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Abstract We investigated the properties of strange quark

matter in an external strong magnetic field with both confine-

ment and leading-order perturbative interactions considered. It

was found that the leading-order perturbative interaction can

stiffen the equation of state of magnetized quark matter, while

the magnetic field lowers theminimum energy per baryon. By

solving the Tolman–Oppenheimer–Volkoff equations, we

obtain the internal structure of strange stars. The maximum

mass of strange stars can be as large as 2 times the solar mass.

Keywords New mass scaling � Magnetic field � Quark
matter � Compact star

1 Introduction

Strange quark matter (SQM) is a new form of matter that

contains deconfined up (u), down (d), and strange (s)

quarks in b-equilibrium, with electric and color charge

neutrality [1]. Since the early works of many authors [2–4],

especially Witten’s conjecture that SQM might be abso-

lutely stable [5], SQM has been an important topic in

nuclear, astrophysics, and cosmology due to its far-reach-

ing theoretical significance.

SQM may be produced in energetic heavy-ion colli-

sions, or exist in cosmic rays and/or in the inner part of

neutron stars. A neutron star could be converted to a quark

star or hybrid star due to leptonic weak interactions, or

seeded with slets by the self-annihilating weakly interact-

ing massive particles [6]. Although many meaningful

works have been done in the past decades, there are still

many aspects left open [7]. For example, the stability and

equation of state has not yet been definitively fixed and are

still under active investigation [8].

A magnetic field has strong effects on the stability and

properties of SQM [9, 10]. It is generally known that there

exists a strong magnetic field in many compact objects. For

example, the typical strength on the surface of a pulsar

could be in the order of � 1012 G [11]. The magnetic field

in a magnetar could be as high as 1013–1015 G or even

higher [12, 13]. The origin of such strong magnetic fields is

presently not well understood. A widely accepted theory is

the magneto hydrodynamic dynamo mechanism, where a

large magnetic field is generated by the rotating plasma of

a protoneutron star [13]. Another model demonstrates

magnetic flux conservation: the relatively small magnetic

fields were amplified during the star collapse [14, 15].

In principle, the fundamental theory of strong interac-

tion, i.e. quantum chromodynamics (QCD), can solve all

problems in investigating SQM. Due to the non-perturba-

tive difficulty at relatively lower densities, however, the

motion equations are unable to be solved exactly from the

first principle theory. Therefore, people usually resort to
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various models, e.g., the thermodynamically enhanced

pQCD model [1, 16], conventional perturbation models

[17–19], the Richard potential model [20, 21], the Nambu

and Jona-Lasinio model [22], the field correlator method

[23], the quark-cluster model [24, 25], the model with

magnetic-field dependent coupling [26], the unification

way to describe both slets and strange stars [27, 28], and

many other models [29–41].

In order to include interactions between quarks, it is

useful to adopt medium-dependent quark masses. There are

two kinds of such masses. One is the chemical-potential

and/or temperature dependent, which is normally called the

quasiparticle model [42–53], the other is the density and/or

temperature dependent [54–58]. In both cases, there are a

lot of discussions on consistent thermodynamic treatments.

It can be generally shown that the pressure at the minimum

energy per baryon should be exactly zero [8, 59]. With this

standard, many phenomenological models have to be ruled

out.

In the case of chemical-potential dependent masses, one

can have thermodynamic consistency by adding an addi-

tional term to the thermodynamic density [43]. In the

density-dependent case, it is now clear that the original

chemical potentials should be replaced with effective ones

when the quark masses become density dependent [59].

These kind of models were previously called the density-

dependent quark mass models. But its thermodynamic

treatment is inconsistent. The most recent version is called

the equivparticle model [8]. It is fully thermodynamically

self-consistent due to the introduction of effective chemical

potentials. The concept of an effective chemical potential is

also shown to be useful in the extended bag model with a

density-dependent bag constant [41].

Another important issue in the equivparticle model is the

quark mass scaling, i.e. how to parameterize the density

dependence of the quark masses. In the early stage, people

mainly emphasize quark confinement, and the interaction

part in the quark mass is parameterized to be inversely

proportional to the baryon number density [54] for light

quarks, and later extended to strange quarks [55].

According to the in-medium chiral condensate, it was

shown that the interaction quark mass should be inversely

proportional to the cubic root of the density [37]. This

cubic root scaling was extended to a finite temperature

[38]. It has also been extensively applied to the investi-

gations of SQM-related physics, e.g. the QCD phase dia-

gram [59], properties of SQM and slets [60] at zero and

finite temperatures [38, 61], the damping time scale due to

the coupling of the viscosity and r mode [62], and the

quark–diquark equation of state and compact star structure

[63] etc.

It is true that confinement interactions dominate at lower

densities. With increasing densities, however, the

perturbative interaction sets in, and becomes more and

more important, and thus should be included. Recently, a

new quark-mass scaling considering both the confinement

and perturbative interactions was derived, and applied to

the investigation of SQM and strange stars [8]. But the

effect of a strong magnetic field was not considered there.

The purpose of the present paper is to study the prop-

erties of SQM in a strong magnetic field with the newly

developed equivparticle model, which considers both the

confinement and perturbative interactions. In the Sect. 2,

we describe the thermodynamic formulas with emphasis on

the thermodynamic consistency, while in Sect. 3, we study

properties of magnetized SQM and present the results and

discussions. Then, in Sect. 4, we study the mass–radius

relation of magnetized strange stars. Section 5 is a short

summary.

2 Themodynamic formulae

Let’s start with the energy of a relativistically moving

free particle, i, with mass, mi, i.e.

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þ p2? þ m2
i

q

; ð1Þ

where mi is the particle mass, and pz is the momentum

along the z direction while p? is the momentum component

in the x–y plane or perpendicular to the z axis:

p2? ¼ p2x þ p2y . The corresponding thermodynamic potential

density is

Xf ¼ �
X

i

2gi

ð2pÞ3
ZZZ

li � eið Þdpxdpydpz; ð2Þ

where gi is the degeneracy factor with gu ¼ gd ¼ gs ¼ 3

and ge ¼ 1, while the extra factor 2 takes care of the spin

degeneracy.

If a constant magnetic field with strength Bm is present

along the z direction, classically the movement of a fer-

mion with a charge qi (qu ¼ 2=3; qd ¼ qs ¼ �1=3, and

qe ¼ �1) is a regular helix whose axis is along the z axis

and the projection on the x–y plane is a circle. Although the

pz can be still taken as a continuous variable, the compo-

nent p? perpendicular to the z direction should be quan-

tized according to the Sommerfield’s rule:

p2? ¼ 2mjqijBm; ð3Þ

where the integer quantum number, m, is

m � lþ 1=2� sgnðqiÞS; ð4Þ

with l being the principle quantum number, S ¼ 1=2 for

spin-up particles, and S ¼ �1=2 for spin-down particles.

The sign function sgn equals to 1 with a positive argument
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and to �1 with a negative argument. So the energy level of

the particle becomes

ei;mðpzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þ m2
i þ 2mjqijBm

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þM2
i;m

q

; ð5Þ

where

Mi;m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
i þ 2mjqijBm

q

: ð6Þ

For a given m, one has two sets of (l, S) pair satisfying

Eq. (4):

l ¼m; S ¼ signðqiÞ=2 ð7Þ

l ¼m� 1; S ¼ �signðqiÞ=2: ð8Þ

But for m ¼ 0, one has only the first pair. Therefore, the

lowest energy level is singly degenerate, while others are

all doubly degenerate.

Equation (3) means p?dp? ¼ jqijBmdm. Accordingly,

we have
RR

dpxdpy ¼
RR

p?dp?dh ¼ 2pjqijBm

R

dm; where h
is the direction angle of p~?. For the quantized case, the

following substitution rule is thus obvious:

ZZ

dpxdpy ¼ 2pjqijBm

X

m

: ð9Þ

Now applying this substitution to Eq. (2), and simultane-

ously replacing the degeneracy fact 2 for a spin with

2� dm;0, we immediately get the thermodynamic potential

density for a system of free Fermions in a strong magnetic

field:

XM ¼�
X

i

gijqijBm

4p2
X

m

ð2� dm;0Þ
Z

ðli � ei;mÞdpz

��
X

i

X

m

fi;m

2

Z

li �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þM2
i;m

q
� �

dpz;

ð10Þ

where we have used fi;m � gijqijBmð2� dm;0Þ=ð2p2Þ to

simplify notations.

For the system to be determined with a given set of

chemical potentials, we need to determine the limits of the

integration on pz at a given m. The normal way is to give the

up limit of the respective single particle energy, i.e. the

Fermi energy �i,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þM2
i;m

q

� �i: ð11Þ

In this case, pz is in the range jpzj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2i �M2
i;m

q

. Therefore

XM becomes

XM ¼ �
X

i

X

mmax

m¼0

fi;m

Z

ffiffiffiffiffiffiffiffiffiffiffi

�2
i
�M2

i;m

p

0

h

li � ei;mðpzÞ
i

dpz: ð12Þ

The Fermi energy should be linked to the chemical

potential by minimizing the thermodynamic potential

density with oXf=o�i ¼ 0 which requires

X

mmax

m¼0

fi;m ðli � �iÞ
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2i �M2
i;m

q ¼ 0: ð13Þ

This equation immediately gives �i ¼ li, or the Fermi

momentum is pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2i � m2
i

p

. Then the �i in Eq. (12)

should be replaced by li.
In the above derivation, we have, in fact, implicitly

assumed that the quark mass, mi, is a constant. Now to

consider medium effects, we let the quark masses be

density dependent, i.e.

mi ¼ miðnbÞ: ð14Þ

We know from a recent study [8] that the original chemical

potentials in this case should be replaced by the corre-

sponding effective ones, i.e. li ! l�i . By this substitution

process, we immediately have

X0 ¼ �
X

i

X

mmax

m¼0

fi;m

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l�
i
2�M2

i;m

p

0

h

l�i � ei;mðpzÞ
i

dpz: ð15Þ

The maximum m value is limited to make all
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

meaningful. For this we should take

mmax ¼ int
l�i

2 � m2
i

2jqijBm

� �

; ð16Þ

where the ‘int’ means taking the integer part.

Explicitly carrying out the integration gives

X0 ¼�
X

i

X

mmax

m¼0

fi;m

2

"

l�i
�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

�M2
i;m ln

l�i
�

�

�

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

Mi;m

3

5:

ð17Þ

Then the particle number densities are obtained from

ni ¼ �oX0=ol�i , giving

ni ¼
gijqijBm

2p2
X

mmax

m

ð2� di;0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

: ð18Þ

The real chemical potential, li, is connected to the effec-

tive one, l�i , by

li ¼ l�i þ
X

j

oX0

omj

omj

oni
� l�i � lI; ð19Þ

where the second term is due to the density dependence of

quark masses. Because nb ¼ ðnu þ nd þ nsÞ=3, it is easy to

get

Magnetized strange quark matter in the equivparticle model with both confinement and… Page 3 of 9 98

123



lI ¼ l�i � li ¼ � 1

3

dmI

dnb

X

j

oX0

omj

; ð20Þ

where the summed derivative with respect to the quark

masses is

X

j

oX0

omj

¼
X

i

X

mmax

m¼0

mi fi;m arccosh
l�i
Mi;m

� �

: ð21Þ

Therefore, the interaction chemical potential is the same

for all three flavor quarks. This is understandable due to the

fact that the strong interaction is a color interaction.

The energy density is obtained by E ¼ X0 þ
P

i l
�
i ni:

E ¼
X

i

X

m¼0

fi;m

2

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi

l�
i
2�M2

i;m

p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þM2
i;m

q

dpz: ð22Þ

After completing the integration, we can get

E ¼
X

i

gieiBm

4p2
X

mmax

m¼0

ð2� dm;0Þ
"

l�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

þM2
i;m ln

l�i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l�i
2 �M2

i;m

q

Mi;m

#

:

ð23Þ

In principle, the longitudinal pressure and transverse

pressure become different due to the magnetic field. But

this difference only becomes obvious at an extremely high

value of the magnetic field strength. Here we give the

thermodynamically self-consistent pressure in the frame-

work of the equivparticle model

P ¼� X0 þ
X

i;j

ni
oX0

omj

omj

oni

¼� X0 þ nb
dmI

dnb

X

j

oX0

omj

:

ð24Þ

Comparing Eq. (24) with the constant-mass case where

P ¼ �X0, we find an additional term with the density

derivative. It is because of this term that we can guarantee

thermodynamic consistency.

3 The properties of MSQM

In the equivparticle model or the previous quark-mass–

density-dependent model, the quark mass can be divided

into two parts, i.e.

mi ¼ m0;i þ mI; ð25Þ

where m0;i is the current mass, and the interacting part, mI,

reflects the medium effects. The quark mass plays a key

role in describing quark confinement. Originally, mI was

parameterized as inversely proportional to the density [54].

Later, it was suggested to be inversely proportional to the

cubic root of the density based on in-medium chiral con-

densates [37]. There are two forms of parameterizations

related to the confinement interaction that dominates at

lower densities. As is well known, perturbative interactions

become more and more important with increasing density.

To consider the perturbative effect, a new parametrization

was recently formulated in Ref. [8] as

mI ¼
D

n
1=3
b

þ Cn
1=3
b : ð26Þ

The new parametrization considers both confinement and

perturbative interactions. But it does not show explicit

asymptotic freedom. One can easily find that, with

increasing density, there exist a special density value

ðD=CÞ3=2: when the density, nb, is lower than this value,

the interaction mass, mI, as a whole decreases while it

begins to increase unlimitedly when the density exceeds

this special value. Therefore, the constant, C, in the second

term of Eq. (26) should be a decaying function of the

density. In fact, as has already been shown in Ref. [8], the

quantity C is proportional to the square root of the QCD

running coupling at the first-order level in perturbative

QCD. However, the higher-order effects on the C variation

is presently not available.

To eliminate the catastrophic increase at an extremely

high density, we phenomenologically replace the constant,

C, in Eq. (26) with a decaying function of the Woods–

Saxon type [64]. This way, the quark mass formula

becomes

mI ¼
D

n
1=3
b

þ C 1þ exp
nb � w

na

� �� 	�1

n
1=3
b ; ð27Þ

where we have two new parameters: the asymptotic size, w,

and diffuseness parameter, na. They are obviously not

available from QCD presently, and have to be determined

phenomenologically. In the present calculations, we take

w ¼ 4 fm�3 and na ¼ 0:6 fm�3.

Because of the weak interactions, the chemical poten-

tials, li (i ¼ u, d, s, e), satisfy the weak equilibrium con-

ditions (neutrinos can hardly interplay with other particles,

so they can enter and leave the system freely)

lu þ le ¼ ld ¼ ls: ð28Þ

Because the difference between the real and effective

chemical potentials is the same for all quark favors, the

effective chemical potentials l�i (i ¼ u, d, s) satisfy similar

equalities as in Eq. (28):

l�u þ le ¼ l�d ¼ l�s : ð29Þ

Because electrons do not participate in weak interactions,

the corresponding real chemical potential is equal to the
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effective one. It is, therefore, not necessary to distinguish

them for electrons.

To be in accordance with conventional nuclear physics,

the baryon number density of a SQM system is defined to

be

nb ¼
1

3
nu þ nd þ nsð Þ: ð30Þ

At the same time, according to the charge of each flavor of

quarks, the total electric charge density is

Q ¼ 2

3
nu �

1

3
nd �

1

3
ns � ne: ð31Þ

The charge neutrality condition requires Q ¼ 0.

At a given density, nb, we can numerically solve the

equations in Eqs. (29)–(31) with the help of Eq. (18) for

the four effective chemical potentials, l�i (i ¼ u, d, s, e).

Then, all other thermodynamic quantities can be calculated

according to the formulas presented in the preceding

section.

In Fig. 1, we show the particle distribution, ni=ð3nbÞ, the
respective particle number density in unit of the total

particle number density, as a function of the baryon num-

ber density for the parameters C ¼ 0:6 and

D1=2 ¼ 133MeV. Because the electron content is much

smaller than the quark’s, it is therefore separately plotted

on the right axis. At extremely high density, the electron

density tends to zero. Accordingly, all three quark frac-

tions, ni, (i ¼ u, d, s), approach to one third of the total

baryon number density. With decreasing density, however,

the difference between the quark fractions becomes grad-

ually obvious: the d quark fraction increases, the s quark

fraction decreases, while the u quark fraction is nearly

constant.

The corresponding quark chemical potentials and their

effective ones, li and l�i (i ¼ u, d, s), are given in Fig. 2.

In Fig. 3, the energy per baryon of the MSQM system is

plotted with different values of the parameters C and D, as

indicated in the legend, for the fixed magnetic field strength

Bm ¼ 2� 1018 G. On each curve, there is a minimum

where the pressure calculated by Eq. (24) is exactly zero,

showing the requirement of thermodynamic consistency.

The position of the minimum is influenced by the param-

eters chosen. Generally speaking, the minimum energy per

baryon will decease with increasing values of C because, in

the stable regime, when there is a larger value for C, the

corresponding D value can be smaller.

The minimum energy per baryon is strongly influenced

by the external strong magnetic field strength. If there is no

magnetic field, i.e. Bm = 0, one will find that the lowest

energy becomes higher. With increasing magnetic field

strength, the minimum energy per baryon decreases. For

the parameters where SQM is stable, the MSQM becomes

more stable. To explicitly show the effects of the external

magnetic field to the minimum energy, we give, in Fig. 4,

the variation of the minimum energy per baryon with the

external magnetic field strength for the three sets of

parameters in Fig. 3 with D1=2 to be, respectively, 140, 133

and 129 MeV.

It should be pointed out that the pure magnetic field

contribution is not included in the present calculations.

This contribution should, in principle, be accounted for in a

consistent study. In fact, many interesting investigations

have considered both the matter and field contributions

[32, 41, 65]. Because the origin of the strong magnetic

fields in compact stars is still under discussion, the present

paper is mainly interested in the effects on the mass–radius

relation of MSQM stars when the asymptotic freedom is

respected in the new quark mass scaling with perturbative

Fig. 1 Particle distributions in magnetized SQM. The quark fractions

are plotted on the left axis. The electron number to the total quark

number is very small, and is thus given on the right axis

Fig. 2 The chemical potentials of u and d quarks and the

corresponding effective ones as functions of the density. The

chemical potential for s quarks equal to that of d quarks, while the

chemical potential of electron is the difference between u and

u quarks
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interactions. To have an impression on the validity range of

the present calculation, we use the relative importance ratio

of the energy contribution from the pure magnetic field to

that of the magnetized SQM, i.e., B2
m=ð2EÞ. In Fig. 5, we

give the maximum value of this ratio, i.e., B2
m=ð2EminÞ,

where Emin is the energy density corresponding to the

minimum-energy state (the solids dots in Fig. 3) for each

set of parameters. It is obvious that the ratio increases by

increasing the magnetic field strength. At the present range

of interest for Bm\2� 1018 Gauss, however, the impor-

tance ratio is smaller than the ten percent at the minimum

energy per baryon where the relative importance of the

magnetic field contribution reaches its maximum. With

increasing density, such as in a compact star, this ratio

becomes much smaller. Therefore, the present calculations

should be valid when the magnetic field strength does not

obviously exceed the order of 1018 Gauss.

4 Mass–radius relation of magnetized strange
quark star

Neutron stars are interesting astronomical compact

objects consisting of neutrons. Because the inner density is

high, while SQM is possible if absolutely stable, it has long

been speculated that there exist objects consisting com-

pletely of quarks, the so-called strange stars. In fact, many

pulsars might be candidates for strange stars [27]. The

structure of strange stars plays an important role in astro-

physics, cosmology, and relevant nuclear physics.

As has been done in many investigations, we need to

solve the Tolman–Oppenheimer–Volkov equation

dP

dr
¼ �GmE

r2
ð1þ P=EÞ 1þ 4p2r3P=mð Þ

1� 2Gm=r
; ð32Þ

with the subsidiary condition

m ¼
Z r

0

4pEðrÞr2dr: ð33Þ

We now apply the equations of state obtained in this paper

to solve for the mass–radius relation of magnetized strange

stars. For a concrete description of the solving process, one

may refer to Ref. [66].

In Fig. 6, we plot the mass–radius relation of magne-

tized strange stars for different sets of parameters. On each

curve, there is a maximum mass indicated by a full dot.

This dot separates the full cure into two parts. The quark

stars on the right are mechanically stable, while those on

Fig. 3 The energy per baryon as functions of the density for different

parameters. The perturbative strength, parameter C and confinement

parameter D1/2 are indicated in the legend, while other parameters are

fixed to be m0;u ¼ 5 MeV, m0;d ¼ 10 MeV, m0;s ¼ 80 MeV, w ¼ 4

fm�3, na ¼ 0:6 fm�3, Bm = 2 9 1018 G

Fig. 4 The minimum energy per baryon varies with the magnetic

field strength

Fig. 5 The energy density of the magnetic field to that of the

magnetized SQM at the minimum energy per baryon. The ratio

B2
m=ð2EminÞ is obviously smaller than 0.1 if the field strength is less

than 2� 1018 Gauss
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the left are not mechanically stable, and thus surely do not

exist.

The maximum star mass depends on the model param-

eters. For the parameter set with C ¼ 0:6 and D1=2 ¼ 133

MeV, the maximum star mass is close to 2 times the solar

mass, while for the parameters with C ¼ 0:7 and D1=2 ¼
129 MeV, the maximum mass can be even bigger [67, 68].

Only for the parameters C ¼ 0:4 and D1=2 ¼ 156 MeV,

when MSQM is not absolutely stable, does the maximum

mass become smaller.

5 Summary

We have investigated the properties of SQM in an

external strong magnetic field with a new mass scaling.

The new mass scaling not only considers both confinement

and perturbative interactions, but also shows explicit

asymptotic freedom.

The thermodynamic treatment follows the general for-

mulas of the equivparticle model by the inclusion of

effective chemical potentials. In this treatment, all the

fundamental thermodynamic relations are still valid and is,

thus, fully self-consistent.

With these new mass formulas and thermodynamic

treatments, we studied the equation of state of magnetized

quark matter and the structure of magnetized quark stars. It

is found that a strong magnetic field can lower the mini-

mum energy per baryon of MSQM. For parameters where

SQM is not stable, MSQM can become absolutely stable.

Because of perturbative interactions, the equations of state

of MSQM becomes harder, which make the maximum star

mass as large as more than two times the solar mass.
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