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Abstract While the high-energy radiation effects on

polypropylene, which are crucial for the cable industry for

nuclear power plants, have been thoroughly studied, the

property changes of PP at low-dose-rate electron-beam

irradiation are far from elucidated. Herein, the influence of

electron-beam irradiation on the structure and properties of

PP was examined. The static EB irradiation conditions

were 1.2 MeV at a low dose rate of 20 kGy/h to achieve

absorbed doses ranging from 45, to 60, 100, and 200 kGy.

The molecular structure was first evaluated by measuring

the carboxyl index and the relative radical concentrations

via Fourier transform infrared spectroscopy and electron

spin resonance, respectively. Mechanical, differential

scanning colorimetric, and rheological tests were carried

out to further investigate the changes in the properties

(tensile, crystalizing, and viscoelastic properties) of irra-

diated PP, which showed good agreement with the struc-

tural analysis results. We found that radio-oxidative

degradation (chain scission) was predominant, which can

be due to the low dose rate facilitating oxygen diffusion

into the PP matrix during electron-beam irradiation.

Keywords Electron beam � Radiation effect � Low dose

rate � Polypropylene

1 Introduction

Nuclear cables are regarded as vital components for

nuclear power plant (NPP) control systems and instru-

mentation [1]. Safety-related cables must be qualified to be

functional not only under special NPP service conditions

over their lifetime, but also against severe design-basis

event (DBE) conditions [2, 3]. Polyolefin is the base

material most used in the cable industry. Thus, the effects

of high-energy radiation on polyolefin have attracted

attention from the academic and industrial fields, especially

after the Fukushima Daiichi nuclear event [4–6]. Gener-

ally, irradiation (e.g., c-rays, b-rays, X-rays, electron

beams, or ion beams) of polyolefin leads to the formation

of free radicals [7]. Polyolefin then undergoes grafting of

long chain branches (LCB) [8], chain scissions [9], and

cross-linking [10] reactions by virtue of the exited species.

Previous studies showed that the ultimate radiation effects

on polyolefin are mainly related to various factors includ-

ing molecular structure [11], atmosphere [12], and radia-

tion conditions (type of radiation, dose rate, and absorbed

dose) [13].

Polypropylene (PP) is one of the most used polyolefin

materials in the nuclear cable industry because of its

moisture [14] and chemical resistance [15], low density,

and relatively low cost [16]. Compared with low-density

polyethylene (LDPE), PP displays better rigidity and
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thermo-mechanical resistance [17]. However, PP is more

susceptible to degradation under irradiation due to the

tertiary carbon atom at every monomer unit [18]. It has

been verified that b-chain scission is predominant when PP

is exposed to high-energy irradiation [19]. There are many

reports available on the c-ray radiation effects on PP to

understand the radiation-induced degradation mechanisms

of PP. Hnát et al. [20] have reported that b-rays were

predominant within the radiation source (involving

approximately 80% soft b-ray irradiation) during DBEs.

Moreover, the requirement of low-dose-rate b-ray irradia-

tion tests has been put forward according to third-genera-

tion NPP design, such as AP1000. AP1000 regulations,

developed in US-based company Westinghouse, point out

that investigations on b-ray irradiation should be carried

out in nuclear security systems for reducing the probability

of occurrence of human error. Additionally, AP1000 reg-

ulations recommend using 1.2 MeV electron beams (EB) at

a dose rate of 20 kGy/h to simulate b-ray irradiation during

the cable material tests. Abraham et al. [21] have investi-

gated EB irradiation at 3.5 MeV with high dose rates, and

their results indicated that the degradation of PP was pre-

dominant and increased with increased absorbed doses.

Recently, Jahani et al. [22] reported that the kinetics of PP

degradation reactions were determined by its chemical

structure and irradiation conditions under 10 MeV EBs.

These results pose several questions. The information on

EB radiation effects at low dose rates is not available in the

literature, because EB irradiation is usually performed at

high dose rates during polymer processing. It is imperative

to understand EB irradiation effects with low dose rates on

PP, from the point of view of the NPP cable industry.

The main objective in this paper is to investigate the

radiation mechanisms of PP under 1.2 MeV static EB

irradiation with a dose rate of 20 kGy/h. For this purpose,

atactic PP without antioxidants was irradiated to achieve

absorbed doses of 0, 45, 60, 100, and 200 kGy at an

ambient temperature of 25 �C in air. Changes in the

molecular structure of the irradiated PP were measured in

terms of the carboxyl index (CI) and the relative radical

concentration (CRadical) using Fourier transform infrared

spectroscopy (FTIR) and electron spin resonance (ESR)

measurements, respectively. Mechanical, differential

scanning calorimetric (DSC), and rheological tests were

carried out to further investigate the changes in the prop-

erties (tensile, crystalizing, and viscoelastic performance)

of irradiated PP, as a function of the absorbed dose. From

these characterizations, it is possible to get the quantitative

information on the changes in the properties of PP by EB

irradiation required by AP1000 regulations.

2 Experimental section

2.1 Materials

The PP used is a homopolymer of atactic configuration

(Sumitomo Co., Japan) with the trade name of AH561. The

density (q) and melt flow index (MFI) of this PP were

0.90 g cm3 and 0.3 g/min (ASTM D-1238), respectively.

The melting point (Tm), crystallinity (Xc), and crystalliza-

tion temperature (Tc) of PP were measured to be 163.2 �C,
38.1%, and 113.3 �C, respectively, obtained via thermal

analysis.

2.2 EB irradiation

PP sheets (10 9 10 9 1 mm3) were irradiated statically

with 1.2 MeV at a dose rate of 20 kGy/h to achieve

absorbed doses of 0, 45, 60, 100, and 200 kGy. All the

irradiated samples were immediately preserved in a nitro-

gen atmosphere at 10 �C until further characterizations.

2.3 Characterization

2.3.1 Molecular structure of the irradiated PP

ESR measurements (FA200, JEOL, Japan) were taken

immediately after irradiation. The spectroscopic parame-

ters are listed as follows: microwave frequency of

9078.29 MHz, central magnetic field of 325.41 mT, and

modulation frequency of 100.0 kHz. The double integra-

tion method was utilized to calculate CRadical values.

FTIR measurements (VERTEX 70 V, Bruker, Ger-

many) were taken in transmittance mode. FTIR spectra

were recorded with 64 scans at a resolution of 1 cm-1. CI

values were calculated by Eq. (1) from FTIR spectra,

CI ¼ I1170 cm�1

I1720 cm�1

: ð1Þ

Here I1170 cm�1 and I1720 cm�1 refer to the integral area of the

characteristic peak of methyl and carbonyl groups,

respectively.

2.3.2 Properties of the irradiated PP

Tensile tests were carried out at 25 �C using an uni-

versal material testing system (model 5966, Instron, Ger-

many) to investigate PP’s mechanical properties. Samples

were punched into a dumbbell shape (180.53 mm3), and

the cross-speed was 10 mm/min.

DSC measurements (Q2000, TA, USA) were taken for

thermal analysis. Tests were conducted at a heating rate of

10 �C/min from - 50 to 200 �C. All specimens were tested

in a continuous high-purity nitrogen atmosphere.
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Rheological behaviors were determined using a rotating

rheometer (MCR301, Anton Paar GmbH, Austria) with a

parallel-plate model (with a gap of 1 mm and a diameter of

25 mm). Amplitude sweeping was first conducted at

200 �C with a fixed frequency of 1 Hz. The strain ampli-

tude (c) ranged from 0.01 to 1000%. A linear viscoelastic

(LVE) region was determined (cLVE = 0.1 - 100%) based

on the amplitude sweeping tests. Small amplitude oscilla-

tion shear (SAOS) tests were then carried out with a c of

5% at 200 �C in the frequency range of 0.01 to 500 rad/s.

Cole–Cole plots, which are a representative criterion, were

plotted according to the SAOS data. For better under-

standing, weighted relaxation spectra and molecular weight

distribution curves were deduced via the edge preserving

regulation [23] and the Laplace transform [24] methods

using the Rheoplus software.

3 Results and discussion

3.1 Effects on the molecular structure of PP

In order to clarify the chemical reactions during

1.2 MeV EB irradiation at 20 kGy/h, the ESR and FTIR

spectra of pristine and irradiated PP are illustrated in

Fig. 1.

ESR measurements were a useful tool for analyzing the

presence and type of free radicals of the radiated speci-

mens. Figure 1a shows the ESR plots of the irradiated PP

for various absorbed doses, namely 45, 60, 100, and

200 kGy, which were measured immediately after irradi-

ation. It is clear that the intensity of the ESR signal

increased as the absorbed dose increased. The CRadical

values were determined from the ESR curves, as listed in

Table 1 and plotted in Fig. 1c. The variation of the CRadical

values agreed well with the plot presented in Fig. 1a,

increasing from 5.65 9 1014 spin/g (45 kGy) to

6.65 9 1014 spin/g (60 kGy), 12.9 9 1014 spin/g

(100 kGy), and 17.8 9 1014 spin/g (200 kGy). CRadical

values after 144 h were also calculated and are shown in

Fig. 1c (details in Table 1). These suggest that the con-

centration of radicals in this system levelled off and

decayed within 6 days. Moreover, multi-peaks with com-

plex shapes were observed for all specimens. We deter-

mined that high-energy irradiation of PP initially produces

alkyl radicals [25]. Due to the existence of oxygen (O2),

alkyl reacted with O2 to form peroxide radicals and even

ROOH via hydrogen abstraction reactions [25, 26]. Mow-

ery et al. [26] indicated that mainly tertiary radicals formed

upon irradiation of PP. The results indicated the coexis-

tence of tertiary alkyl and peroxide radicals when PP was

irradiated.

Figure 1b displays the expanded FTIR spectra of the

pristine and irradiated PP. The recorded curves were nor-

malized for better comparison, based on the characteristic

peak at 1170 cm-1 (stretching of –C–CH3 on the PP

chain). The largest structural variation occurred at

1720 cm-1, corresponding to the stretching vibration of

carbonyl groups, which were not found for the pristine PP.

As the absorbed dose increased, the intensity of the car-

bonyl band increased proportionally. The CIs of the irra-

diated specimens were calculated from the FTIR spectra

using Eq. (1), and we found that the CI values showed a

positive correlation with the absorbed doses, as illustrated

in Fig. 1c and listed in Table 1. These results are consistent

with the work of Sevil et al. [27], which involved c-irra-
diated isotactic polypropylene. Khang et al. [28] and

Fintzou et al. [29] also observed similar results in previous

studies, where they claimed that the radiation-induced

oxidation and that it was the reason for the increase in the

CI values. It is possible that the EB irradiation in air

allowed for the formation of oxidized groups from chain

scission reactions as a result of the presence of oxygen.

Besides, slightly increased intensities of weak signals at

1044 and 943 cm-1 were observed. These peaks were

attributed to the stretching vibration of C–O–C and ter-

minal C=C bonds on the PP chains [30]. This can be

explained by the chain scission reaction of PP macro-
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Fig. 1 (Color online) a ESR spectra and b FTIR spectra of pristine and irradiated PP; c The CI and relative radical concentrations (CRadical:

immediately and after 144 h) of the irradiated PP specimens as a function of absorbed dose, ranging from 45 to 200 kGy
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radicals under irradiation. We acknowledged that the ter-

mination mechanisms of free radicals, such as branching

(grafts formation), cross-linking, and degradation (forma-

tion of oxidized products), depend strongly on molecular

structure. Compared with LDPE, PP is a more complicated

system involving primary, secondary, and tertiary carbons.

A previous study confirmed that the majority of the oxi-

dation-functionalized groups form on the tertiary carbons

of PP because the intermediate tertiary radicals are more

stable [26]. These intermediate radicals can further react to

develop tertiary oxidized products, which is in good

agreement with our FTIR observations. We determined that

oxidative degradation was predominant for PP irradiated

by 1.2 MeV EBs at 20 kGy/h.

3.2 Effects on the property of PP

In order to verify the proposed oxidative degradation of

PP under low-dose-rate EB irradiation, the changes in the

properties in dependence of the absorbed dose were taken

into account. Variations on the mechanical, thermal, and

rheological performances of the irradiated PP are discussed

in this section.

3.2.1 Mechanical properties

Figure 2a, b shows the stress–strain curves of PP as a

function of the absorbed dos. The pristine PP showed

typical ductile tensile behaviors, while all of the irradiated

PP specimens became brittle, as shown in Fig. 2a. More-

over, Fig. 2c indicates that the values of elongation at

break decreased as the absorbed dose increased. The data

on tensile strength and Young’s modulus are also shown in

Fig. 2c (and are detailed in Table 1). While the Young’s

modulus values remained constant, both the values of

tensile strength and elongation at break decreased as the

absorbed dose increased. This trend is consistent with

previous observations that reported that the loss of

mechanical properties was closely related to oxidative

chain scission of polymers upon ionizing radiation [31].

We can speculate that it was the radiation-induced oxida-

tive degradation that led to the deterioration of the

mechanical properties.

3.2.2 Thermal behaviors

The shape of the calorimetric curves can provide

effective information on the structural characteristics and

thermal history of irradiated samples. DSC thermograms of

the pristine and irradiated PP are illustrated in Fig. 3.

Detailed thermal parameters are listed in Table 2.

Figure 3a shows the recorded first heating curves. Pris-

tine PP exhibited only one melting peak at 165.3 �C,
indicating that PP is characterized by one crystalline form

[19, 32]. After irradiation, the melting peak of PP shifted to

a lower temperature with a shoulder peak. Besides, both

melting peak temperatures and the melting enthalpy

(Table 2) decreased as the absorbed dose increased. Sim-

ilar trends were found for Xc1 values. Because the crystal

form of the irradiated PP was unchanged, as determined

from the Raman spectra (Fig. 3d, e) and X-ray diffraction

results (Fig. 3f), this implies that PP became more amor-

phous after irradiation. These results are in good agreement

with previous works, where a decreasing Tm for PP under

increasing doses of c-ray irradiation was observed [33].

Yagouni et al. [34] reported that irradiation on PP causes

molecular variations that shorten the polymer chains and

thus reduce the Tm values as a function of the absorbed

dose.

The cooling thermograms are shown in Fig. 3b. We

found that the crystalizing temperature (Tc) of the irradi-

ated PP was always higher than that of pristine PP

(113.3 �C), while the Tc values decreased as the absorbed

dose increased from 45 (115.3 �C), to 60 (115.0 �C), 100

Table 1 Numerical data for CRadical and CI and the mechanical properties of 1.2-MeV-EB-irradiated PP at a low dose rate (20 kGy/h)

Absorbed dose

(kGy)

CRadical, 3 h
a (1014

spin/g)

CRadical, 144 h
a (1014

spin/g)

CIb

(%)

Yielding strength

(MPa)

Elongation at break

(%)

Young’s modulus

(MPa)

0 – – 0.9 34.3 ± 2.8 832.9 ± 18.5 808.9 ± 1.6

45 10.8 5.65 11.6 33.9 ± 1.9 8.5 ± 3.2 1008.7 ± 3.5

60 11.8 6.65 16.9 31.3 ± 1.6 5.7 ± 3.6 1078.9 ± 2.6

100 21.6 12.9 28.9 21.8 ± 1.8 3.3 ± 1.8 1012.5 ± 2.3

200 413 17.8 39.6 12.4 ± 0.1 1.9 ± 0.1 1132.9 ± 1.8

aSample dissolved completely in o-xylene
bCRadical calculated from the ESR data of LDPE sheets for various absorbed doses, measured immediately after the irradiation process.

cThe CIs were calculated from the FTIR spectra as CI ¼ I
1170 cm�1

I
1720 cm�1

, where I1170 cm�1 and I1720 cm�1 refer to the integral area of the characteristic peaks

of methyl and carbonyl groups, respectively
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(114.3 �C), and 200 kGy (113.8 �C). These results suggest
that the occurrence of the degradation on the PP chains

somewhat reduced the number and size of the crystal

domains. Because the major radiation effect on PP was

degradation, PP with reduced molecular weight was

formed as a function of the absorbed dose. In consequence,

several spherulites of smaller dimensions were formed,

which explains the reduced Tc values as well as the

shoulder melting peak for increased absorbed doses.

A second heating procedure was conducted to investi-

gate the melting and enthalpy variations of the irradiated

PP, as shown in Fig. 3c. Both the melting point and

enthalpy values in the second scan slightly decreased,

compared with their first scan counterparts (Table 2). This

can be attributed to re-degradation reactions during the first

heating process by virtue of ‘‘frozen radicals’’ within

crystalline regions [8, 15].

Based on the DSC results, the reduction in Tm can be

attributed to accelerated chain scission reactions during

irradiation. These reactions reduce the amount of tie

molecules in the amorphous regions and, thus, weaken the

laminar concentrations [14, 35].

3.2.3 Rheological properties

The melt rheological behaviors were very sensitive for

assessing the changes in the molecular structures, such as

chain scission, branching, and cross-linking [14].
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Amplitude sweeping tests were first carried out, as shown

in Fig. 4a. We observed that the values of the complex

modulus (|G*(c)|) decreased over the whole strain ampli-

tude (c) range, as a function of the absorbed dose. This was

consistent with previous results indicating that oxidative

degradation was predominant when PP was irradiated by

1.2 MeV EBs at low dose rates. Based on these results, the

critical c value within the LVE region of all specimens was

determined as 5% and was used for further investigation.

Figure 4b, c shows the complex viscosity (|g*(x)|) and
the damping factor (tan d(x)) of the samples against angular

frequency (x), measured through SAOS tests. More

detailed information on the linear viscoelastic behaviors,

such as the G0
(x) and G00

(x) values of the irradiated PP, are

shown in Fig. 4d, e. Pristine PP exhibited a Newtonian

behavior up to an x of 0.6 rad/s. Upon irradiation, |g*(x)|
decreased severely within the full range of x measured.

Moreover, the reduction rate of |g*(x)| was proportional to
the absorbed dose. Similar trends were found, as shown in

Table 2 Thermal parameters of the pristine and irradiated PP obtained from the DSC measurements

Absorbed dose (kGy) Tc
a (�C) Tm,first

b (�C) Tm,second
c (�C) DHc

d (J/g) DHm,first
e (J/g) DHm,second

f (J/g) Xc1
g (%) Xc2

h (%)

0 113.3 165.3 163.2 86.3 79.4 79.6 38.0 38.1

45 115.3 155.2, 162.4 155.2, 161.1 89.6 91.6 89.2 43.8 42.7

60 115.0 153.5, 160.8 153.1, 159.7 86.4 90.2 88.6 43.2 42.4

100 114.3 152.9, 159.5 151.6, 158.3 82.3 92.6 81.0 44.3 38.8

200 113.8 150.1 146.9, 154.8 76.2 88.5 74.3 42.3 35.6

aTc: peak temperature during the cooling scanning in the DSC data
bTm,first: peak temperature during the first heating scanning in the DSC data
cTm,second: peak temperature during the second heating scanning in the DSC data
dDHc: enthalpy of crystallization from the cooling scanning
eDHm,first: enthalpy of fusion from the first heating scanning
fDHm,second: enthalpy of fusion from the second heating scanning
gXc1 and

hXc2: PP crystallinity calculated from DHm,first and DHm,second using 209 J/g of DH�m for 100% crystalline PP, respectively
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Fig. 4c. Tan d(x) is a measure of the damping behavior of

polymers21 which can be correlated with radiation effects

[36]. Pristine PP displayed a monotonic reduction in tan

d(x). Irradiated PP showed an increase in tan d(x)
throughout the whole x range, which exhibited a positive

correlation with the absorbed doses. The occurrence of the

maximum peak was found for PP irradiated at 200 kGy,

corresponding to its reduced elasticity.

Advanced rheological functions were calculated for

better quantification, as shown in Fig. 5. First, molecular

weight distribution (MMD) plots were made for verifying

the linear rheological characteristic of the irradiated PP.

MMD spectra were derived from the SAOS tests using the

Rheoplus software. As illustrated in Fig. 5a, bimodal

molecular weight distributions (MWDs) were found with

regard to pristine PP. The peak of the MWD at lower

molecular values became sharper and stronger as the

absorbed dose increased. The changes at higher molecular

values were complex, which may be due to the coexistence

of chain scission, branching [37], and cross-linking reac-

tions [38] of the irradiated PP. The reason for this trend

will be clarified in our future works.

Cole–Cole plots have been identified as a representative

criterion to underline the viscoelastic, viscosity, and elastic

responses of polymers [21, 39]. The Cole–Cole plots of the

pristine and irradiated PP specimens for various doses are

shown in Fig. 5b, in which the imaginary part of |g*(x)|
(i.e., g00(x)) is plotted versus its real part (g0(x)). All samples

displayed a typical arch-like shape. The rising ramp was

ascribed to the mainly elastic response, while the

descending one was attributed to the viscosity at the lower

x region. As the absorbed dose increased from 45 to

100 kGy, the intensity of the Cole–Cole peaks decreased

significantly. We observed that only a reducing ramp was

observed for the sample irradiated at 200 kGy, indicating a

completely viscous behavior. These results are in good

agreement with the work done by Giordano et al. [39], in

which they attributed this phenomenon to the degradation

of the PP copolymers.

Then, the weighted relaxation spectra, deduced from the

SAOS tests, were plotted and are shown in Fig. 5c. These

spectra are a useful tool for exploring small molecular

processes [37, 40–42]. A bimodal peak at 0.4 s was found

for pristine PP, which can be attributed to the PP’s seg-

mental relaxation process. It is obvious that the amplitude

of this relaxation peak decreased as the absorbed dose

increased, implying the facilitated dynamics of the PP

segments due to oxidative degradation. More detailed cri-

teria, such as the vGp plot (shown in Fig. 5d) and the plot

of |g*(x)| versus |G*(x)| (shown in Fig. 5e), were also

acquired, which showed similar trends as discussed above.

The mechanical, thermal, and rheological properties of

the irradiated PP exhibited great consistence with the

structural observations mentioned above. It is evident that

the chain scission reactions were predominant when PP

was irradiated by 1.2 MeV EBs at low dose rates.

0 1000 2000 3000 4000 5000 6000

0

300

600

900

1200

1500

0 100 200 300 400 500

0

30

60

90

120

η′ (Pa.s)

PP
45 kGy
60 kGy
100 kGy
200 kGy

η″
(P

a.s
)

(b)

105 106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

106 2x106 3x106 4x1065x106

0.00

0.02

0.04

0.06

0.08

0.10

0.12

W
 (l

og
m

)

Molar mass (g/mol)

PP
45 kGy
60 kGy
100 kGy
200 kGy

(a)

10-3 10-2 10-1 100 101 102 103

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k (c)

0.01s

0.01s

0.04s

10-3 10-2 10-1 100 101 102 103

0.0

20.0

40.0

60.0

80.0

100.0

PP
45 kGy
60 kGy
100 kGy
200 kGy

0.4s

τ H
τ

 (P
a.s

)

Relaxation time τ (s)

100 101 102 103 104 105
20

30

40

50

60

70

80

90

Ph
as

e a
ng

le,
 δ 

(°)

Complex modulus, |G∗| (Pa)

PP
45 kGy
60 kGy
100 kGy
200 kGy

(d)

100 101 102 103 104 105
101

102

103

(e)

η∗  (P
a.s

)

G∗ (Pa)

PP
45 kGy
60 kGy
100 kGy
200 kGy

Fig. 5 (Color online) aMolecular weight distribution curves, b Cole–Cole plots, c weighted relaxation spectra, d vGp (van Gurp–Palmen) plots,

and e plot of |g*(x)| versus |G*(x)| of the pristine and irradiated PP specimens for various absorbed doses
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4 Conclusion

Because information on the EB radiation effects at low

dose rates is not available in the literature, it is imperative

to understand the EB irradiation effects at low dose rates on

PP, from the point of view of the NPP cable industry. This

study was carried out mainly to investigate the effects of

1.2 MeV EB irradiation at a static low dose rate of 20 kGy/

h, as required by the AP1000 regulation, on the structure

and properties of PP and their dependence on the absorbed

dose, ranging from 45, to 60, 100, and 200 kGy. The

architecture of the irradiated PP was evaluated by inter-

preting FTIR and ESR measurements, while its properties

were estimated from mechanical, thermal, and rheological

data. This study leads to the following conclusions. First,

we observed that both the CIs and CRadical values increased

as the absorbed dose increased, implying the gradual

increase in oxidative degradation reactions upon irradiation

in the presence of oxygen. Secondly, tensile tests showed

that the increased absorbed doses, ranging from 45 to

100 kGy, caused deterioration of the mechanical proper-

ties, such as reduced tensile strength and elongation at

break values, which can be attributed to chain scission

reactions of PP upon irradiation. Besides, we found that the

overall crystallization behaviors of the irradiated PP

changed as a function of the absorbed dose. Tm, DHm, Xc,

and Tc values decreased as the dose increased, which is

indicative of spherulites with a smaller size due to the

predominant chain scission reactions. Moreover, our rhe-

ological results showed high sensitivity to the structural

changes of the irradiated PP; we found that both the |G*(c)|

and |g*(x)| values of the irradiated PP significantly

decreased as the absorbed dose increased, determined via

the amplitude sweeping tests and the SAOS tests, respec-

tively. These phenomena were clarified using advanced

rheological functions, such as MWD curves, Cole–Cole

plots, and vGp plots. It is clear that the results above

indicate a predominant oxidative degradation of PP irra-

diated by 1.2 MeV EBs at a static low dose rate of 20 kGy.
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