (Ar). Conversely, helium (He) was used as

a gas for the GEANT4 calculation [40]. The fact that all

our results are in good agreement with that of the refer-

ences indicates that the GEANT4 code provides accurate

results. This conclusion can mainly be justified by the fact

that the version of GEANT4 used is very recent compared

with those of FLUKA and MCNPX. Therefore, the

GEANT4 code has the potential to provide good results.

However, the results need to be compared with experi-

mental data to support this conclusion.

3.2 Power deposited in the target window

The window represents the most critical zone of the

MEGAPIE target. It constitutes the interface between the

proton beam and target. Thus, it is the most irradiated part

of the target. Consequently, the window is the part that is

most vulnerable to temperature increase and structural

stress. Moreover, it is subjected to mechanical constraints

due to the weight of the liquid PbBi metal and the differ-

ence in the pressure between the PbBi and helium gas

sides. Therefore, the life of the target and its operation

safety are directly related to the quantity of the power

deposited in its window. Figure 3 shows the distribution of

the power deposited in this part calculated by GEANT4

and FLUKA as a function of x at y = 0. Gaussian curves

were obtained, with a maximum at the center (x = 0,

y = 0). The agreement between the results of GEANT4 andFig. 2 (Color online) Two-dimensional distribution of the proton

beam implemented by GEANT4
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that of the reference code FLUKA [44] is very clear based

on these curves. Note that the difference does not exceed

4% (maximum) and on average is 0.3% (Fig. 4). Table 2

shows a comparison between the maximal power values

deposited in the structures of the target window. These data

were calculated with GEANT4, FLUKA, and MCNPX.

Once again, the values computed by GEANT4 are framed

by the reference values. This confirms the ability of

GEANT4 to provide results with satisfactory precision.

3.3 Power deposited along the z-axis of the target

The assessment of the power along the z-axis of the

target is both of neutronic and thermohydraulic interest. It

allows the location of the Bragg peak and therefore the

identification of the spallation region, which will be useful

for the dimensioning of any reactor powered by a similar

target. The determination of the power deposited in the

axial zone of the target also allows to consider which heat

removal system should be used. Figure 5 represents the

map of the volume density of the power deposited in the

Table 1 Power deposition on structure materials calculated by GEANT4, FLUKA, and MCNPX

Material Power deposition (kW) Relative difference (%)

GEANT4 FLUKA MCNPX GEANT4/FLUKA GEANT4/MCNPX MCNPX/FLUKA

PbBi 709.7 710.8 708.2 0.15 0.21 0.37

T91 8.72 8.60 8.94 1.40 2.46 3.95

AlMg3_in 4.56 4.48 4.60 1.79 0.87 2.68

AlMg3_ext 4.19 4.15 4.21 0.96 0.48 1.45

Gas_Gap 0.00076 0.012 0.016 – – 33.33

D2O 3.92 3.83 3.96 2.35 1.01 3.39

Moderator 114.9 114.4 115.4 0.44 0.43 0.87

Guid_Tub 5.33 5.55 5.23 3.96 1.91 5.77

Total 851.4 851.8 850.6 0.05 0.09 0.14
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Fig. 3 (Color online) Power deposited in structures of the window of

the MEGAPIE target calculated by FLUKA and GEANT4
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Table 2 Maximal power deposited in the window structures

Material Maximal deposited power (w/cm3)

GEANT4 FLUKA MCNPX

T91 902.7 879.5 924.8

AlMg3_in 332.6 321.9 330.4

AlMg3_ext 313.6 309.4 321.1
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Fig. 5 (Color online) Power deposition map along the z-axis of the

target, calculated with GEANT4, FLUKA, and MCNPX
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central region of the target. The radius of this region is

r\ 0.3 cm; the calculations were made using GEANT4,

FLUKA [44], and MCNPX [44]. The power deposition

reaches its maximum of * 1 kW/cm3, approximately

2 cm from the window. It then decreases with the altitude

z up to 26 cm, where a peak can be observed, that is the

Bragg peak. Above 26 cm, the deposited power signifi-

cantly decreases until it is practically null at approximately

27.5 cm. The curves show that the results are in very good

agreement. The curves in Fig. 6 representing the local

ratios between GEANT4/FLUKA, GEANT4/MCNPX, and

MCNPX/FLUKA confirm this agreement. The only

observed disparity is related to the position of the Bragg

peak. A lag of * 0.3 cm was observed between the

FLUKA and GEANT4 and MCNPX results. This differ-

ence is mainly due to the physical choices adopted by each

code.

4 Conclusion

In this paper, we evaluated the power deposition on the

MEGAPIE spallation target using a MC method based on

the GEANT4 toolkit. We faced many challenges during the

accomplishment of this work: (1) the definition of a very

complicated geometry; (2) the definition of a two-dimen-

sional and nonregular proton beam; (3) the choice of the

suitable physics for the problem; and (4) the development

of a program providing correct results. The implemented

geometry and proton beam are very similar to that of the

references, as indicated in Figs. 1 and 2. The physics are

governed by the combination of physics models used in

this work: FTFP_INCLXX_HP coupled with the ABLA

model. The results are in very good agreement with those

of the reference codes FLUKA and MCNPX. Furthermore,

the difference between our results and that of FLUKA and

MCNPX is smaller than that between the FLUKA and

MCNPX data. It is remarkable that the GEANT4

predictions are closer to that of the MCNPX code than to

that of FLUKA. In general, the differences are mostly due

to geometry and proton beam approximations, especially

due to physics models and methods of sampling adopted by

each code. However, our results are framed by the results

of the references, which indicate that the GEANT4 simu-

lation might be optimal. Finally, the GEANT4 toolkit

reproduced the geometry and power deposition of

MEGAPIE experiment well. Therefore, GEANT4 can be

considered to be one of the most reliable and competitive

codes for the simulation of great physics experiments.
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