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Abstract At finite baryon chemical potential, the density

of a quark matter develops large fluctuations when it

undergoes a first-order phase transition. Based on the

transport equation derived from the Nambu–Jona-Lasinio

(NJL) model, we have studied the density fluctuations in a

baryon-rich quark matter that is confined in a finite volume.

Allowing the expansion of the quark matter using initial

conditions from either a blast wave model or a multiphase

transport (AMPT) model, we have further studied the

survivability of the density fluctuations as the density and

temperature of the quark matter decrease. Possible exper-

imental signatures of the density fluctuations are suggested.

Keywords NJL model � Baryon-rich quark matter �
Density fluctuations � Heavy Ion collisions

1 Introduction

Studying the properties of baryon-rich quark–gluon

plasma (QGP) is the main focus of the beam energy scan

(BES) experiments [1–3] at the Relativistic Heavy Ion

Collider (RHIC) and the future Facility for Antiproton and

Ion Research (FAIR). These experiments are expected to

shed light on whether the phase transition from the baryon-

rich QGP to the hadronic matter is a first-order one and the

location of the critical end point in the QCD phase diagram

if the phase transition is first-order. To help understand

what could happen in a baryon-rich QGP, we have recently

used the Polyakov–Nambu–Jona-Lasinio (PNJL) model [4]

to study its spinodal instability [5]. We have found via the

linear response theory that the spinodal boundary in the

temperature and density plane of the QCD phase diagram

shrinks with increasing wave number of the unstable mode.

In the small wave number or long wavelength limit, the

spinodal boundary coincides with that determined from the

isothermal spinodal instability in the thermodynamic

approach. We have further found that the quark vector

interaction suppresses unstable modes of all wave numbers.

For the wave number dependence of the growth rate of

unstable modes, it initially increases with the wave number

but decreases when the wave number is large. Moreover,

we have investigated how unstable modes would grow if

one goes beyond the linear response or small amplitude

limit by using the transport equation derived from the NJL

model to study the time evolution of density fluctuations in

a confined as well as in an expanding quark matter [6]. We

have found that the unstable modes have significant effects

on the time evolution of higher-order density moments in

the quark matter, the distribution of quark number in a sub-

volume of the quark matter, the quark momentum aniso-

tropy, and dilepton production rate from quark–antiquark

annihilation. We have thus suggested using these observ-

ables as signatures for a first-order phase transition of the

baryon-rich quark matter produced in heavy ion collisions.

In the present paper, we review the results from the

transport model study of baryon-rich quark matter.

The paper is organized as follows: We first briefly

review in Sect. 2 the NJL model and in Sect. 3 the transport
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equation that is derived from the NJL model. The transport

equation is then used in Sect. 4 to study the density fluc-

tuations in a baryon-rich quark matter that is confined in a

periodic box and in Sect. 5 to study how density fluctua-

tions are affected by the expansion of the system as in

heavy ion collisions. Finally, a summary is given in Sect. 6.

2 The NJL model

The NJL Lagrangian for three quark flavors has the

form [7]:

L ¼ �wði 6 o�MÞwþ GS

2

X8

a¼0

ð �wkawÞ2 þ ð �wic5kawÞ2
h i

þ
X8

a¼0

GV

2
ð �wclkawÞ

2 þ GA

2
ð �wclc5kawÞ

2

� �

� K detf �wð1þ c5Þw
� �

þ detf �wð1� c5Þw
� �� �

;

ð1Þ

where w¼ðwu;wd;wsÞ
T
, M¼ diagðmu;md;msÞ, and ka is

the Gell-Mann matrices with k0 being the identity matrix

multiplied by
ffiffiffiffiffiffiffiffi
2=3

p
. The last term is the Kobayashi–

Maskawa–t’Hooft (KMT) interaction that breaks Uð1ÞA
symmetry [8] with detf ð �wCwÞ¼

P
i;j;k eijkð�uCqiÞð�dCqjÞ

ð�sCqkÞ denoting the determinant in flavor space [9]. It

gives rise to four-point interactions in two flavors and six-

point interactions in three flavors. In the two flavor case,

the sum of scalar and pseudo-scalar interactions and the

KMT interaction with K ¼ � GS reduces to the original

NJL model [10, 11]. We note that for sufficient large GV ,

such as GV ¼GS, the first-order phase transition induced by

the attractive scalar interaction would disappear [5, 12].

3 Transport model based on the NJL model

For the long-time behavior of a quark matter or an

expanding quark matter produced in a heavy ion collision,

it can be studied using the Boltzmann or transport equation

derived from the NJL Lagrangian for the phase-space

distribution functions faðX; pÞ of quarks and antiquarks of

flavor a [13], that is [14],

oX0 faðX; pÞ þ
pi�

Ep�
oXi faðX; pÞ

� oXiVS
a ðXÞ

Ma

Ep�
opi faðX; pÞ � oXiVV

0 ðXÞopi faðX; pÞ

� oXiVV
j ðXÞ

pj�

Ep�
opi faðX; pÞ ¼ C½fa�: ð2Þ

In the above, p� � p� VV is the kinetic momentum with

the subscript þ referring to quarks and - referring to

antiquarks, VV
l is the vector potential, Ma ¼m0a � VS

a is the

effective quark mass with VS
a being the scalar potential, and

the collision term

C½fa� �
X

bcd

1

1þ dab

Z
d 3pb

ð2pÞ32Eb

d 3pc

ð2pÞ32Ec

d 3pd

ð2pÞ32Ed

� ð2pÞ4

2Ea

d4ðpa þ pb � pc � pdÞjMabj2

� fcfdð1� faÞð1� fbÞ � fafbð1� fcÞð1� fdÞ½ �
ð3Þ

that describe scatterings among quarks and antiquarks. The

transport equation can be solved using the test particle

method [15] by expressing the distribution function in

terms of the density of test particles that follow the New-

ton’s equations of motions determined by the left-hand side

of Eq. (2) and undergo scatterings according to

Eq. (3) [14, 16].

4 Quark matter in a box

We first consider a quark matter that is confined in a cubic

box with periodic boundary conditions. The system is pre-

pared by distributing many test particles inside the box

according to the density of the system with their momenta

given by the Fermi–Dirac distribution at certain temperature.

To study how density fluctuations emerge and grow, we

compare results from two calculations based on the same

initial conditions but with and without the spinodal insta-

bility in the equation of state, which is achieved by intro-

ducing a vector interaction in the NJL model. In both

calculations, 300 test particles are used in solving the

transport equation. Figure 1 shows the time evolution of

the density distribution of a quark matter with temperature

T ¼ 20 MeV and net quark density nq ¼ 0:5 fm�3 in a box

of size 20�20� 20 fm3 for the two cases of GV ¼ 0 and

GV ¼GS, with the darker color denoting the high density

regions and the lighter color denoting the low density

regions. Although the system is initially uniform in space,

some dense spots are present due to statistical fluctuations

as a result of finite number of test particles used in the

calculation. In the case of GV ¼GS without a first-order

phase transition or spinodal instability, the density distri-

bution in the box remains unchanged with time. This

changes dramatically, however, for the case of GV ¼ 0. Due

to the spinodal instability, the initial dense spots act like

‘‘seeds’’, which create several small low-pressure regions

that attract nearby partons and lead to the formation of

many clusters at t¼ 20 fm/c. These clusters further grow in

size by connecting with each other and form stable large

structures at t¼ 40 fm/c, when the system clearly separates
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into two phases of matter with one of high density and the

other of low density as shown in Fig. 2.

The density fluctuations can be quantified by

the scaled density moments hqNi=hqiN [17], where

hqNi�
R

d 3rqðrÞNþ1=
R

d 3rqðrÞ. The scaled density

moments are all equal to one for a uniform density distri-

bution but become greater than one as the density fluctu-

ations grow. In Fig. 3, we show by dotted, dashed, and

solid lines the scaled density moments for N¼ 2, 4 and 6,

respectively, which are obtained by averaging over 1000

events with 300 test particles in an event. Our results show

that the scaled moments increase during the phase sepa-

ration and reach their saturated values at about t¼ 40 fm/c,

when the phase separation almost ends. Also, moments

with larger N increase faster and saturate at larger values.

Other quantities of interest are the skewness and kurtosis

of the particle multiplicity distribution, which have been

proposed as possible signals for the critical phenom-

ena [18] and have been studied in the beam energy scan

experiments at RHIC [1, 2]. They are defined as follows:

skewness �
hdN3

qi
hdN2

qi
3=2

; kurtosis �
hdN4

qi
hdN2

qi
2
� 3: ð4Þ

Both quantities characterize how far an event-by-event

multiplicity distribution deviates from a normal distribu-

tion. Theoretical calculations based on the grand canonical

picture predict that both quantities diverge with the cor-

relation length when a system approaches its critical

point [18], with the kurtosis diverging faster than the

skewness.

To be consistent with the grand canonical picture, we

consider quarks in a sub-volume of the box in our study

and treat the remaining part as the reservoir. When the

system is initially inside the spinodal instability region,

quarks in the reservoir can sometimes move into the sub-

volume, but in most of the times quarks would leave from

the sub-volume to the reservoir. The number of quarks

inside this sub-volume thus varies drastically from event to

event, leading to large values for the skewness in its event-

by-event distribution. In Fig. 4, we show the event-by-

event distribution of the number of quarks in a sub-volume

from the 1000 events at t¼ 0, 20, and 40 fm/c by the solid,

dashed and dotted lines, respectively, for the two cases of

Fig. 1 Time evolution of density distribution in a quark matter of

temperature T ¼ 20 MeV and net quark density nq ¼ 0:5 fm�3 for the

cases of GV ¼ 0 (left column) and GV ¼GS (right column)

Fig. 2 Cross-sectional view of density distribution on the z¼ 0 plane

at t¼ 40 fm=c for the case GV ¼ 0 with a first-order phase transition

Fig. 3 Time evolution of the scaled density moments in a quark

matter of temperature T ¼ 20 MeV and average net quark density

nq ¼ 0:5 fm�3 inside the spinodal region

Density fluctuations in baryon-rich quark matter Page 3 of 8 140

123



sub-volume size of 0:6 fm3 (left window) and 30 fm3 (right

window), respectively. The distribution in the case of small

sub-volume clearly becomes asymmetric as time increases,

starting with an initial skewness of 0.11 and increasing to

0.60 at 20 fm/c and 0.75 at 40 fm/c. This feature is absent

in the case of large sub-volume, where the distribution

remains essentially symmetric with increasing time, with

the skewness changing slowly from �0:001 (t¼ 0) to 0.086

(t¼ 20 fm/c) and 0.132 (t¼ 40 fm/c), and there is no

apparent increase or decrease in the kurtosis.

5 Expanding quark matter

To study how large density fluctuations due to the

spinodal instability as a result of a first-order phase tran-

sition obtained from the box calculation in the previous

section are affected by the expansion of the system as in a

heavy ion collision, we have carried out a dynamical cal-

culation using the transport equation introduced in Sect. 3

with initial conditions taking from either a blast wave

model or the AMPT model [19].

5.1 Blast wave initial conditions

For the blast wave initial conditions, the positions of

quarks and antiquarks are assumed to follow a spherical

Wood–Saxon form:

qðrÞ ¼ q0
1þ expððr � RÞ=aÞ ð5Þ

with a radius R¼ 5 fm and a surface thickness parameter

a¼ 0:5 fm, similar to that expected from a central Au?Au

collisions. The momenta of these partons are taken to be

that of a Fermi–Dirac distribution at certain temperature.

The density fluctuations obtained from calculations

based on 1000 test particles in solving the transport equa-

tion can be seen from the density distribution on a plane

such as the one at z¼ 0 shown in Fig. 5. The left window

shows the density distribution at t¼ 20 fm/c for the case

with a first-order phase transition, while the right window

shows that at t¼ 10 fm/c for the case without a first-order

phase transition, when the density of the central cell is

about 0.2 fm�3 in both cases. Although density clumps

appear in both cases, those in the one with a first-order

phase transition are significantly larger. As in the case of

quark matter in a box, we can quantify the density fluctu-

ations by the scaled density moments [17]. In both cases

with and without a first-order phase transition, the scaled

density moments first increase and then decrease with time.

In the case without a first-order phase transition, this is

caused by the fast increase of the surface of the quark

matter and the quick deviation from its initial smooth

Wood–Saxon density distribution. To the contrary, the

scaled density moments in the case with a first-order phase

transition becomes much larger with time and only

decreases slightly afterward, reflecting the effect due to

density clumps that distribute randomly inside the

expanding quark matter. Therefore, the saturated scaled

density moments, which are larger for larger N, can still be

regarded as signals for a first-order phase transition in an

expanding baryon-rich quark matter.

Since density fluctuations can lead to spatial anisotropy

even in central heavy ion collisions, it has been suggested

that they may affect the anisotropic flows in the transverse

plane [20, 21]. The latter are defined by the coefficients vn

Fig. 4 Time evolution of the event-by-event distribution of the

number of quarks in a sub-volume of size 0.6 fm3 (left window) and

30 fm3 (right window) for a quark matter of temperature T ¼ 20MeV

and average net quark density nq ¼ 0:5 fm�3 inside the spinodal

region. The total number of events is 1000
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in the expansion of the transverse momentum distribution

f ðpT ;/Þ as a Fourier series in the azimuthal angle /,

f ðpT ;/Þ ¼
NðpTÞ
2p

1þ 2
X1

n¼1

vnðpTÞ cos½nð/� wnÞ�
( )

;

ð6Þ

where wn is the event plane angle [22]. To calculate the

anisotropic flow coefficients, we use the two particle

cumulant method [23, 24], namely, vnf2g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcosðnD/Þi

p

by averaging over all particle pairs in an event. We have

calculated the elliptic flow (v2f2g) and quadrangular flow

(v4f2g) of an expanding quark matter with the same blast

wave initial conditions for 100 events, and their final event

distributions are shown in the left and right windows of

Fig. 6, respectively, with the solid and dashed lines for the

cases with and without first-order phase transition,

respectively. Both distributions peak at a larger value for

the case with a first-order phase transition, particularly for

v4, thus providing a plausible signal for the first-oder phase

Fig. 5 Density distributions of an expanding quark matter on the z¼ 0 plane at t¼ 20 fm/c for the case with a first-order phase transition (left

window) and at t¼ 10 fm/c for the case without a first-order phase transition (right window)

Fig. 6 Elliptic flow v2 (left window) and quadrangular flow v4 (right window) distributions for 100 events of an expanding quark matter with the

same blast wave initial conditions
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transition. However, the values of the fluctuation induced

v2 and v4 are much smaller than those in non-central heavy

ion collisions.

We have also studied the effect of density fluctuations

on dilepton production from a quark matter. Since the

dilepton production rate is proportional to the square of

parton density, more dileptons are produced when the

density fluctuation is large. Also, a longer partonic phase as

a result of a first-order phase transition would increase the

depletion yield as well. As usually used in studying

dilepton production in heavy ion collisions [25], we adopt

the perturbative approach to calculate the dilepton yield

from the quark–antiquark scattering by neglecting its effect

on the dynamics of the expanding quark matter, and the

results from the average over 100 events are shown in

Fig. 7 by the solid and dashed lines for the cases with and

without first-order phase transition, respectively. As

expected, more dileptons are produced from the quark

matter with a first-order phase transition. We note the

dilepton invariant mass spectrum peaks at
ffiffi
s

p 	 0:5 GeV

with the peak value being about 3:5� 10�4 GeV�1, which

is comparable with the result obtained from a hadronic

transport model [26]. This enhancement in dilepton pro-

duction may thus be detectable in experiments.

5.2 AMPT initial conditions

For a more realistic initial conditions, we use the quark

and antiquark distributions from the AMPT model with

string melting [19] that uses the heavy ion jet interaction

generator (HIJING) [27] as the input. This model includes

not only the mini-jet partons from initial hard collisions but

also hadrons produced from excited strings, which are

projectile and target nucleons that have suffered interac-

tions, by converting them to partons according to the flavor

and spin structures of their valence quarks. In particular, a

meson is converted to a quark and an antiquark, while a

baryon is first converted to a quark and a diquark, and the

diquark is then decomposed into two quarks. The quark

masses are taken to be mu ¼ 5:6, md ¼ 9:9, and

ms ¼ 199MeV=c2 as in the PYTHIA program [28]. The

above two-body decomposition is isotropic in the rest

frame of the parent hadron or diquark. These partons are

produced after a formation time of tf ¼EH=m
2
T ;H , with EH

and mT ;H denoting, respectively, the energy and transverse

mass of the parent hadron. We obtain these partons as the

initial conditions for our study of an expanding quark

matter by running the AMPT program with vanishing

parton scattering cross sections in Zhang’s parton cascade

(ZPC) [29] and with the hadronic afterburner based on a

relativistic transport (ART) [30, 31] turned off. Using the

partons from Au?Au collisions at zero impact parameter

and a center-of-mass energy
ffiffiffiffiffiffiffi
sNN

p ¼ 2:5 GeV as the initial

distribution, we have found that some parts of the system

go through the spinodal region when the SU(3) NJL model

with GV ¼ 0 is used in the Boltzmann equation and in

constructing the phase diagram.

The results obtained with 1000 test particles are shown

in Fig. 8. It is seen that the quark matter is initially largely

confined in a thin disk of thickness less than 0.5 fm. When

it is allowed to free streaming without any interactions

(upper row), there appear two high density clumps that fly

apart in the opposite directions. This feature becomes less

prominent after the inclusion of quark scattering and mean-

field potentials but without a phase transition in the quark

matter, i.e., taking GV ¼GS, as shown in the middle row of

Fig. 8. With a first-order phase transition in the quark

matter by setting GV ¼ 0, the lower row of Fig. 8 shows

that the initial central disk evolves into three disks of dense

matter with one in the middle due to the strong attractions

that keep some partons from moving away, besides the two

forward and backward moving disks. As the quark matter

expands, these disks transform into rings and finally turn

into disjointed clumps. Also, the quark matter with a first-

order phase transition expands twice as slow as that with-

out a first-order phase transition.

Because of the non-trivial spatial distribution even in the

case of free-streaming quark matter, the scaled density

moments are no longer useful quantities to characterize the

density fluctuations of an expanding quark matter. On the

other hand, the different density variations along the beam

axis affect the parton rapidity distribution. This is because

partons in the middle disk, which is present only in the case

with a first-order phase transition, have a small rapidity and

due to the attractive quark interactions, they attract partons

Fig. 7 Dilepton yield as a function of the invariant mass
ffiffi
s

p
for the

cases with (solid line) and without (dashed line) a first-order phase

transition in an expanding quark matter with the blast wave initial

conditions
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from the other two disks and slow down their expansion in

the longitudinal direction, thus restricting their rapidities to

a narrow region around the midrapidity as shown by the

solid line in Fig. 9, which is indeed much narrower than

that in the case without a first-order phase transition, shown

by the dashed line. This effect can thus be regarded as a

possible signal of a first-order phase transition and is worth

studying in experiments.

We have also studied the dilepton invariant mass spec-

trum from an expanding quark matter with initial conditions

from the AMPT model. Results obtained from averaging

over 10 events with 1000 test particles in each event are

shown in Fig. 10 by the solid and dashed lines for the cases

with and without a first-order phase transition, respectively.

As in the previous subsection using the blast wave initial

conditions, the presence of a first-order phase transition

enhances the dilepton yield as a result of density fluctuations

and a longer partonic phase. However, the dilepton yield is

lower than that obtained from the calculation with the blast

wave initial conditions by two orders of magnitude because

there are very few antiquarks in the partonicmatter produced

in heavy ion collisions at such a low energy and also because

we have not included the bremsstrahlung contribution to

dilepton production from the quark–quark scattering.

6 Conclusion

The spinodal instability is a thermodynamic feature of a

first-order phase transition in a many-body system. It occurs

when its pressure in some parts decreases with increasing

density. This can amplify the density fluctuations and lead to

a phase separation in the system. We have studied this phe-

nomenon by solving the Boltzmann equations using the test

particle method. The calculations are based on the NJL

model, which has been shown to give a good description of

Fig. 9 Final rapidity distribution of quarks for the cases with (solid

curve) and without (dashed curve) a first-order phase transition from

an expanding quark matter using the AMPT initial conditions

Fig. 10 The dilepton yield as a function of invariant mass
ffiffi
s

p
for the

cases with (solid curve) and without (dashed curve) a first-order phase

transition from an expanding quark matter using the AMPT initial

conditions

Fig. 8 Time evolution of the density distributions in central Au?Au

collisions at
ffiffiffiffiffiffiffi
sNN

p ¼ 2:5GeV using initial conditions from the AMPT

for the cases of free streaming (upper row) and including quark

scattering as well as mean fields from the NJL model with GV ¼GS

(middle row) and GV ¼ 0 (lower row)
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the vacuum properties of the hadrons and also predicts the

existence of a first-order phase transition in baryon-rich

quark matter. We have obtained some intuitive pictures on

the phase separation in a quark matter that is either in a static

box or undergoes expansion. For the case of a static box, we

have found that the higher-order density moments of the

quark matter increase and saturate at large values after phase

separation, making them possible signals for the first-order

phase transition. The skewness of the quark number event-

by-event distribution in a small sub-volume of the quark

matter is also found to increase, but this feature disappears if

the sub-volume is large. As for the expanding quark matter,

two cases have been studied. One is based on the blast wave

initial conditions, while the other uses the AMPT initial

conditions, which are disk-like as a result of the strong cor-

relations between the parton rapidity and longitudinal

coordinate. In both cases, we have found that the expansion

of the quark matter is slowed down by the presence of a first-

order phase transition. Density clumps are found to appear

and lead to an anisotropy in the momentum space, which can

be characterized by the scaled density moments and the

anisotropic flows v2 and v4, respectively. An enhancement in

the dilepton yield is also observed. These observables can

thus be used as signatures for a first-order phase transition of

the baryon-rich quark matter produced in heavy ion

collisions.
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