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Abstract Inspired by total variation (TV), this paper rep-

resents a new iterative algorithm based on diagonal total

variation (DTV) to address the computed tomography image

reconstruction problem. To improve the quality of a recon-

structed image, we used DTV to sparsely represent images

when iterative convergence of the reconstructed algorithm

with TV-constraint had no effect during the reconstruction

process. To investigate our proposed algorithm, the numer-

ical and experimental studies were performed, and root-

mean-square error (RMSE) and structure similarity (SSIM)

were used to evaluate the reconstructed image quality. The

results demonstrated that the proposed method could effec-

tively reduce noise, suppress artifacts, and reconstruct high-

quality image from incomplete projection data.

Keywords Computed tomography (CT) � Sparse-view
reconstruction � Diagonal total variation (DTV) �
Compressive sensing (CS)

1 Introduction

X-ray computed tomography (CT) has beenwidely used in

clinical and preclinical applications and plays a central role in

the examination of diseases and procedures [1, 2]. X-ray

radiation dose is harmful for patients, and low-dose CT

reconstruction technique is a research hot spot in the current

medical CT field. To reduce the X-ray radiation dose, medical

CT systems can decrease the X-ray intensity or the number of

scanning projection angles. However, these two strategies

result in a reconstructed imagewith a low signal-to-noise ratio

(SNR), indicating the negative impact of noise and artifacts.

In comparison with traditional CT-reconstructed algo-

rithms [3–5], the iterative algorithms based on compressive

sensing (CS) [6] can be used to reconstruct high-quality CT

images with incomplete or low SNR projection data. In the

CT reconstruction, some advanced exemplary algorithms

were employed, such as total variation (TV) minimization

[7, 8], soft-thresholding algorithms [9, 10], adaptive-

weighted total variation (AWTV) [11], dictionary learning

[12], multi-direction anisotropic total variation (MDATV)

[13], and split-Bregman reconstruction [14]. Among them,

TV using the x- and y-coordinate gradient operators as the

sparse representation approach during the iteration process

is one of the most popular algorithms. However, it still can
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be improved by combining with the diagonal total variation

(DTV) [15–19], which accelerates the iterative conver-

gence and reconstructs the high-quality image from

incomplete projection data.

In this paper, the research goal was to reconstruct high-

quality CT images with a low dose. There are many

methods to reduce the delivered dose in CT scanning, but

we focused on a sparse-view reconstruction strategy. To

handle the noise and artifacts in the reconstructed images

from few-view projections, we proposed a hybrid recon-

struction approach that combined TV- and DTV-con-

straints aimed at exploring the sparse-view reconstruction.

We introduce the methodology including the proposed

algorithm in Sect. 2, analyze the reconstructed results in

Sect. 3, and discuss the issues related to our reconstruction

process and the corresponding results in Sect. 4.

2 Methodology

2.1 Total variation and diagonal total variation

The reconstruction algorithm with TV-constraint can be

defined as:

min f~
�
�
�

�
�
�
TV

s:t: Af~� p~
�
�
�

�
�
�

2

2
\r2; ð1Þ

where f~ is the reconstructed image, A is the projection

matrix, p~ is the projection data, r is permissible error, and

TV of f~ can be expressed as:

f~
�
�
�

�
�
�
TV
¼
X

s;t

r~fs;t

�
�
�

�
�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsðfs;tÞ
� �2þ Dtðfs;tÞ

� �2
q

; ð2Þ

where r~ represents the local gradient operator, fs;t is a

pixel value of f~ at position (s, t), Dsð�Þ and Dtð�Þ are the

discrete differential operators along the s- and t-axes,

respectively, defined as:

Dsðfs;tÞ ¼ fs;t � fs�1;t ð3Þ

Dtðfs;tÞ ¼ fs;t � fs;t�1: ð4Þ

The positional relationship between fs;t and its neighboring

pixels is shown in Fig. 1.

The DTV of f~ is defined as f~
�
�
�

�
�
�
DTV

:

f~
�
�
�

�
�
�
DTV

¼
X

s;t
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�
�
�

�
�
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q

; ð5Þ

where r~D represents the local diagonal gradient operator

and Ddsð�Þ and Ddtð�Þ are the discrete differential operators

along the diagonal s- and t-axes, respectively, given by

Ddsðfs;tÞ ¼ fs;t � fs�1;t�1 ð6Þ

Ddtðfs;tÞ ¼ fs;t � fs�1;tþ1: ð7Þ

2.2 Proposed algorithm

In this paper, we used DTV to sparsely represent images

when iterative convergence of the reconstructed algorithm

with TV-constraint showed no change during the recon-

struction process. To solve the optimization problem, we

employed the steepest-descent method [20]. Our proposed

algorithm can be defined as follows:

min f~
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where r1 and r2 are the permissible errors of TV and DTV,

respectively.

The steepest-descent method was applied to solve

Eqs. (8) and (9), and we obtained the following formulas:

f~
lþ1 ¼ f~

l � ag_
l

TV ð10Þ

f~
kþ1 ¼ f~

k � bg_
k

DTV; ð11Þ

where l and k denote the iteration indices of TV and DTV in

the steepest-descent method, respectively, and a and b are

the gradient descent step sizes of TV and DTV, respectively.

g
_

TV is the normalized TV gradient, while g~TV is the

TV gradient and is related by g
_

TV ¼ g~TV

�

g~TVk k2. The

individual elements of g~TV can be defined as follows:

· · ·

· · ·

· · ·
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Fig. 1 Illustration of the pixel positions in a reconstructed image
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g
_

DTV is the normalized DTV gradient, while g~DTV is DTV

gradient and related by g
_

DTV ¼ g~DTV= g~DTVk k2. The indi-

vidual elements of g~DTV can be defined as follows:
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where e is a known positive integer. In our study, we

selected e = 10-8.

We will now describe the iterative steps of the proposed

algorithm. The whole iteration process contained two

loops, the outside and inside loops operated the algebraic

reconstruction techniques (ART) [4] and TV gradient

descent, respectively, and then, the DTV was used as a

substitute when the iterative convergence of the recon-

structed algorithm was stable after the NTVth iteration. The

flow chart is shown in Table 1, where m ¼ 2; . . .;M

denotes the projection angles, A~m is the mth row vector of

the projection matrix A ¼ ðA~1;A~2; . . .;A~m; . . .;A~MÞ; p~¼
ðp1; p2; . . .; pm; . . .; pMÞ is the projection, and k is the con-

vergence parameter of the ART method. The inside loop is

labeled by k, and K is the iteration count for the TV and

DTV minimizations.

3 Numerical and experimental studies

In this section, we present our numerical and experi-

mental studies. There were two sets of experiments;

FORBILD head phantom [21] was used in the numerical

study, and real projection data were used to reconstruct the

aspirin images in the experimental study. The image

quality was assessed with relative root-mean-square error

(RMSE) and structure similarity (SSIM) [22].

The RMSE is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

0� s\N

X

0� t\M

ðfs;t � f �s;tÞ
2

 !,

ðM � NÞ

v
u
u
t ;

ð14Þ

where fs;t is the pixel value of the original image at position

(s, t) and f �s;t is the pixel value of the reconstructed image at

position (s, t).

SSIM is defined as

SSIM ¼ lðf~; f~�Þd � cðf~; f~�Þc � vðf~; f~�Þg; ð15Þ

where

lðf~; f~�Þ ¼ ð2�f~� �
f~
� þ c1Þ

.

ðð�f~Þ2 þ ð�f~�Þ2 þ c1Þ ð16Þ

cðf~; f~�Þ ¼ ð2r
f~rf~�þc2Þ

.

ðr2
f~
þ r2

f~
� þ c2Þ ð17Þ

vðf~; f~�Þ ¼ ðr
f~f~

�þc3Þ
.

ðr
f~rf~� þ c3Þ; ð18Þ

where
�
f~ and

�
f~
�
are the mean of f~ and f~

�
, respectively, r

f~

and r
f~
� are the variances of f~ and f~

�
; respectively, r

f~f~
� is

the covariance of f~ and f~
�
, and c1; c2, and c3 are three

small positive constants used to avoid instability if the

values of the denominators in Eqs. (16), (17) and (18) are

very close to zero respectively. d; c, and g are used to

adjust the weights of the luminance lðf~; f~�Þ, contrast

cðf~; f~�Þ, and structures vðf~; f~�Þ. In our study, we selected

d ¼ c ¼ g ¼ 1; c1 ¼ 2� 10�8; c2 ¼ 1� 10�8; and

c3 ¼ 0:5� c2 ¼ 0:5� 10�7, and the value of SSIM was

between - 1 and 1. When two images were the same, the

SSIM value was 1.

The selection of the optimal parameters is very impor-

tant. According to Table 1, there are three parameters: k, a,
and b. Previous studies reported a range for k of [0, 2], and

the steepest-descent parameter (a or b) and descent itera-

tive number (K) should be set so that a * K (or b * K) is of

the order of, but larger than one [7]. In the cases considered

here, the descent iterative numbers were 20, and the ranges

of a and b were both [0.05, 1]. The following optimal

parameters were selected from these ranges. We use the

FORBILD head phantom with 30 projections as an

example to determine the optimal parameters. We changed

the value of k to reconstruct images with the ART method

and calculated the reconstruction error. Figure 2 shows that

k = 1 was the optimal parameter where RMSE was the

lowest and SSIM was approaching 1. When k was fixed, we
changed the value of a to reconstruct images with the TV

method and calculated the reconstruction error. Figure 3

shows that a = 0.55 was the optimal parameter. When k
and a were fixed, we changed the value of b to reconstruct
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images with the TV ? DTV method and calculated the

reconstruction error. Figure 4 shows that b = 0.28 was the

optimal parameter. Then we used k = 1, a = 0.55, and

b = 0.28 in the next numerical simulation using the

FORBILD head phantom. A similar search was conducted

for real data, and the optimal values of these parameters are

shown in Table 2.

Table 1 Implementation steps of the TV ? DTV reconstruction
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Fig. 2 RMSE and SSIM of the analyses to find the optimum regularization parameter k. a RMSE, b SSIM
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Fig. 3 RMSE and SSIM of the analyses to find the optimum regularization parameter a. a RMSE, b SSIM
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Fig. 4 RMSE and SSIM of analyses to find the optimum regularization parameter b. a RMSE, b SSIM
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3.1 Numerical simulation study

In the numerical simulation, a FORBILD head phantom

(256 9 256 9 8 bits), shown in Fig. 5a, was used to ana-

lyze the performance of the proposed algorithm. The

scanning range of the CT system was from 0 to 2p with a h
angular increment. The projection number was set to 30 so

that h = p/15. The scanned angle can be specified by

w = h * i (1 B i B 30). The iteration number was set to

1000, and the proposed algorithm (TV ? DTV) included

600 TV iterations and 400 DTV iterations. Figure 5b, c is

reconstructed by the TV and TV ? DTV methods,

respectively.

Although the reconstructed images obtained using the

TV and TV ? DTV methods were not significantly

different in Fig. 5, the positions of the arrows in Fig. 6

showed that the profile of the reconstructed image using the

TV ? DTV method was more stable than that of the TV

method. Furthermore, the zoomed-in part of the recon-

structed images is shown in Fig. 7, and Fig. 7c has fewer

artifacts, clearer edges, and a more uniform distribution

compared with Fig. 7b reconstructed by TV method.

In Fig. 8, the RMSE and SSIM are plotted with the

iteration number. For both criteria, there was a similar

trend in which the RMSE and SSIM of the reconstructed

images became better when converted from TV-constraint

to DTV-constraint after 600 iterations. Table 3 lists the

RMSE and SSIM calculated from the reconstructed FOR-

BILD head phantom with the TV and TV ? DTV meth-

ods. It was evident that the RMSE of the reconstructed

images using the TV ? DTV method was considerably

smaller than those obtained by the TV method, and the

SSIM was significantly larger. Both the RMSE and SSIM

showed that the TV ? DTV method can be used to

reconstruct images with higher quality.

Table 2 Optimum parameter selections for each dataset

Data k a b

FORBILD head phantom 1 0.55 0.28

Real data 0.5 0.15 0.1

Fig. 5 Reconstructed

FORBILD head phantom for

comparison. a Original

FORBILD head phantom, b TV,

c TV ? DTV
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 G
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Va
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Fig. 6 (Color online) Profile of line 180 in the different reconstructed methods for the FORBILD head phantom. a TV, b TV ? DTV
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3.2 Real projection data study

We applied our proposed algorithm to a set of real

projection data, acquired from scanned aspirin. The source-

to-object distance was 48.1551 cm, and the object-to-de-

tector distance was 100.4449 cm. The detector pixel size

was 0.0098 cm, and the number of detector elements was

1472. X-ray CT geometrical calibration via locally linear

embedding [23] was used to calibrate the geometry, and the

calibrated rotation center and detector offsets were

- 0.3318 and - 0.5364 cm, respectively. The number of

projection angles was 360, equally spaced in the angular

range [0, 2p]. To demonstrate the performance of our

proposed approach, we reduced the number of views to 90

by setting the angular increment to h = p/45. As shown in

Fig. 9a, the reconstructed full-view image was considered

to be the standard image. Figure 9b, c were reconstructed

by the TV and TV ? DTV methods with 90 projection

views, respectively. The TV-constraint was converted into

the DTV-constraint after 40 iteration numbers, and the

lines of the RMSE and SSIM with respect to iteration

number are shown in Fig. 10. The RMSE and SSIM of

reconstructed images are listed in Table 3. It was observed

that the result of the TV ? DTV method was considerably

better than that of the TV method.

Fig. 7 Magnified part of the

reconstructed FORBILD head

phantom for comparison.

a Original FORBILD head

phantom, b TV, c TV ? DTV
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FORBILD head phantom
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TV+DTV

100 200 300 400 500 600 700 800 900 1000
0.996

0.9965

0.997

0.9975

0.998

0.9985
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TV
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(a) (b)

Fig. 8 RMSE and SSIM lines of reconstructed FORBILD head phantoms with iteration number (from 100 to 1000) for the TV and TV ? DTV

methods. a RMSE, b SSIM

Table 3 RMSE and SSIM of reconstruction images

Methods FORBILD head phantom Real aspirin data

TV TV ? DTV TV TV ? DTV

RMSE 0.0159 0.0143 0.1586 0.1359

SSIM 0.9987 0.9989 0.9745 0.9816

Hybrid reconstruction algorithm for computed tomography based on diagonal total variation Page 7 of 9 45

123



4 Discussions and conclusion

There are several issues worth further discussion.

Although the proposed hybrid method can be used to

reconstruct high-quality images from sparse-view data, it

should be noted that the DTV-constraint had no obvious

advantages over the TV-constraint with a small number of

iterations, due to the gradient operators for the sparse

representation. Therefore, it is vital to find the appropriate

iteration number to convert the TV-constraint into the

DTV-constraint to accelerate the iterative convergence. In

the reconstruction process, the iteration numbers were 600

and 40 in the numerical and experimental studies, respec-

tively, according to the characteristics of the low- and high-

frequency components in the reconstructed image.

Another issue regarding the feasibility of the recon-

struction algorithm is whether the run time is acceptable.

The run time depends on the computational environment.

MATLAB R2014b on a computer with the

Intel(R) Core(TM) i5-4590 CPU @3.30 GHz, RAM

8.00 GB, 64-bit OS was used here. The implementation of

the TV ? DTV algorithm took 179 s for the FORBILD

head phantom (total number of iterations was 1000) and

285 s for the real aspirin projection data (the total iterative

number was 90). The run time was acceptable, but could be

further improved by many methods, such as parallel

computing and CUDA acceleration.

For our proposed algorithm, the selection of the weights

of the TV- and DTV-constraints was also an important

issue in the reconstruction. If they are too small, the

algorithm based on the TV- and DTV-constraints would

not be able to reduce the artifacts and noise of the recon-

structed image. If they are too large, the TV- and DTV-

constraints would over-smooth the CT images. Thus, the

weight parameter selection for the TV- and DTV-con-

straints depends on the levels of artifacts and noise. In this

paper, the used parameters are shown in Table 2 according

to the experimental analysis.

In conclusion, we proposed a hybrid reconstruction

approach by combining the TV- and DTV-constraints, by

operating the DTV-constraint to sparsely represent the

images when the iterative convergence of the reconstructed

algorithm with the TV-constraint did not vary during the

Fig. 9 Reconstructed aspirin

images for comparison.

a Standard image, b TV,

c TV ? DTV

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
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TV+DTV

Fig. 10 RMSE and SSIM lines of reconstructed aspirin projection data with respect to iteration number for the TV and TV ? DTV methods.

a RMSE, b SSIM
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reconstruction process. The numerical and experimental

studies demonstrated that the proposed hybrid method can

be used to reconstruct high-quality images from sparse-

view data, and the RMSE and SSIM were improved when

the TV-constraint was converted to the DTV-constraint

after a set number of iterations. Further research will be

performed to explore the directional TV optimization

problem in the CT reconstruction.
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