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Abstract We examine critically how tightly the density

dependence of nuclear symmetry energy EsymðqÞ is con-

strained by the universal equation of state of the unitary

Fermi gas EUGðqÞ considering currently known uncertain-

ties of higher order parameters describing the density

dependence of the equation of state of isospin asymmetric

nuclear matter. We found that EUGðqÞ does provide a

useful lower boundary for the EsymðqÞ . However, it does

not tightly constrain the correlation between the magnitude

Esymðq0Þ and slope L unless the curvature Ksym of the

symmetry energy at saturation density q0 is more precisely

known. The large uncertainty in the skewness parameters

affects the Esymðq0Þ versus L correlation by the same

almost as significantly as the uncertainty in Ksym.

Keywords Symmetry energy � Unitary gas � Equation of

state � Nuclear matter

1 Introduction

To understand the nature of neutron-rich nucleonic

matter has been a major scientific goal in both nuclear

physics and astrophysics. The density dependence of

nuclear symmetry energy EsymðqÞ has been a major

uncertain part of the equation of state (EOS) of neutron-

rich matter, especially at high densities, see, e.g., collec-

tions in Ref. [1]. Reliable knowledge about the EsymðqÞ has
significant ramifications in answering many interesting

questions regarding the structure of rare isotopes and

neutron stars, dynamics of heavy-ion collisions and

supernova explosions as well as the frequency and strain
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amplitude of gravitational waves from deformed pulsars

and/or cosmic collisions involving neutron stars. During

the last two decades, significant efforts have been devoted

to exploring the EsymðqÞ using both terrestrial laboratory

experiments [2–12] and astrophysical observations

[13–20]. Extensive surveys of the extracted constraints on

the EsymðqÞ around the saturation density q0 indicate that

the central values of the Esymðq0Þ and its slope L ¼
3qðoEsym=oq
� �

�q0 scatter around 31.6 and 58.9 MeV,

respectively [14, 21, 22]. At densities away from q0,
however, the EsymðqÞ remains rather unconstrained, espe-

cially at supra-saturation densities [12].

Interestingly, recent progresses in another seemingly

different field may provide additional information about

the density dependence of nuclear symmetry energy.

Indeed, theoretical and experimental studies of cold atoms

have made impressive progress in recent years, see, e.g.,

Refs. [23–26] for recent reviews, providing reliable infor-

mation about the universal EOS (EUG) of unitary gas (UG)

interacting via pairwise s-waves with infinite scattering

length but zero effective range. The universal EUG con-

strains stringently the EOS of pure neutron matter (PNM)

at sub-saturation densities, thus provides possibly addi-

tional constraints on the nuclear symmetry energy. In fact,

it was recently conjectured that the EUG provides the lower

boundary of the EOS of PNM (EPNM) [27, 28]. Moreover,

using a set of known parameters of symmetric nuclear

matter (SNM), and taking zero as an upper bound on the

curvature Ksym ¼ 9q2ðo2EsymðqÞ=oq2Þ
� �

q0
of EsymðqÞ at q0,

the authors of Refs. [27, 28] obtained a region of Esymðq0Þ-
L space that is inconsistent with the unitary gas constraints,

excluding many EsymðqÞ functionals currently actively used

in both nuclear physics and astrophysics.

Our original purposes were to examine several issues not

clearly addressed in version-1 of Refs. [27, 28]. We notice

that some of these issues are now discussed in more detail in

its revised version. Nevertheless, it is still useful to provide

our results and opinions on some of these issues. The

derivation of the excluded region in Esymðq0Þ-L space by

Refs. [27, 28] relies on several assumptions [29]: The most

importance of which is the underlying conjecture that

EPNMðqÞ�EUGðqÞ where EUGðqÞ ¼ nEFðqÞ with n being

the Bertsch parameter [23–26] and EF / ðq=q0Þ2=3 is the

energy of a noninteracting nonrelativistic degenerate Fermi

gas of neutrons. This conjecture is not quite the same as

stating that PNM has a greater energy than the UG at all

densities, since the UG is experimentally accessible only at

low densities. This conjecture merely employs an algebraic

expression motivated by the result that apparently the low-

density neutron gas has a higher energy than the UG, and by

the inference that the repulsive nature of the three nucleon

(NNN) interaction coupled with the finite values of the range

and scattering length of the two-body (NN) s-wave interaction

will ensure that the energy of PNM remains above this alge-

braic expression at higher densities. A further assumption is

that possibly attractive higher-order NN interactions (p-wave,

d-wave, etc.) are not important relative to the repulsive char-

acter of three- and higher-body interactions. Additionally,

neutrons are assumed to remain non-relativistic in the density

range considered. Given the important ramifications of the

findings in Refs. [27, 28], we are motivated to critically

examine them adopting the same assumptions. We include

the third-order terms in density characterized by the skew-

ness coefficients J0 ¼ 27q30o
3E0ðqÞ=oq3jq¼q0

and Jsym ¼
27q30o

3EsymðqÞ=oq3jq¼q0
in expanding the E0ðqÞ and

EsymðqÞ, respectively. Particularly, we carefully examine the

uncertainties of the curvature Ksym of the symmetry energy

and the skewness coefficients J0 and Jsym, taking into account

energy density functionals that are consistent with the PNM

EOS derived frommicroscopic calculations, and examine the

effects of those uncertainties on the region of Esymðq0Þ-
L space excluded by the unitary gas constraints.

While Skyrme models consistent with microscopic

PNM calculations tend to give Ksym in the range �100 to

� 200 MeV [33, 38], relativistic mean field (RMF) models

consistent with microscopic PNM calculations can give

positive values of Ksym [32, 33], reflecting a difference in

the form of these two classes of energy density functionals.

Indeed, some reputable nonrelativistic and relativistic

energy density functionals in the literature, see, e.g.,

reviews in Refs. [30–32, 34], predict positive Ksym values

and meet all existing constraints including the EOS of

PNM within their known uncertain ranges. For example,

the TM2 RMF interaction has Ksym = 50 MeV and passes

the PNM test of Ref. [32]. To our best knowledge, while

the majority of existing models predict negative values for

Ksym, there is no fundamental physics principle excluding

positive Ksym values. The current situation clearly calls for

more studies on the Ksym especially its experimental con-

straints. Hopefully, ongoing experiments at several labo-

ratories [35] to extract the isospin dependence of nuclear

incompressibility and subsequently the Ksym from giant

resonances of neutron-rich nuclei will help settle the issue

in the near future. Interestingly, very recently by analyzing

comprehensively the relative elliptical flows of neutrons

and protons measured by the ASY-EOS and the FOPI-

LAND collaborations at GSI using a quantum molecular

dynamics (QMD) model [36], the extracted values for the

slope and curvature parameters are L ¼ 59� 24 MeV and

Ksym ¼ 88� 372 MeV at the 1r confidence level. After

considering uncertainties of other model parameters

including the incompressibility of SNM, neutron–proton
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effective mass splitting (related to the momentum depen-

dence of the symmetry potential), Pauli blocking, and in-

medium nucleon-nucleon cross sections, it was concluded

that L ¼ 59� 24ðexpÞ � 16ðthÞ � 10ðsysÞ MeV and

Ksym ¼ 0� 370ðexpÞ � 220ðthÞ � 150ðsysÞ MeV. To our

best knowledge, the latter represents the latest and most

accurate constraint on Ksym.

2 The lower boundary of nuclear symmetry
energy constrained by the universal EOS
of unitary Fermi gas

Within the parabolic approximation for the EOS of

isospin asymmetric nuclear matter (ANM) in terms of the

energy per nucleon E, i.e., Eðq; dÞ ¼ E0ðqÞ þ EsymðqÞd2 þ
Oðd4Þ; the symmetry energy EsymðqÞ ¼ 2�1½o2Eðq; dÞ=
od2�d¼0 can be approximated by

EsymðlÞ � EPNMðlÞ � E0ðlÞ; ð1Þ

where l ¼ q=q0 is the reduced density and d ¼ ðqn � qpÞ=
q is the isospin asymmetry of ANM. Using the conjecture

EPNMðqÞ�EUGðqÞ [27, 28] and the EOS of unitary gas

EUGðlÞ ¼
3�h2k2F
10mn

n � E0
UGl

2=3; ð2Þ

where kF is the neutron Fermi momentum, the lower

boundary of symmetry energy can be obtained from

EsymðlÞ�EUGðlÞ � E0ðlÞ ¼ E0
UGl

2=3 � E0ðlÞ: ð3Þ

It is necessary to caution that the above lower boundary of

EsymðlÞ is estimated based on the conjecture

EPNMðqÞ�EUGðqÞ and the assumption that n is a constant

in the density range we study. As emphasized in Refs.

[27, 28], the conjecture is empirical in nature. While there

are strong supports for the conjecture by comparing the

EOSs of PNM calculated from various microscopic many-

body theories with the EUGðlÞ using a constant n � 0:37

(see Fig. 1 of Refs. [27, 28] and Fig. 2 of Ref. [37]) up to

about q0, the rigorous condition for unitarity is expected to

be reached in PNM only at very low densities. Although

one cannot prove the validity of the conjecture at high

densities, strong physical arguments were made to justify

and use it up to about 1:5q0 in Refs. [27, 28]. Thus, the

results of our study should be understood with the caveat

that they are obtained under the above reasonable but not

rigorously proven conjecture and assumptions. Neverthe-

less, they are useful for comparing with the results of Refs.

[27, 28] obtained using the same assumptions.

The EOS of SNM around q0 can be expanded to the

third order in density as

E0ðlÞ ¼ E0ðq0Þ þ
K0

18
ðl� 1Þ2 þ J0

162
ðl� 1Þ3 þO½ðl

� 1Þ4�
ð4Þ

in terms of the incompressibility K0 and skewness J0. At

the saturation point of SNM, we adopt E0ðq0Þ ¼ � 15:9

MeV and q0 ¼ 0:164 fm�3 [38]. The lower boundary of

EsymðqÞ thus depends on the values of K0, J0 and n.
The incompressibility K0 of SNM has been extensively

investigated [34, 39], and the most widely used values are

K0 ¼ 240� 20 MeV [40, 41] or 230� 40 MeV [42].

However, the skewness coefficient J0 is still poorly known

[43–48]. In Fig. 1a, we show K0 and J0 from 274 param-

eterizations of the Skyrme and RMF models that pass the

PNM tests of Dutra et al. [31, 32] and satisfy K0 ¼
230� 40 MeV. The spread in values for J0 is very large,

covering the range � �800\ J0 \ 400 MeV.

As reviewed recently in Refs. [26–28], currently the best

estimate for the Bertsch parameter n from latticeMonte Carlo

studies is n ¼ 0:372ð5Þ consistent with the most accurate

experimental value of n ¼ 0:376ð4Þ. While its values from

various othermodels and experiments have scattered between

0.279 and 0.449(9) within the last decade, it appears that it

now has converged to n ¼ 0:37� 0:005 which we adopt in

this work. Shown in Fig. 2 with the red dashed lines is the

variation ofEsymðqÞwith n ¼ 0:37� 0:005, J0 ¼ 0, andK ¼
230MeV. Effects of varying the n value are very small within

the range considered.

Secondly, effects of the skewness parameter are shown

by varying the value of J0 between � 800 and 400 MeV,

the range covered by the models plotted in Fig. 1a.

Although the range is very large, it translates into a range

of uncertainty for EsymðqÞ that is equivalent to the range of

uncertainty in K0 (190\K0\ 270 MeV). This is easy to

understand as the expansion of SNM’s EOS converges

quickly around the normal density by design (the J0 con-

tribution of J0=162 is a factor of 9 less than the K0=18

term).

Considering the uncertainties of all relevant parameters

involved, the most conservative lower boundary of

EsymðqÞ shown as the shadowed region in Fig. 2 is obtained

by using n ¼ 0:37, q0 ¼ 0:157 fm�3, E0ðq0Þ ¼ � 15:5

MeV, and K0 ¼ 270 MeV; for l	 1, J0 ¼ �800 MeV and

for l[ 1, J0 ¼ 400 MeV. Overall, our observations and

results are consistent with the findings in Refs. [27, 28].

3 Constraining the Esymðq0Þ versus L boundary

The symmetry energy EsymðlÞ can be expanded around

q0 to third order in density as
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EsymðlÞ ¼Esymðq0Þ þ
L

3
ðl� 1Þ þ Ksym

18
ðl� 1Þ2

þ Jsym

162
½ðl� 1Þ3� þ O½ðl� 1Þ4�

ð5Þ

in terms of its magnitude Esymðq0Þ, slope L, curvature Ksym,

and skewness Jsym at q0. Inserting the above equation into

Eq. (3), the lower boundary of Esymðq0Þ can be expressed

as

Esymðq0Þ� E0
UGl

2=3 � E0ðq0Þ �
L

3
ðl� 1Þ � Kn

18
ðl� 1Þ2

� Jn

162
ðl� 1Þ3;

ð6Þ

where Kn ¼ Ksym þ K0 and Jn ¼ Jsym þ J0. Taking the

derivative of the above equation with respect to density on

both sides, one can readily get an expression for the lower

boundary of L,

L ¼ 2E0
UG

l1=3
� Kn

3
ðl� 1Þ � Jn

18
ðl� 1Þ2: ð7Þ

Then, putting the above expression back to Eq. (6) the

latter can be rewritten as

Esymðq0Þ�
E0
UG

3l1=3
ðlþ 2Þ þ Kn

18
ðl� 1Þ2

þ Jn

81
ðl� 1Þ3 � E0ðq0Þ:

ð8Þ

These two equations reveal the correlation between the

Esymðq0Þ and L along their lower boundaries through the

arbitrary density l. Setting Jn ¼ 0, the Eqs. (7) and (8)

reduce exactly to the parametric equations of Esymðq0Þ and
L derived slightly differently in version-1 of Refs. [27, 28].

We note that the quantities that determine the boundary of

allowed values of Esymðq0Þ and L are the total curvature

parameter Kn and total skewness parameter Jn also

emphasized in version-2 of Refs. [27, 28].

While having noted that Ksym is experimentally and

theoretically poorly known, the Esymðq0Þ versus L corre-

lation along their boundaries was obtained in Refs. [27, 28]

by setting Ksym ¼ 0 based on the prediction of a chiral

effective field theory. It was found that the resulting cor-

relation excludes many of the currently actively used

models for EsymðqÞ . We reexamine this correlation by

varying the n, Jn, and Ksym within their known uncertain

ranges. Again, the value of n is now well settled around

0:37� 0:005. Taking Ksym ¼ 0, Jn ¼ 0 and K0 ¼ 230

(a)

(b)

Fig. 1 (Color online) The skewness parameter J0 versus the

incompressibility K0 for symmetric matter (a) and the total curvature

parameter Kn ¼ K0 þ Ksym versus the total skewness parameter Jn ¼
J0 þ Jsym (b) for all 173 Skyrme and 101 RMF models examined by

Dutra et al. [31, 32] which pass their pure neutron matter constraints

and satisfy 190\K0 \ 270 MeV

Fig. 2 (Color online) The lower boundary of symmetry energy as a

function of density for different skewness coefficients J0 ¼ 400, 0,

� 400, and � 800 MeV. The red dashed region represents the

variation of EsymðlÞ with K0 ¼ 230 MeV and J0 ¼ 0 MeV by

adopting n ¼ 0:37� 0:005. The shadowed region shows the excluded

region after considering the uncertainties of n, K and J0
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MeV, the two red dashed lines obtained with n ¼ 0:37�
0:005 in both (a) and (b) of Fig. 3 show the resulting lower

boundaries of the Esymðq0Þ versus L correlation.

The skewness coefficients J0 and Jsym in Jn are both poorly

known. We show in Fig. 1b values of Jn against Kn for the

275 Skyrme and RMF parametrizations. Jn varies approxi-

mately in the range � 500 MeV 	 Jn 	 1000 MeV. To our

best knowledge, there is no experimental constraint available

on this quantity. Kn varies approximately in the range� 150

MeV 	 Kn 	 370 MeV. Most of this comes from the big

uncertainties in determining the value of Ksym, which are

discussed in detail in Ref. [12]. This is partially because the

Ksym depends on not only L but also its derivative ðdL=dqÞq0
by definition. Microscopically, it depends on not only the

nucleon isoscalar effective mass m

0 and neutron–proton

effective mass splitting m

n � m


p but also their momentum

and density dependences that are all essentially completely

unknown [12]. The latest calculations within Skyrme Har-

tree–Fock and/or relativistic mean field models indicate that

� 400 	 Ksym 	 100 MeV [30–32, 34].

The results using Ksym ¼ 0, K0 ¼ 230 MeV (so Kn ¼
230 MeV), and n ¼ 0:37 for different values for Jn are

shown in Fig. 3a. It is seen that L becomes larger as J0
decreases and that the upper boundary of the allowed

region will correspond to the lower limit of Jn. At

Esymðq0Þ ¼ 40 MeV, for example, the increase is only

about 20%.

By setting Ksym ¼ � 200;� 100, 0, and 100 MeV with

K0 ¼ 230 MeV (corresponding to Kn ¼ 30; 130; 230, and

330 MeV), we can illustrate effects of the Ksym on the

lower boundary of Esymðq0Þ versus L correlation in Fig. 3b.

It is seen that the Ksym affects the results significantly; as

Ksym (and hence Kn) increases, L increases, and the upper

boundary of the allowed region will correspond to the

largest value of Ksym (and hence Kn). The overall uncer-

tainty in Kn leads to a variation of the upper boundary of

the allowed region that is about twice caused by the

uncertainty in Jn. We note that many of the models allowed

by Ksym ¼ 0 MeV would be excluded by using Ksym ¼
� 200 MeV.

Adopting the following values for the five parameters

after taking into account the full range presented by the 275

Skyrme and RMF parametrizations, i.e.,

q0 ¼ 0:157 fm�3; E0ðq0Þ ¼ � 15:5MeV; n ¼ 0:37;

Kn ¼ 370MeV; Jn ¼ � 500MeV;

a lower boundary excluding only the shadowed region in

Fig. 3 is obtained. It is seen that only the TMA and NLqd,
NL3 and LS220 may be excluded, while the STOS, TM1,

NLq, LS220, and KVR, which have been surely excluded

previously in Refs. [27, 28], may be allowed. This is

mainly a result in extending the upper bound in the

uncertainty region of Ksym, since the additional uncertainty

in Jn moves the excluded region to the right (because

Jn J 0). As pointed out in the final analyses of Refs.

[27, 28], we agree that strong empirical correlations among

Jsym;Ksym, and L exist. These correlations can be used to

refine the Esymðq0Þ-L constraint shown in Fig. 3.

It is well known that the detailed density dependence of

nuclear symmetry energy EsymðqÞ contains many interest-

ing and some unknown physics. It is probably not sur-

prising that the estimation of the correlation between its

zeroth-order and first-order density expansion coefficients

Esymðq0Þ and L depends on what we assume about the

immediate next high-order term characterized by the cur-

vature Ksym at q0.

(a)

(b)

Fig. 3 (Color online) The lower boundaries of symmetry energy

parameters based on different parameter values. The effects of the

uncertainty in Jn (a) and Ksym (b) are demonstrated by the blue lines,

holding Kn ¼ 230 MeV in a and Jn ¼ 0 MeV in b. The red dashed

region represents the deviation of Esym with J0 ¼ 0 MeV by adopting

n ¼ 0:37� 0:005. The shadowed region shows the excluded region

after considering all the uncertainties of q0, E0ðq0Þ, n, K0, Jn, and

Ksymðq0Þ
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4 Concluding remarks

The universal EOS EUG of the unitary Fermi gas was

conjectured in Refs. [27, 28] to provide the lower boundary

of the EOS EPNM of PNM, and thus a constraint on nuclear

symmetry energy. Although unproven, the conjecture has

strong empirical supports, and its implications are impor-

tant enough that they should be examined rigorously. We

found that the EUG does provide a useful lower boundary of

nuclear symmetry energy. Moreover, this boundary is

essentially not affected by the known uncertainty in the

skewness coefficient J0 of SNM. However, it does not

tightly constrain the correlation between the magnitude

E0ðq0Þ and slope L unless the curvature Ksym of the

EsymðqÞ at q0 and the skewness parameters J0 and Jsym are

better known. Of these, Ksym is the more important quan-

tity, its uncertainty affecting the lower boundary of

EsymðqÞ by up to twice as much as the uncertainty in Jn.

Most of the previously excluded EsymðqÞ functionals by the

universal EOS of unitary Fermi gas assuming Ksym ¼ 0

may not be excluded considering the currently known big

uncertainties of the Ksymðq0Þ.
For many purposes in both nuclear physics and astro-

physics, it is necessary to map out precisely both the

EsymðqÞ and the EOS E0ðqÞ of SNM in a broad density

range. Near the saturation density q0, this requires accurate
knowledge of the Ksym and J0 besides the E0ðq0Þ, L, and
K0. To this end, it is interesting to mention briefly quan-

tities that are sensitive to the higher-order EOS parameters

and current efforts to determine them. For example, the

skewness coefficient J0 characterizes the high-density

behavior of E0ðqÞ, and it has been found to affect signifi-

cantly the maximum mass of neutron stars [48]. Moreover,

at the crust-core transition point where the incompress-

ibility of neutron star matter at b-equilibrium vanishes, the

value of J0 influences significantly the exact location of the

transition point [49]. Thus, astrophysical observations of

neutron stars can potentially constrain the J0 albeit prob-

ably not before other EOS parameters are well determined.

On the other hand, in terrestrial laboratory experiments,

there have been continued efforts to determine the Ksym

[34]. One outstanding example is the measurement of the

isospin dependence of nuclear incompressibility KðdÞ �
K0 þ Ksd

2 þOðd4Þ where Ks ¼ Ksym � 6L� J0L=K0

using giant resonances of neutron-rich nuclei [50, 51].

While the current estimate of Ks � �550� 100 MeV [34]

from analyzing many different kinds of terrestrial experi-

ments is still too rough to constrain tightly the individual

values of J0 and Ksym, new experiments with more neutron-

rich beams have the promise of improving significantly the

accuracy of the measured Ks [35]. Thus, we are hopeful

that not only the zeroth- and first-order parameters K0,

Esymðq0Þ, and L but also high-order coefficients J0 and Ksym

can be pinned down in the near future by combining new

analyses of upcoming astrophysical observations and ter-

restrial experiments.
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