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Abstract A method of spectrometry analysis based on

approximation coefficients and deep belief networks was

developed. Detection rate and accurate radionuclide iden-

tification distance were used to evaluate the performance of

the proposed method in identifying radionuclides. Experi-

mental results show that identification performance was not

affected by detection time, number of radionuclides, or

detection distance when the minimum detectable activity of

a single radionuclide was satisfied. Moreover, the proposed

method could accurately predict isotopic compositions

from the spectra of moving radionuclides. Thus, the

designed method can be used for radiation monitoring

instruments that identify radionuclides.

Keywords Approximation coefficient � Deep belief

network � Spectrometry analysis � Radionuclide
identification � Detection rate

1 Introduction

Distinguishing useful information from irrelevant

information is one of the basic concerns of any spectro-

metric method. However, extracting the correct informa-

tion from spectral sections is a very complex task for

traditional algorithms that identify radionuclides based on

peak search because of the limited resolution of the

equipment and the often-overlapped peaks [1]. Thus,

deconvolution, expert knowledge, and human participation

are needed.

An artificial neural network (ANN) is a form of artificial

intelligence that attempts to mimic the behavior of the

human brain and nervous system [2]. The ANN can extract

information using the full spectral range [3]. ANNs have

been applied to many aspects of gamma spectral analysis

[4–11], and feature extraction is the key step in the

majority of these studies. To date, algorithms on radionu-

clide identification are based on feature extraction, and

ANNs are a major technique for performing information

extraction. For example, Stinnett et al. [12] proposed a

method based on feature extraction and Bayesian classifiers

to identify isotopes. Yang et al. [13] developed an algo-

rithm based on feature extraction and feedforward neural

networks (NNs) to discriminate alpha–gamma radiation.

However, manually supervised feature extraction requires

specialized knowledge, and its parameters need to be

determined, which is a complex problem.
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Deep learning is a class of machine learning algorithm

that uses a cascade of many layers of nonlinear processing

units for feature extraction (when the number of hidden

layers is smaller than the input dimension), or maps the

feature to a higher-dimensional space (when the number of

hidden layers is larger than the input dimension), which

does not require domain knowledge [14]. This algorithm

has been applied to automatic speech recognition, image

recognition, smart cars, robots, etc. [15–19]. In this study,

an analytical spectrometry method based on approximation

coefficients and deep belief networks (DBNs) is proposed.

Experiments with different detection times, different

numbers of radionuclides, different detection distances,

and moving radionuclides were designed to evaluate the

identification performance of the proposed method.

2 Theories and methods

2.1 Overview of the proposed method

The proposed method is composed of DBN training and

DBN prediction (Fig. 1). The DBN is trained according to

the flowchart shown in Fig. 1a. This technique consists of

spectrum simulation, extraction of approximation coeffi-

cients of the spectrum, and training. First, the model of the

related detector is designed, and simulation spectra of the

radionuclides of interest are obtained using the Monte

Carlo N-particle transport code (MCNP) (a software

package for simulating nuclear processes). Second,

approximation coefficients of the spectrum are extracted by

wavelet decomposition and normalized to eliminate the

intensity difference between different spectra. Then, the

normalized approximation coefficients are used as the input

to the DBN. Finally, the DBN is trained using the samples

of the simulation spectra, which are encoded as the input of

the DBN and their target output. For DBN prediction, the

trained DBN is used to predict the isotopic composition of

the spectrum measured in the real environment using the

process shown in Fig. 1b. This process consists of spectral

measurement and background subtraction, extraction of the

approximation coefficients of the spectrum, and identifi-

cation. First, radionuclide and background spectra are

detected by the detector and smoothed to reduce noise

interference. Then, the subtraction spectrum is obtained by

subtracting the portion of the smoothed background spec-

trum according to the ratio of the radionuclide scan time to

the background scan time from the smoothed radionuclide

spectrum. Second, the approximation coefficients of the

subtraction spectrum are extracted by wavelet decomposi-

tion and normalized to remove the effect of the change in

spectrum intensity. Then, the normalized approximation

coefficients are used as the input for the DBN. Finally, the

trained DBN is used to predict the isotopic composition of

the spectrum measured in the real environment, and the

identification performance of the proposed method is

Fig. 1 Schematic diagram of the proposed algorithm
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evaluated by comparing the output of the DBN with its

target output.

2.2 Approximation coefficients

The low-frequency content is the most important part of

many signals, because this component gives the signal its

identity. The high-frequency content, on the other hand,

imparts flavor, or nuance. Approximations and details are

often discussed in wavelet analysis. Approximations are

high-scale, low-frequency components of the signal,

whereas details are low-scale, high-frequency components.

The original signal S would be decomposed into approxi-

mations and details after the signal underwent a single-

level discrete wavelet transform. This process is accom-

plished by applying two complementary filters to the

original signal, which emerges as two signals, as shown in

Fig. 2a.

The decomposition process can be iterated, with suc-

cessive approximations being decomposed in turn, and the

number of iterations is called the decomposition level

(Fig. 2b). The cA1, cA2, and cA3 are the approximations of

the original signal S, while cD1, cD2, and cD3 are the

details at different decomposition levels. Given that the

analytical process is iterative, the processes can theoreti-

cally be continued indefinitely. In practice, the suit-

able number of levels is based on the nature of the signal,

and a number from 3 to 5 is recommended. Approximation

coefficients cAi (i = 1, 2, 3, 4, 5) of the spectrum can be

considered as the input to the DBN. The cAi has the same

spectral shape as the original spectrum, but it is more

smoothed. The original spectrum (dimension: 1024)

detected by an (Tl) detector is decomposed in this study by

three levels of discrete wavelet transforms (mother wave-

let: Daubechies wavelets) using the MATLAB Wavelet

Toolbox [20]. The dimension of the extracted approxima-

tion coefficients is 128, which is much lower than the

dimension of the original spectrum (dimension: 1024).

After normalization, the extracted approximation coeffi-

cients are used as the input to the DBN.

2.3 DBN model

Deep learning is a machine learning paradigm that

focuses on learning deep hierarchical data models. In this

algorithm, a hierarchy of intermediate representations is

hypothesized to be needed to learn a high-level represen-

tation of the data [21]. A DBN is one kind of deep learning.

In machine learning, a DBN is a generative graphical

model, or alternatively, a type of deep NN composed of

multilayers of latent variables (hidden units), with con-

nections between layers but not between units within each

layer. A DBN can be viewed as a composition of restricted

Boltzmann machines (RBMs), in which the hidden layer of

each sub-network serves as the visible layer for the next

[22, 23]. Its schematic network structure is shown in Fig. 3.

The structure comprises one visible layer, three hidden

layers (h1, h2, h3), and one output layer [24]. The number of

RBMs is not constant and is determined by the nature of

the data. RBMs contain a layer of visible units that rep-

resent the data and a layer of hidden units that learn to

represent features that capture higher-order correlations in

the data. This module is a primitive DBN.

An RBM has only a visible layer and a hidden layer, and

these layers are connected by a matrix of symmetrically

weighted connections W. No connections are found within

a layer. Given a vector of activities v for the visible units,

the hidden units are all conditionally independent, facili-

tating the sampling of a vector h from the factorial poste-

rior distribution over hidden vectors p(h|v, W). Sampling

from p(v|h, W) is also easy. A learning signal can be

obtained by starting with an observed data vector on the

visible units and alternating several times between sam-

pling from p(h|v, W) and p(v|h, W). This signal is simply

Fig. 2 Schematic of wavelet decomposition. a Single-level and

b multilevel discrete wavelet transforms Fig. 3 Schematic overview of a deep belief network (DBN)

Spectrometry analysis based on approximation coefficients and deep belief networks Page 3 of 10 69

123



the difference between the pairwise correlations of the

visible and hidden units at the beginning and end of the

sampling. Several reports have provided more detailed

descriptions of RBM [25, 26].

The variables of the final hidden layer represent the

desired outputs, which can be encoded to the error back-

propagation (BP) NN. The BP algorithm functions much

better if the feature detectors (hidden units) in the hidden

layers are initialized by learning a DBN that models the

structure in the input data. The DBN algorithm was real-

ized in this study using a MATLAB Toolbox named

DeepLearnToolbox (https://github.com/rasmusbergpalm/

DeepLearnToolbox), and the key parameters of the DBN

used during the training process are as follows: the number

of hidden layers is 1, and the dimension of the hidden layer

is 1024. The dimension of the visible layer is 128 for

extracting 128 approximation coefficients as the input to

the DBN, the dimension of the output layer is 9 for

selecting the spectra of 9 radionuclides (i.e., 57Co, 75Se,
60Co, 133Ba, 137Cs, 192Ir, 241Am, 152Eu, and 238Pu) as

training samples; thus, the established DBN model is

128 9 1024 9 9. Each neuron in the output layer indicated

whether the related radionuclide existed or not, and the

radionuclide existed in the environment only when the

output value of the related output layer neuron was greater

than or equal to the threshold (0.85).

3 Experiments and results

The selection of training samples for the DBN is an

important part of the proposed method. This process

determines the predictive ability of the DBN, so detailed

information about training samples will be introduced.

Experiments using different detection times, numbers of

radionuclides, and detection distances were designed,

because these parameters can change the shape of the

spectrum. The effect of radionuclides in motion on the

identification performance of the proposed method was

evaluated, because radionuclides may have a certain

velocity in the real environment.

3.1 Assessment method

A gamma-ray spectrometry system, which consists of a

3 in 9 3 in NaI (Tl) detector (ORTEC Inc.), a PC-based

multichannel analyzer (ORTEC Inc.), and MAESTRO

software installed on the PC were used to assess the pro-

posed method, and the MAESTRO 7.01 (ORTEC Inc.)

software was used to record the spectra. The energy of this

detector ranged from 30 keV to 3000 keV, and the reso-

lution was approximately 7.7% (at 662 keV). The spectra

were recorded by sending a request to MAESTRO 7.01

software using its software development kit. Any spectrum

that satisfied the requirements could be detected. Table 1

lists the radionuclides utilized in the experiment, and these

radionuclides are labeled as Radio-1, Radio-2, and Radio-

3.

Given that the DBN can only identify the trained

radionuclides, and its predictive ability depends on the

number of samples, adding samples of more radionuclides

during the training process of the DBN is recommended.

However, the majority of radionuclides are not available in

the laboratory. Simulation spectra of the radionuclides of

interest (i.e., 57Co, 75Se, 60Co, 133Ba, 137Cs, 192Ir, 241Am,
152Eu, and 238Pu) can be obtained by the MCNP, which

models the mentioned detector based on its characteristics.

All radionuclides except 238Pu are industrial radionuclides.

All simulation spectra are broadened with the response

function of the mentioned detector.

Detection rate was used to assess the identification

performance of the proposed algorithm. This rate is the

ratio of the correctly identified data to the total amount of

data, as shown in Eq. (1) [27], as follows:

Detection rate ð%Þ ¼ TPþ TN

TPþ TNþ FPþ FN
� 100; ð1Þ

where TP indicates true positive, TN indicates true nega-

tive, FP indicates false positive, and FN indicates false

negative.

The accurate radionuclide identification distance

(ARID) of each radionuclide was calculated from the

detection rate results with respect to the distance from the

source to the detector. The ARID is the maximum distance

at which detection rates are reliably ascertained to be above

the required level [28]. The detection rate of the acceptance

level in this study is 98.3%, as recommended by the ANSI

N42.35 standard [29].

3.2 DBN training

Training samples were selected. Simulation spectra of

radionuclides of interest (i.e., 57Co, 75Se, 60Co, 133Ba,
137Cs, 192Ir, 241Am, 152Eu, and 238Pu) were simulated by

the MCNP, and the normalized simulation spectra gener-

ated 511 (29–1 = 511) spectra according to the theory of

combinations, which were all used as training samples for

Table 1 Radionuclides for source identification conducted in this

study

Label Radio-1 Radio-2 Radio-3

Radionuclide 238Pu 60Co 137Cs

Activity (lCi) 8.89 9 103 1.59 1.42
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the DBN. The conditions with 1 radionuclide corresponded

to 9 combinations (i.e., 57Co, 75Se, 60Co, 133Ba, 137Cs,
192Ir, 241Am, 152Eu, and 238Pu), the conditions with 2

radionuclides corresponded to 36 combinations (i.e.,
57Co ? 75Se, 57Co ? 60Co,…, 152Eu ? 238Pu), and the

number of combinations for the conditions with 3, 4, 5, 6,

7, 8, and 9 radionuclides can be acquired according to the

theory of combinations, which is how we obtained the 511

spectra. The 511 normalized spectra are encoded as the

input to the DBN and their target output before DBN

training, and the target output was composed of nine fig-

ures ranging from 0 to 1. For example, the target output of

the 57Co spectrum would be [1 0 0 0 0 0 0 0 0] if we

sequenced the radionuclides as 57Co, 75Se, 60Co, 133Ba,
137Cs, 192Ir, 241Am, 152Eu, and 238Pu. So, the target output

of the 75Se spectrum was [0 1 0 0 0 0 0 0 0], the target

output of the 57Co ? 75Se spectrum was

[1 1 0 0 0 0 0 0 0], and so on.

Whether the trained DBN has learned the training

samples properly should be verified. If not, the related

parameters (section: DBN model) of the DBN should be

adjusted until the mean square error of the DBN on the

training set reaches an acceptable value. Table 2 lists the

results of the DBN training. The trained DBN learned the

high-level features of the training set completely. Theo-

retically, this DBN could predict the isotopic compositions

of the spectrum measured in the real environment for all

radionuclides (i.e., 57Co, 75Se, 60Co, 133Ba, 137Cs, 192Ir,
241Am, 152Eu, and 238Pu) with a detection rate of 100%.

3.3 Effect of detection time on the proposed method

Experiments using different detection times were con-

ducted, because detection time can lead to a change in

spectral intensity. The detector was installed at a fixed

location, and the radionuclides were placed in front of the

detector at point A (Fig. 4). The background spectrum

without any source was recorded for 300 s to generate the

background template. The spectra of Radio-1, Radio-2, and

Radio-3 placed at point A (Fig. 4) were recorded to eval-

uate the detection time effect on the identification perfor-

mance of the proposed method. The measurement was

repeated 10 times for each condition, and detection times

were 1, 2, 3, 4, and 5 s. For example, the measurement for

Radio-1 with monitoring point at A (Fig. 4) and a detection

time of 1 s would be repeated 10 times. The same rules

apply to other detection times and radionuclides. A total of

150 spectra were recorded, which were all used as verify-

ing samples. Ten spectra could be recorded at each

detection time for each radionuclide, resulting in 50 spectra

for each radionuclide. Each spectrum has a sample number,

the value of which was determined by the measurement

sequence. For example, 10 Radio-1 spectra with a detec-

tion time of 1 s would have sample numbers 1–10, 10

Radio-1 spectra with a detection time of 2 s would have

sample numbers 11–20, etc. The same rules apply to

Radio-2 and Radio-3.

We focused only on the output neurons of the DBN for
238Pu, 60Co, and 137Cs to select three radionuclides (38Pu,
60Co, and 137Cs) to evaluate the identification performance

of the proposed method in the real environment, and all the

results related to verifying samples in this study were

computed by analyzing the output value of the above three

output neurons. Figure 5 shows the results for samples with

different detection times when only 238Pu exists in the

environment. The output value of the DBN for 238Pu is

greater than the threshold (0.85) at different times when

only 238Pu exists in the environment. The output value for

Fig. 4 (Color online) Sketch of the first experimental environment

Fig. 5 (Color online) Output values of deep belief network (DBN) at

different sample numbers when only 238Pu exists in the environment

Table 2 Results of DBN training

Radionuclide 57Co 75Se 60Co 133Ba 137Cs

Detection rate (%) 100 100 100 100 100

Radionuclide 192Ir 241Am 152Eu 238Pu

Detection rate (%) 100 100 100 100
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60Co or 137Cs is less than the threshold, indicating the

presence of 238Pu in the environment, but the absence of
60Co and 137Cs. The results are consistent with the actual

situation because of the normalization of approximation

coefficients, which can eliminate the effect of the change in

spectral intensity. Therefore, the identification performance

of the proposed method is not affected by the detection

time if the minimum net count of the spectrum of related

radionuclides is satisfied. Figures 6 and 7 illustrate similar

results. The net count of the spectrum of each radionuclide

measured at point A (Fig. 4) with a detection time of 5 s,

and the count of background spectrum with a detection

time of 5 s are listed in Table 3. The dose rate of the

background without a shielding apparatus was measured in

the laboratory (approximately 0.1 lSv/h).

3.4 Effect of the number of radionuclides

on the proposed method

Experiments with different numbers of radionuclides

were performed, because this parameter can change the

spectral shape. The detector was installed at a fixed loca-

tion, and the radionuclides were placed in front of the

detector at point A (Fig. 4). The spectra of the cases with

different numbers of radionuclides (i.e., Radio-1, Radio-2,

Radio-3, Radio-1 ? Radio-2, Radio-1 ? Radio-3, Radio-

2 ? Radio-3, and Radio-1 ? Radio-2 ? Radio-3) placed

at point A (Fig. 4) were recorded to evaluate the effect of

the number of radionuclides on the identification perfor-

mance of the proposed method. The measurement was

repeated 10 times for each condition, and the detection

time was 5 s. For example, the measurement for Radio-1

with monitoring point at A (Fig. 4) and a detection time of

5 s would be repeated 10 times. The same rules apply to

other combinations. Hence, 70 spectra were recorded,

which were all used as verifying samples. Three combi-

nations (i.e., Radio-1, Radio-2, and Radio-3) correspond to

the condition with 1 radionuclide. Three combinations (i.e.,

Radio-1 ? Radio-2, Radio-1 ? Radio-3, and Radio-

2 ? Radio-3) correspond to the condition with two

radionuclides. One combination (i.e., Radio-1 ? Radio-

2 ? Radio-3) corresponds to the condition with three

radionuclides.

Table 4 lists the results of samples with different num-

bers of radionuclides. All radionuclides (i.e., 238Pu, 60Co,

and 137Cs) have a detection rate of 100%, which demon-

strates that the proposed algorithm can predict the isotopic

compositions of the spectra of multiple radionuclides. This

phenomenon is due to the fact that the DBN was trained

using samples with mixed spectra of multiple radionu-

clides. However, the training samples are composed of

simulation spectra which differ from the spectra measured

in the real environment, especially in the low-energy

Fig. 6 (Color online) Output values of DBN at different sample

numbers when only 60Co exists in the environment

Fig. 7 (Color online) Output values of DBN at different sample

numbers when only 137Cs exists in the environment

Table 3 Count of radionuclides and background spectrum with a

detection time of 5 s

Radionuclide 238Pu 60Co 137Cs

Net count 3049 8161 3585

Background 2614 2614 2614

Table 4 Single radionuclide

detection rates (%) of the sam-

ples with different numbers of

radionuclides

Number 238Pu 60Co 137Cs

1 100 100 100

2 100 100 100

3 100 100 100
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region, although their shapes are similar. This phenomenon

may reflect the fact that the DBN has strong tolerance,

indicating promising machine learning for spectrometry

analysis.

3.5 Effect of detection distance on the proposed

method

Experiments with different detection distances were

conducted, because this parameter can also lead to a

change in the spectral shape. The detector was installed at a

fixed location, and the radionuclides were placed in front of

the detector at points A, B,…, O (15 points) at 10-cm

intervals (Fig. 8). The spectra of the radionuclides were

recorded to evaluate the effect of detection distance on the

identification performance of the proposed method. The

measurement was repeated 10 times for each condition, and

the detection time was 10 s. For example, the measurement

for Radio-1 with monitoring point at A (Fig. 8) and a

detection time of 10 s would be repeated 10 times. The

same rules apply to other monitoring points or radionu-

clides. Thus, 450 spectra were recorded, which were all

used as verifying samples.

Figure 9 shows the results of samples with different

detection distances. The ARIDs of Radio-1 (238Pu with an

activity of 8.89 9 103 lCi and a detection time of 10 s),

Radio-2 (60Co with an activity of 1.59 lCi and a detection

time of 10 s), and Radio-3 (137Cs with an activity of

1.42 lCi and a detection time of 10 s) are greater than or

equal to 60, 70, and 60 cm, respectively. The correspond-

ing minimum detectable activities (MDAs) of Radio-

1(238Pu with a detection distance of 60 cm and a detection

time of 10 s), Radio-2 (60Co with a detection distance of

70 cm and a detection time of 10 s), and Radio-3 (60Cs

with a detection distance of 60 cm and a detection time of

10 s) are less than or equal to 8.89 9 103, 1.59, and

1.42 lCi, respectively [30, 31]. Thus, the identification

performance of the proposed method is not affected by the

detection distance under certain conditions, because the

effect of detection distance on the proposed method can be

eliminated by the normalization of approximation coeffi-

cients. The detection rate of radionuclides (i.e., 238Pu,
60Co, and 137Cs) is over 60% when the detection distance is

greater than the ARID of the related radionuclide (Fig. 9a–

c). This result is due to the fact that the detection rate is a

statistic, and the numerator TN of Eq. (1) remains almost

constant, although the numerator TP in Eq. (1) decreases

with an increase in distance. This phenomenon is due to the

low percentage of error in identification, which indicates

the proposed method is a robust method.

The spectra of radionuclides (238Pu, 60Co, and 137Cs)

placed in front of the detector according to their ARIDs are

plotted to further visualize the identification performance

of the proposed method (Fig. 10). The signal-to-noise ratio

(SNR) is extremely low in this condition, and the corre-

sponding characteristic peaks of radionuclides are not

obvious (fewer counts in the photopeak region). However,

the proposed method can recognize these radionuclides

with a detection rate of 100%. Therefore, the proposed

method is suitable for fast radionuclide identification,

because it requires a lower spectrum count.

3.6 Effect of radionuclides in motion

on the proposed method

Radionuclides may be carried by people or transported

by car in the real environment. Thus, these molecules have

a certain velocity. The effect of radionuclides in motion on

the identification performance of the proposed method

should be evaluated. The detector was installed at a fixed

location, and the radionuclides were placed in front of the
Fig. 8 (Color online) Sketch of the second experimental environment

Fig. 9 (Color online) Single radionuclide detection rates (%) of

samples with different detection distances: a 238Pu, b 60Co, and

c 137Cs
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detector at points A, B,…, O at 10-cm intervals (Fig. 8).

An experiment was designed to assess the effect of

radionuclides in motion on the identification performance

of the proposed method. A person with Radio-1, Radio-2,

and Radio-3 approached point A from the starting point O

along the line segment OA at a speed of approximately

0.375 m/s. The whole process took approximately 4 s, and

33 spectra were recorded at intervals of approximately

0.1 s. All spectra were used as verifying samples.

Figure 11 shows the results of the samples of the moving

radionuclides. The output value of the DBN for 137Cs is

greater than the threshold (0.85) at time 2.5 s, indicating the

identification of 137Cs. The corresponding value for 238Pu is

also greater than the threshold (0.85) at time 2.76 s, indi-

cating the identification of 238Pu. The corresponding value

for 60Co is greater than the threshold (0.85) at time 3.0 s,

indicating the identification of 60Co. Thus, the output value

of the DBN for related radionuclides is always beyond the

threshold after the corresponding radionuclide is recognized.

The proposed method exhibits enhanced identification per-

formance for the spectra of moving radionuclides and

requires only a short time to identify all radionuclides in the

environment. This characteristic is recommended for fast

radionuclide identification.

Figure 12 demonstrates the spectra in radionuclide

identification. The spectrum has a low SNR at each time of

Fig. 10 Spectra of radionuclides with the monitoring point at their

ARIDs: a Radio-1, b Radio-2, and c Radio-3

Fig. 11 (Color online) Output values of DBN for samples of moving

radionuclides at different times. Output channels of DBN for a 238Pu,

b 60Co, and c 137Cs

Fig. 12 Spectra of radionuclides (i.e., Radio-1 ? Radio-2 ? Radio-

3) at their time of identification. a t = 2.5 s, b t = 2.76 s, and

c t = 3.0 s

69 Page 8 of 10 J.-P. He et al.

123



identification of the related radionuclide, and its corre-

sponding characteristic peak cannot be observed. The

proposed method is not based on peak detection, but on

information from the full spectrum. The proposed algo-

rithm makes a judgment using information from the full

spectrum, contrary to the method based on peak detection.

Specialized knowledge, deconvolution, and other parame-

ters previously used were not needed after the DBN was

trained.

The identification results of the spectra contained within

Fig. 12a–c using MAESTRO 7.01 software (a software for

gamma-ray spectrometry analysis) were all ‘‘No peaks

found,’’ as shown in Fig. 13. This is primarily because

there were lower counts of radionuclide spectrum in the

photopeak region, so the MAESTRO 7.01 software could

not find a peak that satisfied its default requirement.

Experimental results demonstrate once again that the pro-

posed method is not based on peak detection, but on

information from the full spectrum.

4 Conclusion

A method of spectrometry analysis based on approxima-

tion coefficients and a DBNwas proposed in this study. This

method consisted of DBN training and DBN prediction.

Approximation coefficients of the spectrum were extracted

by wavelet decomposition. The DBN was trained using

samples of simulation spectra of radionuclides of interest and

was used to predict the isotopic compositions of the spectrum

measured in the real environment. Experimental results

show that the identification performance of the proposed

method was not affected by the detection time, number of

radionuclides, or detection distance when the MDA of a

single radionuclide was satisfied. The radionuclides used in

this study were 238Pu (8.89 9 103 lCi), 60Co (1.59 lCi),
and 137Cs (1.42 lCi). The dose rate of the background

without a shielding apparatuswasmeasured in the laboratory

(approximately 0.1 lSv/h). The proposed method showed

better performance for predicting the isotopic compositions

of the spectrum of moving radionuclides. The proposed

method identified the isotopic compositions in the spectrum

using information from the full spectrum, contrary to the

method based on peak detection.

The proposed method may exhibit enhanced identifica-

tion performance for the spectrum of radionuclides with

higher energy, because the DBN is trained using samples of

the simulation spectra of radionuclides of interest, and the

difference between the spectrum simulated by the MCNP

and that measured in the real environment in the low-en-

ergy (\ 100 keV) region is larger. In summary, a novel

method for spectrometry analysis was developed which

overcomes the difficulties caused by the insufficient

availability of the majority of radionuclides in the labora-

tory. Further work, such as using different detectors (e.g.,

lanthanum bromide scintillation detector, cadmium zinc

telluride detector, high-purity germanium detector), and the

addition of gamma-ray shielding will be performed to

verify the identification performance of the proposed

method. In addition, complex methods combined with the

latest advanced algorithms, such as optimization algo-

rithms (e.g., genetic algorithms, particle swarm algo-

rithms), feature extraction algorithms (Karhunen–Loeve

transform, singular-value decomposition), and fuzzy logic

algorithms, will be studied to develop more intelligent

methods for spectrometry analysis. The proposed method

can be executed in a mobile or an embedded system

because of the simplicity of the trained DBN. In this study,

the algorithm was executed on a Windows-based mini-PC.

The proposed method may potentially be suitable for

radionuclide identification of radiation monitoring instru-

ments because of its high stability and low execution time.
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