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Abstract Within the nonlinear relativistic mean field (NL-

RMF) model, we show that both the pressure of symmetric

nuclear matter at supra-saturation densities and the maxi-

mum mass of neutron stars are sensitive to the skewness

coefficient, J0, of symmetric nuclear matter. Using exper-

imental constraints on the pressure of symmetric nuclear

matter at supra-saturation densities from flow data in

heavy-ion collisions and the astrophysical observation of a

large mass neutron star PSR J0348?0432, with the former

favoring a smaller J0 while the latter favors a larger J0, we

extract a constraint of � 494MeV� J0 � � 10MeV based

on the NL-RMF model. This constraint is compared with

the results obtained in other analyses.

Keywords Equation of state of nuclear matter � Heavy-ion
collisions � Neutron stars

1 Introduction

Determination of the equation of state (EOS) of asymmetric

nuclear matter (ANM) is one of the fundamental questions in

contemporary nuclear physics and astrophysics. The exact

knowledge on the EOS of ANM provides important informa-

tion on the in-mediumnuclear effective interactionswhich play

a central role in understanding the structure and decay prop-

erties of finite nuclei as well as the related dynamical problems

in nuclear reactions ([1–17]). The EOS of ANM also plays a

decisive role in understanding a number of important issues in

astrophysics including the structure and evolution of neutron

stars as well as the mechanism of supernova explo-

sion ([18–26]). Conventionally, the EOS of ANM is given by

the binding energy per nucleon as functions of nucleon density,

q, and isospin asymmetry, d, i.e., Eðq; dÞ, and some bulk

characteristic parameters defined at the saturation density, q0,
of symmetric nuclear matter (SNM) are usually introduced to

quantitatively characterize the EOS of ANM. For example, the

energy, E0ðq0Þ, and incompressibility, K0, of SNM, as well as

the symmetry energy, Esymðq0Þ, and its slope parameter, L, are

the four famous lower-order bulk characteristic parameters of

EOS of ANM. These bulk parameters defined at q0 provide

important information on both sub- and supra-saturation den-

sity behaviors of the EOS of ANM ([27, 28]).

Based on the empirical liquid-drop-like model analyses of

high precision data about nuclear masses, the E0ðq0Þ is well
known to be about� 16MeV. The incompressibility has been

determined to be K0 ¼ 240 � 40 MeV from analyzing

experimental data of nuclear giant monopole resonances

(GMR) ([1, 29–33]). For Esymðq0Þ and L, the existing con-

straints extracted from terrestrial laboratory measurements

and astrophysical observations are found to be essentially

consistent with Esymðq0Þ ¼ 32:5� 2:5 MeV and L ¼ 55�
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25 MeV (see, e.g., Refs. [34, 35]). While these lower-order

bulk characteristic parameters have been relatively well

determined or in significant progress, our knowledge on the

higher-order bulk characteristic parameters remains very

limited. Following E0ðq0Þ,K0, Esymðq0Þ, and L, the next bulk
characteristic parameter should be the skewness coefficient,

J0, (also denoted as K 0 or Q0 in some literature) of SNM,

which is related to the third-order density derivative of the

binding energy per nucleon of SNM at q0. The higher-order
bulk characteristic parameter J0 is expected to be important

for the high density behaviors of nuclear matter EOS and thus

may play an essential role in heavy-ion collisions (HIC), the

structure and evolution of neutron stars, supernova explosion,

and gravitational wave radiation from merging of compact

stars. To our best knowledge, there is very little experimental

information on the J0 parameter, and it is thus of great interest

and critical importance to constrain the J0 parameter, which is

the main motivation of the present work.

Within the nonlinear relativistic mean field (RMF)

model, we demonstrate in this work that the pressure of

SNM at supra-saturation densities and the maximum mass

of neutron stars provide good probes of the skewness

coefficient, J0. In particular, combining the experimental

constraints on the pressure of SNM at supra-saturation

densities from flow data in HIC and the recent astrophys-

ical observation of a large mass neutron star, PSR

J0348?0432, one can obtain a strong constraint on the J0
parameter.

2 The skewness coefficient J0 in nonlinear RMF
model

2.1 Nuclear matter characteristic parameters

The EOS of isospin asymmetric nuclear matter, namely

Eðq; dÞ, can be expanded as a power series of even-order

terms in d as

Eðq; dÞ ’ E0ðqÞ þ EsymðqÞd2 þOðd4Þ; ð1Þ

where E0ðqÞ ¼ Eðq; d ¼ 0Þ is the EOS of symmetric

nuclear matter, and the symmetry energy is expressed as

EsymðqÞ ¼
1

2

o2Eðq; dÞ
od2

�
�
�
�
d¼0

: ð2Þ

Around the saturation density, q0, the E0ðqÞ can be

expanded, e.g., up to third order in density, as,

E0ðqÞ ¼ E0ðq0Þ þ
K0

2!
v2 þ J0

3!
v3 þOðv4Þ; ð3Þ

where v ¼ ðq� q0Þ=3q0 is a dimensionless variable char-

acterizing the deviations of the density from the saturation

density, q0. The first term E0ðq0Þ on the right-hand side of

Eq. (3) is the binding energy per nucleon in SNM at q0 and
the coefficients of other terms are

K0 ¼ 9q20
d2E0ðqÞ
dq2

�
�
�
�
q¼q0

; ð4Þ

J0 ¼ 27q30
d3E0ðqÞ
dq3

�
�
�
�
q¼q0

; ð5Þ

where K0 is the well-known incompressibility coefficient

of SNM and J0 is the skewness coefficient of SNM, i.e., the

third-order incompressibility coefficient of SNM ([27,

28]).

Similarly, one can expand the EsymðqÞ around an arbi-

trary reference density, qr, as

EsymðqÞ ¼ EsymðqrÞ þ LðqrÞvr þOðv2r Þ; ð6Þ

with vr ¼ ðq� qrÞ=3qr, and the slope parameter of the

symmetry energy at qr is expressed as [36]

LðqrÞ ¼ 3qr
dEsymðqÞ

dq

�
�
�
�
q¼qr

: ð7Þ

For qr ¼ q0, the LðqrÞ is reduced to the conventional slope

parameter L � 3q0dEsymðqÞ=dqjq¼q0
.

If d and v are assumed to be small quantities on the same

order, nuclear matter bulk characteristic parameters can

then be classified accordingly in different orders. For

example, L and J0 are on the same order-3, i.e., d2v for L

and d0v3 for J0. In this sense, E0ðq0Þ is on the order-0, and,

K0 and Esymðq0Þ are on the order-2. To see the role of J0 in

the EOS of SNM, one can rewrite Eq. (3) in a slightly

different form as

E0ðqÞ ’ E0ðq0Þ þ
1

2
K0v

2 1þ vJ0
3K0

� �

: ð8Þ

Assuming J0 has roughly the same magnitude as K0, one

can see that the contribution from the J0 term to the EOS of

SNM becomes comparable with that from the K0 term if

the baryon density is larger than about 3q0, corresponding
to the typical densities inside a neutron star. On the other

hand, the J0 term plays a minor role for the EOS of SNM at

subsaturation densities relevant for nuclear structure

properties. As we will see later, the pressure of SNM at

supra-saturation densities and the maximum mass of neu-

tron stars indeed display strong sensitivity on the J0
parameter.

2.2 Nuclear matter characteristic parameters

in nonlinear RMF model

The nonlinear RMF model has made great success

during the last decades in describing many nuclear
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phenomena (see, e.g., [37–50]). In the following, we briefly

describe the nonlinear RMF model that we shall adopt in

this work and present some useful expressions of nuclear

matter characteristic parameters, especially the skewness

coefficient, J0. The interacting Lagrangian of the nonlinear

RMF model supplemented with couplings between the

isoscalar and the isovector mesons reads ([51–57])

L ¼w clðiol � gxx
l � gqq

l � sÞ � ðM � grrÞ
� �

w

� 1

2
m2

rr
2 þ 1

2
olro

lr� UðrÞ

þ 1

2
m2

xxlx
l � 1

4
xlmx

lm þ 1

4
cx gxxlx

l
� �2

þ 1

2
m2

qql � ql �
1

4
qlm � qlm

þ 1

2
g2qql � qlKVg

2
xxlx

l;

ð9Þ

where xlm � olxm � omxl andqlm � olqm � omql are

strength tensors for x field and q field, respectively. w, r,
xl, ql are nucleon field, isoscalar-scalar field, isoscalar-

vector field, and isovector-vector field, respectively, and

the arrows denote the vector in isospin space; UðrÞ ¼
brMðgrrÞ3=3þ crðgrrÞ4=4 is the self-interaction term for

r field. KV represents the coupling constant between the

isovector q meson and the isoscalar x meson, and it is

important for the description of the density dependence of

the symmetry energy. In addition, M is the nucleon mass

and mr, mx, mq are masses of mesons.

In the mean field approximation, after neglecting effects

of fluctuation and correlation, meson fields are replaced by

their expectation values, i.e., r ! r, x0 ! xl, q
ð3Þ
0 ! ql,

where subscript ‘‘0’’ indicates zeroth component of the

four-vector, superscript ‘‘(3)’’ indicates third component of

the isospin. Furthermore, we also use in this work the non-

sea approximation which neglects the effect due to nega-

tive energy states in the Dirac sea. The mean field equa-

tions are then expressed as

m2
rr ¼ gr qS � brM grrð Þ2�cr grrð Þ3

h i

; ð10Þ

m2
xx0 ¼ gx q� cx gxx0ð Þ3�KVgxx0 gqq

ð3Þ
0

	 
2
� �

; ð11Þ

m2
qq

ð3Þ
0 ¼ gq qp � qn � KVgqq

ð3Þ
0 gxx0ð Þ2

h i

; ð12Þ

where

q ¼ hwc0wi ¼ qn þ qp; qS ¼ hwwi ¼ qS;n þ qS;p; ð13Þ

are the baryon density and scalar density, respectively, with

the latter given by

qS;J ¼
2

ð2pÞ3
Z kJ

F

0

dk
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jkj2 þM�2
q

¼ M�

2p2
kJFEJ�

F �M�2 ln
kJF þ EJ�

F

M�

� �� �

; J ¼ p; n:

ð14Þ

In the above expression, we have EJ�
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kJ2F þM�2
p

and

the nucleon Dirac mass is defined as

M� � M�
dirac ¼ M � grr: ð15Þ

kJF ¼ kFð1þ sJ3dÞ
1=3

is the Fermi momentum with sn3 ¼ þ1

for neutrons and sp3 ¼ �1 for protons, and kF ¼
ð3p2q=2Þ1=3 is the Fermi momentum for SNM at q.

The energy–momentum density tensor for the interact-

ing Lagrangian density in Eq. (9) can be written as

T lm ¼ wiclomwþ olromr� xlgomxg � q~lgomq~g � Lglm;
ð16Þ

where glm ¼ ðþ;�;�;�Þ is the Minkowski metric. In the

mean field approximation, the mean value of the time

(zero) component of the energy–momentum density tensor

is the energy density of the nuclear matter system, i.e.,

e ¼hT 00i

¼ enkin þ epkin þ
1

2
m2

rr
2 þ m2

xx
2
0 þ m2

q qð3Þ0

	 
2
� �

þ 1

3
brðgrrÞ3 þ

1

4
crðgrrÞ4 þ

3

4
cxðgxx0Þ4

þ 3

2
gqq

ð3Þ
0

	 
2

KVðgxx0Þ2;

ð17Þ

where

eJkin ¼
2

ð2pÞ3
Z kJ

F

0

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jkj2 þM�2
q

¼ 1

p2

Z kJ
F

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
p

¼ 1

4
3EJ�

F qJ þM�qS;J
� �

; J ¼ p,n;

ð18Þ

is the kinetic part of the energy density. Similarly, the mean

value of space components of the energy–momentum den-

sity tensor corresponds to the pressure of the system, i.e.,

P ¼ 1

3

X3

j¼1

hT jji ¼ Pn
kin þ P

p
kin

� 1

2
m2

rr
2 � m2

xx
2
0 � m2

q qð3Þ0

	 
2
� �

� 1

3
brðgrrÞ3 �

1

4
crðgrrÞ4 þ

1

4
cxðgxx0Þ4

þ 1

2
gqq

ð3Þ
0

	 
2

KVðgxx0Þ2;

ð19Þ

where the kinetic part of pressure is given by
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PJ
kin ¼

1

3p2

Z kJ
F

0

dk
k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
p ; J ¼ p; n: ð20Þ

The EOS of ANM can be calculated through the energy

density, eðq; dÞ, by

Eðq; dÞ ¼ eðq; dÞ
q

�M: ð21Þ

The EOS of SNM is just E0ðqÞ � Eðq; d ¼ 0Þ, and the

characteristic parameters K0 and J0 can be obtained from

the following expressions

K0ðqÞ � 9q2
d2E0

dq2
¼ � 9qg2rM

�2

QrE�2
F

þ 9qg2x
Qx

þ 3k2F
E�
F

� 6L0ðqÞ;

ð22Þ

J0ðqÞ � 27q3
d3E0

dq3
¼ � 3k2F

E�
F

� 3k4F

E�3
F

þ 27g2rM
�2q2

QrE�3
F

� 3p2

2kFE�
F

þ 2g2r
Qr

� grM
�g

Q2
r

� 2g2rM
�2

QrE�2
F

þ E�
F/

2Qr

 !

� 162cxg
7
xx0q2

Q3
x

� 9K0ðqÞ;

ð23Þ

with

L0ðqÞ � 3q
dE0

dq
¼ 3

"

E�
F

4
�M�qS

4q
þ gxx0

� 1

q
1

2
m2

rr
2 þ UðrÞ þ 1

2
m2

xx
2
0 þ

3

4
cxg

4
xx

4
0

� �#

:

ð24Þ

In the above expressions, we have

Qr ¼m2
r þ g2r

3qS
M� � 3q

E�
F

� �

þ 2brMg3rrþ 3crg
4
rr

2; ð25Þ

Qx ¼m2
x þ 3cxg

4
xx

2
0; ð26Þ

and

g ¼ 3g3r
2qS
M�2 �

3q
M�E�

F

þM�q

E�3
F

 !

� 2brMg3r � 6crg
4
rr;

ð27Þ

/ ¼ 2g2rk
2
F

E�3
F

; ð28Þ

with E�
F ¼ ðk2F þM�2Þ1=2. To our best knowledge, Eq. (23)

gives, for the first time [58], the analytical expression of

the J0 parameter in the nonlinear RMF model. In addition,

we would like to point out that the general expression for

EsymðqÞ and LðqÞ in the nonlinear RMF model has been

derived in Ref. [59].

3 Results and discussions

For the Lagrangian in Eq. (9), the properties of infinite

nuclear matter is uniquely determined by fr ¼ gr=mr, br, cr,

fx ¼ gx=mx, cx, fq ¼ gq=mq,KV, andM. If the nucleonmass

in vacuum is set to beM ¼ 939MeV, one then has seven total

parameters to determine the properties of infinite nuclear

matter in the nonlinear RMF model. Following the correla-

tion analysis method proposed in Ref. [60] within the Sky-

rme–Hartree–Fock (SHF) approach, instead of directly using

the seven microscopic parameters, i.e., fr, br, cr, fx, cx, fq,

andKV, one can determine their values explicitly in terms of

seven macroscopic quantities, i.e., q0, E0ðq0Þ, K0, J0,

M�0
dirac � M�

diracðq0Þ, EsymðqcÞ, and LðqcÞ where qc is the

cross-density whose value is fixed in this work at

0:11 fm�3 ([36]). Then, by varying individually these

macroscopic quantities within their known ranges, one can

examine transparently the correlation of nuclear matter

properties with each individual macroscopic quantity.

Recently, this simple correlation analysis method has been

successfully applied to study the neutron skin ([36, 60]) and

giant resonances of finite nuclei ([33, 61]), the higher-order

bulk characteristic parameters of ANM ([28]), and the

relationship between the nuclear matter symmetry energy

and the symmetry energy coefficient in the mass for-

mula ([62]). We would like to point out although the seven

macroscopic quantities defined above coherently act on the

maximummass of neutron stars and the pressure of the SNM,

they are independent with each other in our analysis since we

vary one quantity by keeping other six quantities fixed. This

is one of the main advantages of our approach since the

physics of these macroscopic quantities is different.

To examine the correlation of pressure of SNM at supra-

saturation densities with each macroscopic quantity, we

show in Fig. 1 the pressure of SNMPðqÞ at q ¼ 3q0 from the

nonlinear RMF model based on the FSUGold interac-

tion ([55]) by varying individuallyq0,E0ðq0Þ,M�0
dirac,K0, and

J0 within their empirical uncertain ranges, namely varying

one quantity at a timewhile keeping all others at their default

values in FSUGold for which we have q0 ¼ 0:148 fm�3,

E0ðq0Þ ¼ � 16:3 MeV, M�0
dirac ¼ 0:61M, K0 ¼ 230 MeV,

J0 ¼ �522:6 MeV, EsymðqcÞ ¼ 27:11 MeV, and LðqcÞ ¼
49:97 MeV. It should bementioned that the pressure of SNM

is independent of the values of EsymðqcÞ and LðqcÞ. It is seen
from Fig. 1 that the pressure of SNM PðqÞ at q ¼ 3q0
increases with q0, M

�0
dirac, K0, and J0 while it decreases with

E0ðq0Þ. In particular, the pressure of SNM PðqÞ at q ¼ 3q0
displays a specially strong correlation with J0. We note that
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the pressure of SNM PðqÞ at other supra-saturation densities
exhibits similar correlations with q0, E0ðq0Þ,M�0

dirac, K0, and

J0. These features indicate that the pressure of SNMat supra-

saturation densities is sensitive to the J0 value, and thus the

experimental constraints on the pressure of SNM at supra-

saturation densities may provide important information on

the J0 value.

Since the pressure of SNM at supra-saturation densities

is sensitive to the J0 value, the maximum mass, Mmax, of

static neutron stars is also expected to be sensitive to the J0
value. The mass and radius of static neutron stars can be

obtained from solving the Tolman–Oppenheimer–Volkoff

(TOV) equations with a given neutron star matter EOS. A

neutron star generally contains core, inner crust, and outer

crust from the center to surface. In this work, for the core

where the baryon density is larger than the core–curst

transition density, qt, we use the EOS of b-stable and

charge neutral, npel matter obtained from the nonlinear

RMF model. In the inner crust with densities between qout
and qt where the nuclear pastas may exist, we construct its

EOS (pressure, P, as a function of energy density, E)
according to P ¼ aþ bE4=3 because of our poor knowledge

about its EOS from first principle ([63–65]). The qout ¼
2:46� 10�4 fm�3 is the density separating the inner from

the outer crust. The constants a and b are then easily

determined by the pressure and energy density at qt and
qout [64, 65]. In this work, the qt is determined self-con-

sistently within the nonlinear RMF model using the ther-

modynamical method (see, e.g., [57] for the details). In the

outer crust with 6:93� 10�13 fm�3\q\qout, we use the

EOS of BPS ([66, 67]), and in the region of 4:73� 10�15

fm�3\q\ 6:93� 10�13 fm�3, we use the EOS of

FMT ([66]).

Similarly, as in Fig. 1, we plot in Fig. 2 the maximum

mass, Mmax, of static neutron stars from the nonlinear RMF

model based on the FSUGold interaction by varying indi-

vidually q0, E0ðq0Þ, M�0
dirac, K0, J0, EsymðqcÞ, and LðqcÞ

within their empirical uncertain ranges. Indeed, one can see

that the Mmax displays a very strong positive correlation

with the J0 parameter. In addition, the Mmax exhibits weak

positive correlation with the M�0
dirac and K0, and weak

negative correlation with the q0 and E0ðq0Þ. It is interesting
to see that the Mmax is essentially independent of the values

of EsymðqcÞ and LðqcÞ, implying that, in the nonlinear RMF

model, the Mmax is basically determined by the isoscalar

part of the nuclear matter EOS. Since the seven micro-

scopic parameters change with the macroscopic quantities,

it is thus not surprising to see that the maximum mass of a

neutron star based on the FSUGold interaction by varying

macroscopic quantities may be totally different from the

default one from FSUGold, which is about 1:74M	. These
features indicate that the observed largest mass of neutron

stars may put important constraint on the J0 value. We

would like to point out that the interaction FSUGold is only

used in Figs. 1 and 2 as a reference for the correlation

analyses and using other RMF interactions will not change

our conclusion.

Experimentally, the pressure of SNM at supra-saturation

densities (from 2q0 to about 5q0) has been constrained by

measurements of collective flows in HIC ([3]), which is

shown as a band in the left window of Fig. 3. In the non-

linear RMF model, if one only changes the J0 value while

the other six macroscopic quantities are kept at their values

in the FSUGold interaction, one can find that the J0 value

should be in the range of �985MeV� J0 � � 327MeV to

be consistent with the flow data in HIC ([3]). However,

keeping the other six macroscopic quantities at their values

in the FSUGold interaction is obviously a strong assump-

tion because the extraction of the J0 value from the flow

data in HIC will also depend on the values of q0, E0ðq0Þ,
M�0

dirac, and K0, which can be varied within their empirical

uncertain ranges. For the nonlinear RMF model, we use, in

this work, the following empirical uncertain ranges for

Fig. 1 Pressure of SNM at q ¼ 3q0 from the nonlinear RMF model

based on the FSUGold interaction by varying individually q0 (a),

E0ðq0Þ (b), M�0
dirac (c), K0 (d), and J0 (e)

Fig. 2 (Color online) Maximum mass of static neutron stars from the nonlinear RMF model based on the FSUGold interaction by varying

individually q0 (a), E0ðq0Þ (b), M�0
dirac (c), K0 (d), J0 (e), EsymðqcÞ (f), and LðqcÞ (g)
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these macroscopic quantities, i.e., q0 ¼ 0:153� 0:008

fm�3, E0ðq0Þ ¼ � 16:2� 0:3MeV, M�0
dirac=M ¼ 0:61�

0:04, and K0 ¼ 230� 20MeV, which represent the typical

uncertain ranges known or predicted from different inter-

actions in the nonlinear RMF model ([56]).

Based on the pressure of SNM constrained by flow data

in HIC ([3]), to extract the upper limit of the J0 value, one

should use the values of q0, E0ðq0Þ, M�0
dirac, and K0 that

make the resulting pressure of SNM as small as possible

when J0 is fixed. This can be obtained by using

q0 ¼ 0:145 fm�3, E0ðq0Þ ¼ �15:9MeV, M�0
dirac=M ¼ 0:57,

and K0 ¼ 210MeV, denoted as set ‘‘S’’, since the pressure

of SNM Pðq=q0Þ at supra-saturation densities increases

with q0, M
�0
dirac, and K0 while decreases with E0ðq0Þ, as

shown in Fig. 1. With the set ‘‘S’’ for q0, E0ðq0Þ, M�0
dirac,

and K0, one can find the upper limit of J0 ¼ � 10 MeV for

the J0 value, which is indicated by a solid line in the left

window of Fig. 3. For J0 [ � 10 MeV, the model would

over-predict the pressure of SNM constrained by flow data

in HIC ([3]). Similarly, one can obtain the lower limit of

the J0 value by using the values of q0, E0ðq0Þ, M�0
dirac, and

K0 that make the resulting pressure of SNM as large as

possible when J0 is fixed, and this can be obtained with

q0 ¼ 0:161 fm�3, E0ðq0Þ ¼ � 16:5MeV, M�0
dirac=M ¼ 0:65,

and K0 ¼ 250MeV, denoted as set ‘‘H’’. Using the set ‘‘H’’

for q0, E0ðq0Þ, M�0
dirac, and K0, one can extract the lower

limit of J0 ¼ � 1280 MeV, which is indicated by dashed

line in the left window of Fig. 3. The model would under-

predict the pressure of SNM constrained by flow data in

HIC ([3]) if J0\� 1280 MeV. Therefore, from the

pressure of SNM constrained by flow data in HIC ([3]), one

can extract the constraint of � 1280MeV� J0 � � 10MeV.

Recently, a new neutron star, PSR J0348?0432, with a

mass of 2:01� 0:04M	 was discovered ([68]), and this

neutron star is only the second pulsar with a precisely

determined mass around 2M	 after PSR J1614-2230 ([69])

and sets a new record of the maximum mass of neutron

stars. The lower mass limit of 1:97M	 for PSR

J0348?0432 thus may set a lower limit of the J0 value

below which the model cannot predict a neutron star with

mass equal or above 1:97M	. To extract the lower limit of

the J0 value from the observed heaviest neutron star, PSR

J0348?0432, one can use the values of q0, E0ðq0Þ, M�0
dirac,

K0, EsymðqcÞ, and LðqcÞ that make the resulting maximum

mass of neutron stars as large as possible when J0 is fixed,

and from Fig. 2 this can be obtained with q0 ¼ 0:145 fm�3,

E0ðq0Þ ¼ � 16:5MeV, K0 ¼ 250MeV, M�0
dirac=M ¼ 0:65,

EsymðqcÞ ¼ 26MeV, and LðqcÞ ¼ 60MeV, denoted as set

‘‘NS-H’’. This leads to a lower limit of J0 ¼ � 494 MeV

for the J0 value as shown in the right window of Fig. 3

where the maximum mass of neutron stars is plotted as a

function of J0 when the other six macroscopic quantities

are fixed at their values as in set ‘‘NS-H’’. For J0\� 494

MeV, the maximum mass of static neutron stars predicted

in the nonlinear RMF model would be always smaller than

1:97M	. It should be pointed out that here the interior of

neutron stars has been assumed to be npel matter. New

degrees of freedom, such as hyperons or/and quark matter

that could be present in the interior of neutron stars, usually

soften the EOS of neutron star matter and thus a larger J0
value would be necessary to obtain a neutron star with

mass of 1:97M	. Therefore, including the new degrees of

freedom in neutron stars will be consistent with the con-

straint of J0 
 � 494 MeV.

Combining the constraint of � 1280MeV� J0 � �
10MeV from the pressure of SNM constrained by flow data

in HIC ([3]) which favors a smaller J0 value and the con-

straint of J0 
 � 494 MeV from the recently discovered

heaviest neutron star PSR J0348?0432 ([68]) which favors

a larger J0 value, one can extract the following constraint

for the J0 parameter

� 494MeV� J0 � � 10MeV: ð29Þ

It should be emphasized that the constraint � 494MeV�
J0 � � 10MeV represents a conservative extraction based

on flow data in HIC ([3]) and the recently discovered

heaviest neutron star, PSR J0348?0432 ([68]) in the non-

linear RMF model. This is because we have not considered

the possible correlations that existed among the q0, E0ðq0Þ,
M�0

dirac, K0, EsymðqcÞ, and LðqcÞ, and have simply set

simultaneously their values in the boundary of their

Fig. 3 (Color online) Left window: Pressure of SNM as a function of

baryon density. The solid (dashed) line is the prediction from the

nonlinear RMF model with J0 ¼ � 10 (� 1280) MeV and the set ‘‘S

(H)’’ for q0, E0ðq0Þ, M�0
dirac, and K0. The band represents the

constraints from flow data in HIC [3]. Right window: The maximum

mass of static neutron stars as a function of J0 in the nonlinear RMF

model with the set ‘‘NS-H’’ for q0, E0ðq0Þ, M�0
dirac, K0, EsymðqcÞ, and

LðqcÞ. The band represents mass 2:01� 0:04M	 for PSR

J0348?0432 [68]
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empirical uncertain ranges. Considering the correlations

possibly existed among the q0, E0ðq0Þ, M�0
dirac, K0, EsymðqcÞ

and LðqcÞ should further narrow the constraint

� 494MeV� J0 � � 10MeV, and it will be interesting to

see the quantitative constraint on the J0 parameter based on

the data of finite nuclei, neutron stars, and heavy-ion col-

lisions using the exhaustive statistical analysis method

although this is beyond the scope of the present work. The

conservative constraint � 494MeV� J0 � � 10MeV

obtained in the present work indicates that, if the J0 value is

out of the region � 494MeV� J0 � � 10MeV, the non-

linear RMF model either cannot predict the pressure of

SNM constrained by flow data in HIC ([3]) or cannot

describe the recently discovered heaviest neutron star PSR

J0348?0432 ([68]). It is worth mentioning that the con-

straint on the J0 depends on our knowledge of the other six

quantities. Any improvement on these six macroscopic

quantities will make the range for the J0 constraint nar-

rower. In addition, the extracted constraint on the J0 could

depend on the form of the energy density functional, and it

will be interesting to see how the constraint changes if

other energy density functionals are used.

In Fig. 4, we show the comparison of the J0 constraint

obtained in our analysis with those obtained with other

analyses and/or other methods ([25, 28, 70, 71]), including

the constraint of J0 ¼ � 700 � 500 MeV obtained by

Ref. [70] from the analysis of nuclear GMR, the constraint

of J0 ¼ � 280þ72
�410 (� 500þ170

�290) MeV obtained by Ref. [71]

from analyzing a heterogeneous data set of six neutron

stars using a Markov chain Monte Carlo algorithm within a

Bayesian framework by assuming rph � R (rph ¼ R) where

rph is the photospheric radius at the time the flux is eval-

uated and R is the stellar radius, the constraint of J0 ¼
� 355� 95 MeV deduced by Ref. [28] based on a corre-

lation analysis method within SHF energy density func-

tional, and the constraint of J0 ¼ � 390� 90 MeV

deduced by Ref. [25] who used a similar method as

Ref. [28]. It is seen that the constrained region of J0
obtained in the present work has a remarkable overlap with

those existing in the literature. In particular, our present

constraint from the relativistic model is nicely consistent

with the constraints deduced from the nonrelativistic SHF

approach, and they all indicate that the J0 parameter should

be larger than about � 500 MeV.

4 Summary

Within the nonlinear relativistic mean field model, using

macroscopic nuclear matter characteristic parameters

instead of the microscopic coupling constants as direct input

quantities, we have demonstrated that the pressure of sym-

metric nuclear matter at supra-saturation densities and the

maximummass of neutron stars provide useful probes for the

skewness coefficient, J0, of symmetric nuclear matter. In

particular, using the existing experimental constraints on the

pressure of symmetric nuclear matter at supra-saturation

densities from flow data in heavy-ion collisions and the

astrophysical observation of recently discovered heaviest

neutron star PSR J0348?0432, with the former requiring a

smaller J0 while the latter requires a larger J0, we have

extracted a constraint of � 494MeV� J0 � � 10MeV.

We have compared the present constraint with the

results obtained in other analyses and found they are nicely

in agreement. In particular, our present constraint from the

relativistic model is nicely consistent with the constraints

deduced from the nonrelativistic Skyrme–Hartree–Fock

approach, and they all indicate that the J0 parameter cannot

be too small, namely it should be larger than about � 500

MeV. The present constraint on the J0 parameter provides

important information on the high density behaviors of the

EOS of symmetric nuclear matter and also may be poten-

tially useful for the determination of the high density

behaviors of the EOS of asymmetric nuclear matter,

especially the high density symmetry energy.
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31. G. Colò, Constraints, Limits and extensions for nuclear energy

functionals. AIP Conf. Proc. 1128, 59 (2009). https://doi.org/10.

1063/1.3146221

32. J. Piekarewicz, Do we understand the incompressibility of neu-

tron-rich matter? J. Phys. G 37, 064038 (2010). https://doi.org/10.
1088/0954-3899/37/6/064038

33. L.W. Chen, J.Z. Gu, Correlations between the nuclear breathing

mode energy and properties of asymmetric nuclear matter.

J. Phys. G 39, 035104 (2012). https://doi.org/10.1088/0954-3899/

39/3/035104

34. L.W. Chen, Recent progress on the determination of the sym-

metry energy. Nucl. Struct. China 2012, 43–54 (2013). https://

doi.org/10.1142/9789814447485_0007. arXiv:1212.0284

35. B.A. Li, L.W. Chen, F.J. Fattoyev et al., Probing nuclear sym-

metry energy and its imprints on properties of nuclei, nuclear

reactions, neutron stars and gravitational waves. J. Phys. Conf.

Ser. 413, 012021 (2013). https://doi.org/10.1088/1742-6596/413/

1/012021

36. Z. Zhang, L.W. Chen, Constraining the symmetry energy at

subsaturation densities using isotope binding energy difference

and neutron skin thickness. Phys. Lett. B 726, 234–238 (2013).

https://doi.org/10.1016/j.physletb.2013.08.002

37. B.D. Serot and J.D. Walecka, Advances in Nuclear Physics. Vol.

16, J.W. Negele, E. Vogt, Eds., Plenum, New York (1986)

38. B.D. Serot, J.D. Walecka, Recent progress in quantum hadrody-

namics. Int. J. Mod. Phys. E 6, 515 (1997). https://doi.org/10.

1142/S0218301397000299

39. P.-G. Reinhard, The relativistic mean-field description of nuclei

and nuclear dynamics. Rep. Prog. Phys. 52, 439–514 (1989).

https://doi.org/10.1088/0034-4885/52/4/002

40. P. Ring, Relativistic mean field theory in finite nuclei. Prog. Part.

Nucl. Phys. 37, 193–263 (1996). https://doi.org/10.1016/0146-

6410(96)00054-3

41. J. Meng, H. Toki, S.G. Zhou et al., Relativistic continuum Har-

tree Bogoliubov theory for ground-state properties of exotic

nuclei. Prog. Part. Nucl. Phys. 57, 470–563 (2006). https://doi.

org/10.1016/j.ppnp.2005.06.001

42. Y. Sugahara, H. Toki, Relativistic mean-field theory for unsta-

ble nuclei with non-linear r and x terms. Nucl. Phys. A 579,
557–572 (1994). https://doi.org/10.1016/0375-9474(94)90923-7

43. Z.Z. Ren, Z.Y. Zhu, Y.H. Cai et al., Relativistic mean-field study

of Mg isotopes. Phys. Lett. B 380, 241–246 (1996). https://doi.

org/10.1016/0370-2693(96)00462-5

44. G.A. Lalazissis, J. König, P. Ring, New parametrization for the

Lagrangian density of relativistic mean field theory. Phys. Rev. C

55, 540 (1997). https://doi.org/10.1103/PhysRevC.55.540

45. W.H. Long, J. Meng, N. Van Giai et al., New effective interac-

tions in relativistic mean field theory with nonlinear terms and

185 Page 8 of 9 B.-J. Cai, L.-W. Chen

123

https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1007/s11467-007-0037-0
https://doi.org/10.1007/s11467-007-0037-0
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1103/PhysRevLett.104.202501
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1142/S0218301312300032
https://doi.org/10.1140/epja/i2014-14029-6
https://doi.org/10.1140/epja/i2014-14029-6
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.13538/j.1001-8042/nst.26.S20508
https://doi.org/10.13538/j.1001-8042/nst.26.S20508
https://doi.org/10.1007/s41365-016-0138-y
https://doi.org/10.1007/s41365-016-0138-y
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1016/j.ppnp.2016.06.006
http://arxiv.org/abs/1701.03564
https://doi.org/10.1126/science.1090720
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1088/0034-4885/69/4/R03
https://doi.org/10.1088/0034-4885/69/4/R03
https://doi.org/10.1016/j.physrep.2007.02.002
https://doi.org/10.1016/j.physrep.2007.02.002
https://doi.org/10.1088/0004-637X/748/1/70
http://arxiv.org/abs/1303.0064
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/PhysRevC.80.014322
https://doi.org/10.1103/PhysRevC.80.014322
https://doi.org/10.1007/s11433-011-4415-9
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1063/1.3146221
https://doi.org/10.1063/1.3146221
https://doi.org/10.1088/0954-3899/37/6/064038
https://doi.org/10.1088/0954-3899/37/6/064038
https://doi.org/10.1088/0954-3899/39/3/035104
https://doi.org/10.1088/0954-3899/39/3/035104
https://doi.org/10.1142/9789814447485_0007
https://doi.org/10.1142/9789814447485_0007
http://arxiv.org/abs/1212.0284
https://doi.org/10.1088/1742-6596/413/1/012021
https://doi.org/10.1088/1742-6596/413/1/012021
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1142/S0218301397000299
https://doi.org/10.1088/0034-4885/52/4/002
https://doi.org/10.1016/0146-6410(96)00054-3
https://doi.org/10.1016/0146-6410(96)00054-3
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0370-2693(96)00462-5
https://doi.org/10.1016/0370-2693(96)00462-5
https://doi.org/10.1103/PhysRevC.55.540


density-dependent meson-nucleon coupling. Phys. Rev. C 69,
034319 (2004). https://doi.org/10.1103/PhysRevC.69.034319

46. W.Z. Jiang, Z.Z. Ren, T.T. Wang et al., Relativistic mean-field

study for Zn isotopes. Eur. Phys. J. A 25, 29–39 (2005). https://

doi.org/10.1140/epja/i2004-10235-1

47. W.Z. Jiang, Effects of the density dependence of the nuclear

symmetry energy on the properties of superheavy nuclei. Phys.

Rev. C 81, 044306 (2010). https://doi.org/10.1103/PhysRevC.81.

044306

48. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz et al., Relativistic

effective interaction for nuclei, giant resonances, and neutron

stars. Phys. Rev. C 82, 055803 (2010). https://doi.org/10.1103/

PhysRevC.82.055803

49. B.K. Agrawal, A. Sulaksono, P.-G. Reinhard, Optimization of

relativistic mean field model for finite nuclei to neutron star

matter. Nucl. Phys. A 882, 1–20 (2012). https://doi.org/10.1016/j.

nuclphysa.2012.03.004

50. F.J. Fattoyev, J. Carvajal, W.G. Newton et al., Constraining the

high-density behavior of the nuclear symmetry energy with the

tidal polarizability of neutron stars. Phys. Rev. C 87, 015806
(2013). https://doi.org/10.1103/PhysRevC.87.015806

51. H. Müller, B.D. Serot, Relativistic mean-field theory and the

high-density nuclear equation of state. Nucl. Phys. A 606,
508–537 (1996). https://doi.org/10.1016/0375-9474(96)00187-X

52. C.J. Horowitz, J. Piekarewicz, Neutron star structure and the

neutron radius of 208Pb. Phys. Rev. Lett. 86, 5647 (2001). https://

doi.org/10.1103/PhysRevLett.86.5647

53. C.J. Horowitz, J. Piekarewicz, Neutron radii of 208Pb and neutron

stars. Phys. Rev. C 64, 062802 (2001). https://doi.org/10.1103/

PhysRevC.64.062802

54. C.J. Horowitz, J. Piekarewicz, Constraining URCA cooling of

neutron stars from the neutron radius of 208Pb. Phys. Rev. C 66,
055803 (2002). https://doi.org/10.1103/PhysRevC.66.055803

55. B.G. Todd-Rutel, J. Piekarewicz, Neutron-rich nuclei and neutron

stars: a new accurately calibrated interaction for the study of

neutron-rich matter. Phys. Rev. Lett. 95, 122501 (2005). https://

doi.org/10.1103/PhysRevLett.95.122501

56. L.W. Chen, C.M. Ko, B.A. Li, Isospin-dependent properties of

asymmetric nuclear matter in relativistic mean field models.

Phys. Rev. C 76, 054316 (2007). https://doi.org/10.1103/Phys

RevC.76.054316

57. B.J. Cai, L.W. Chen, Nuclear matter fourth-order symmetry

energy in the relativistic mean field models. Phys. Rev. C 85,
024302 (2012). https://doi.org/10.1103/PhysRevC.85.024302

58. Equation (23) was given in the first version of the present paper,

i.e., arXiv:1402.4242v1 [nucl-th], in February, 2014

59. B.J. Cai, L.W. Chen, Lorentz covariant nucleon self-energy

decomposition of the nuclear symmetry energy. Phys. Lett. B

711, 104–108 (2012). https://doi.org/10.1016/j.physletb.2012.03.

058

60. L.W. Chen, C.M. Ko, B.A. Li et al., Density slope of the nuclear

symmetry energy from the neutron skin thickness of heavy

nuclei. Phys. Rev. C 82, 024321 (2010). https://doi.org/10.1103/

PhysRevC.82.024321

61. Z. Zhang, L.W. Chen, Constraining the density slope of nuclear

symmetry energy at subsaturation densities using electric dipole

polarizability in 208Pb. Phys. Rev. C 90, 064317 (2014). https://

doi.org/10.1103/PhysRevC.90.064317

62. L.W. Chen, Nuclear matter symmetry energy and the symmetry

energy coefficient in the mass formula. Phys. Rev. C 83, 044308
(2011). https://doi.org/10.1103/PhysRevC.83.044308

63. J. Carriere, C.J. Horowitz, J. Piekarewicz, Low-mass neutron

stars and the equation of state of dense matter. Astrophys. J. 593,
463–471 (2003). https://doi.org/10.1086/376515

64. J. Xu, L.W. Chen, B.A. Li et al., Locating the inner edge of the

neutron star crust using terrestrial nuclear laboratory data. Phys.

Rev. C 79, 035802 (2009). https://doi.org/10.1103/PhysRevC.79.

035802

65. J. Xu, L.W. Chen, B.A. Li et al., Nuclear constraints on properties

of neutron star crusts. Astrophys. J. 697, 1549–1568 (2009).

https://doi.org/10.1088/0004-637X/697/2/1549

66. G. Baym, C. Pethick, P. Sutherland, The ground state of matter at

high densities: equation of state and stellar models. Astrophys. J.

170, 299 (1971). https://doi.org/10.1086/151216

67. K. Iida, K. Sato, Spin-down of neutron stars and compositional

transitions in the cold crustal matter. Astrophys. J. 477, 294–312
(1997). https://doi.org/10.1017/S0074180900115451

68. J. Antoniadis, P.C.C. Freire, N. Wex et al., A massive pulsar in a

compact relativistic binary. Science 340, 1233232 (2013). https://

doi.org/10.1126/science.1233232

69. P. Demorest, T. Pennucci, S. Ransom et al., A two-solar-mass

neutron star measured using Shapiro delay. Nature 467,
1081–1083 (2010). https://doi.org/10.1038/nature09466

70. M. Farine, J.M. Pearson, F. Tondeur, Nuclear-matter incom-

pressibility from fits of generalized Skyrme force to breathing-

mode energies. Nucl. Phys. A 615, 135–161 (1997). https://doi.

org/10.1016/S0375-9474(96)00453-8

71. A.W. Steiner, J.M. Lattimer, E.F. Brown, The equation of state

from observed masses and radii of neutron stars. Astrophys. J.

722, 33–54 (2010). https://doi.org/10.1088/0004-637X/722/1/33

Constraints on the skewness coefficient of symmetric nuclear... Page 9 of 9 185

123

https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1140/epja/i2004-10235-1
https://doi.org/10.1140/epja/i2004-10235-1
https://doi.org/10.1103/PhysRevC.81.044306
https://doi.org/10.1103/PhysRevC.81.044306
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1016/j.nuclphysa.2012.03.004
https://doi.org/10.1016/j.nuclphysa.2012.03.004
https://doi.org/10.1103/PhysRevC.87.015806
https://doi.org/10.1016/0375-9474(96)00187-X
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.64.062802
https://doi.org/10.1103/PhysRevC.66.055803
10.1103/PhysRevLett.95.122501
10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevC.76.054316
https://doi.org/10.1103/PhysRevC.76.054316
https://doi.org/10.1103/PhysRevC.85.024302
http://arxiv.org/abs/1402.4242v1
https://doi.org/10.1016/j.physletb.2012.03.058
https://doi.org/10.1016/j.physletb.2012.03.058
https://doi.org/10.1103/PhysRevC.82.024321
https://doi.org/10.1103/PhysRevC.82.024321
https://doi.org/10.1103/PhysRevC.90.064317
https://doi.org/10.1103/PhysRevC.90.064317
https://doi.org/10.1103/PhysRevC.83.044308
https://doi.org/10.1086/376515
https://doi.org/10.1103/PhysRevC.79.035802
https://doi.org/10.1103/PhysRevC.79.035802
https://doi.org/10.1088/0004-637X/697/2/1549
https://doi.org/10.1086/151216
https://doi.org/10.1017/S0074180900115451
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126/science.1233232
https://doi.org/10.1038/nature09466
https://doi.org/10.1016/S0375-9474(96)00453-8
https://doi.org/10.1016/S0375-9474(96)00453-8
https://doi.org/10.1088/0004-637X/722/1/33

	Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model
	Abstract
	Introduction
	The skewness coefficient J_0 in nonlinear RMF model
	Nuclear matter characteristic parameters
	Nuclear matter characteristic parameters in nonlinear RMF model

	Results and discussions
	Summary
	References




