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Abstract
Plant disease diagnosis in smart agriculture is a crucial issue that carries substantial economic significance on a global 
scale. To address this challenge, intelligent and smart agricultural solutions are currently being developed to assist farmers 
in implementing preventive measures to increase crop production. As deep learning technology continues to evolve, many 
convolutional neural network (CNN) models have emerged as highly effective for detecting plant leaf diseases. These CNN-
based models require heavy computation and processing cost. So, this paper develops a new lightweight deep convolutional 
neural network named lightweight DenseNet (LWDN) for detection of plant leaf disease for agricultural applications. Based 
on the DenseNet121 architecture, the presented model comprises pruned and concatenated architecture of DenseNet121. The 
presented study involved training and testing a proposed model (LWDN) on the PlantVillage dataset to acquire a knowledge 
of plant disease features. The model was trained using a combination of partial layer freezing, transfer learning, and feature 
fusion techniques. Out of several models experimented with, the proposed model has 99.37% classification accuracy, a model 
size of 13.8 MB, with 1.5 M parameters. The proposed model has 93% fewer parameters than InceptionV3 and Xception and 
90% and 50% fewer parameters compared to VGG16 and MobileNetV2, respectively. Furthermore, the proposed method 
has superior diagnostic capabilities compared to several prior studies and larger state-of-the-art models utilizing plant leaf 
images. The compact size and competitive accuracy of the LWDN model render it appropriate for real-time plant diagnosis 
on portable and mobile devices with restricted computational resources.
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Introduction

Plant disease is a major threat that affects the global food 
supply and threatens food security. This affects agricultural 
production and quality and increases the economic loss to 
farmers. Pest attacks result in crop losses ranging from 10 to 
40% on a global scale every year (Savary et al. 2019). Hence, 
timely recognition of plant diseases is crucial. The plant 
leaves are usually examined to detect these diseases. Never-
theless, many farms and plantations still rely on traditional 
methods to detect plant diseases with the naked eye, which 

are time-consuming, laborious and need incessant monitor-
ing and result in high expenses and inaccuracies in large 
farms. Automated approaches for identifying plant disease 
are preferred over manual methods because of the limita-
tions of human perception in detecting plant leaf diseases 
of all types. Manual identification techniques are also prone 
to errors, time-consuming, and only feasible for small areas 
(Tiwari et al. 2021).

The advancement in digital cameras and artificial intelli-
gence techniques has brought a significant transformation to 
the field of plant leaf disease detection and enhanced cultiva-
tion productivity (Jackulin and Murugavalli 2022; Thakur 
et al. 2022). Machine learning models have been extensively 
employed in the purpose of plant disease diagnosis for the 
last two decades. Dubey and Jalal (2016) presented a sup-
port vector machine-based approach for apple disease and 
achieved an accuracy of 95.94%. The conventional vision-
based methods generally use manual feature extraction, 
which is a laborious and expensive affair. Most machine 

 *	 Akshay Dheeraj 
	 akshaydheeraj.jmi@gmail.com; akshay.dheeraj@icar.gov.in

	 Satish Chand 
	 schand20@gmail.com

1	 ICAR-Indian Agricultural Statistics Research Institute, 
New Delhi, India

2	 School of Computer and Systems Sciences, Jawaharlal Nehru 
University, New Delhi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41348-024-00915-z&domain=pdf
http://orcid.org/0009-0007-9443-158X


1044	 Journal of Plant Diseases and Protection (2024) 131:1043–1059

learning algorithms perform poorly and yield unsatisfactory 
results when the dataset is large.

In the past decade, convolutional neural networks 
(CNNs), a specific category of deep learning algorithms, 
have effectively addressed the challenges of object detec-
tion and classification, overcoming the restrictions of con-
ventional machine learning techniques (Ferentinos 2018). 
Recently, CNNs have become the most extensively used 
model for detecting plant leaf disease with automatic feature 
extraction with minimal effort (Joshi et al. 2021; Yu et al. 
2023). Plant leaf disease diagnosis has been accomplished 
by the EfficientNet model and by utilizing PlantVillage data-
set (Atila et al. 2021). The proposed study, despite having a 
smaller parameter count, exhibited superior performance in 
terms of average accuracy when compared to VGGNet16, 
RestNet50, Inception-V3 and AlexNet models. Hanh et al. 
(2022) utilized EfficientNet B3 and EfficientNet B5 archi-
tectures to enhance the disease identification performances 
for plants. The proposed EfficientNet B3 and EfficientNet 
B5 models obtained 99.997% accuracy on original and aug-
mented PlantVillage dataset. In another study, Tiwari et al. 
(2021) developed a disease recognition framework for six 
crops with 27 diseases, using DenseNet201 architecture 
and attained an average performance accuracy of 99.19%. 
In another work, a novel approach for capturing subtle fea-
tures of lesions in plant images was proposed by integrat-
ing MobileNetV2 with soft attention (Chen et al. 2021a). 
This technique achieved remarkable accuracy results of 
99.13% and 99.71% for the local and PlantVillage dataset, 
respectively.

Several lightweight models have also been presented 
recently for plant disease diagnosis (Xiao et  al. 2023; 
Liu et al. 2023; Chen et al. 2021b). Sharma et al. (2023) 
developed a lightweight deep CNN model for plant disease 
recognition comprising a sequence of collective blocks. 
The model proposed here attained a classification score 
of 95.49% with 6.4 million parameters. Researchers have 
recently focused on encoder–decoder network architectures 
and image fusion techniques for the precise and prompt iden-
tification of several plant diseases (Udendhran and Balamu-
rugan 2021). Fan et al. (2022) presented a technique using 
feature fusion and transfer learning for plant disease rec-
ognition. A feature fusion approach was employed to com-
bine deep and handcrafted features to extract more relevant 
information from leaf images. The developed model yielded 
an average accuracy score of 96.5%. Many CNN models 
with feature fusion have been proposed for medical imaging 
analysis, offering remarkable accuracy with comparatively 
fewer number of parameter and lesser computational com-
plexity and cost (Montalbo 2021, 2022). The experiment 
results show that these CNN models with feature fusion 
perform satisfactorily.

However, different other approaches may still result in 
enhancements that decrease both computational expenses 
and optimization requirements while achieving better 
accuracy. Despite advancements in the field, the research 
community continues to encounter the challenge of 
developing an efficient and lightweight model with fewer 
parameters and an appropriate model size for practical 
agricultural implementations. The rationale behind the 
need for a lightweight model in agricultural applications 
is due to the fact that complex model architectures having 
a significant number of parameters may experience high-
bias issues, which can hinder their capability to fit the 
training data effectively.

This research study is aimed to enhance classifica-
tion accuracy while utilizing a relatively compact model. 
Therefore, this research study presents a lightweight CNN 
model utilizing different techniques like model pruning, 
freezing some layers, and feature fusion with DenseNet121 
on the PlantVillage dataset (augmented one) to recognize 
and categorize diseases of plants. The key primary con-
tributions of the proposed research study have been sum-
marized as follows:

•	 This study pruned a pre-trained DenseNet121 model. 
In the pruned DenseNet121 model, parameters count 
and network size are reduced, reducing the complexity 
of the network without drastically affecting the per-
formance. This pruned DenseNet121 is trained faster 
because of reduced network size along with maintain-
ing the rich extraction of relevant features.

•	 We constructed an integrated model by fusing rep-
licated pruned DenseNet121 model where the repli-
cated one has been fully retrained from PlantVillage 
and ImageNet dataset to generate the feature set. Some 
upper layers have been frozen to generate different 
feature sets in another half of the model. The feature 
set of these two models (original and replicated one) 
was fused and sent to another set of additional layers. 
Different feature set have been generated through the 
concatenation of these pruned models.

•	 Precision, recall, F1-score, and accuracy have been 
employed as performance metrics for assessing the 
performance of the proposed work. Additionally, the 
results of the experimental study have been com-
pared against seven classical CNN models, namely 
DenseNet121, XceptionNet, InceptionV3, VGGNet-16, 
MobileNetV2, EfficientNet B0, and NasNetMobile.

•	 Compared to the existing Plant disease identification 
work on the PlantVillage dataset, the proposed work 
achieved competitive results with 1.5M parameters.

•	 Statistical analysis of experimental results has been 
done using the Friedman test. Upon evaluation, results 
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show that all the demonstrated models significantly dif-
fer when executed on the PlantVillage dataset.

The experimental findings indicate that the developed 
model has remarkable classification accuracy, while being 
computationally less complex and cost-effective. Therefore, 
the proposed methodology has the potential to be readily 
deployable, upgradable and, most importantly, applicable 
to future applications.

The remainder of this paper is organized as mentioned: 
The related work section presents existing literature work 
outcomes published in the domain. Materials and methods 
section elaborates the proposed model. Experiment study 
and results section present the performance assessment of 
the proposed study. At last, the research article is concluded 
and presented in Conclusion section.

Related work

In the last decade, plant disease diagnosis using image pro-
cessing techniques and deep learning has been a prominent 
area of research. Conventional machine learning involves 
the feature extraction process and encompasses various 
features such as colour, shape, texture, and vein. This is 
achieved by utilising techniques such as histogram, Haar, 
SURF, LBP, GLCM, SIFT, Fourier transform, Gabor fil-
ter, curvelet, wavelet, and graph representations (Sachar 
and Kumar 2021). Plant disease identification has been 
performed using machine learning algorithms, including 
KNN, SVM, and the Ensemble Tree. Previous studies have 
considered multiple features, including shape, colour, and 

texture features. Shrivastava and Pradhan (2021) used col-
our features to classify rice disease with an image dataset 
of 619 images. The authors extracted 172 different colour 
features and used SVM and attained 94.6% accuracy. Table 1 
demonstrates that the utilization of manual machine learn-
ing techniques results in accuracy ranging from 85.7% to 
99.10%. The research study by Prajapati et al. (2017) utilized 
shape, colour, and texture features to classify three diseases 
of rice crops and used k-means algorithm for segmentation 
of relevant infected disease portions. The authors used their 
own rice disease dataset of 120 images, extracted 88 distinct 
features, and yielded 88.57% accuracy using SVM classifier. 
Chuanlei et al. (2017) presented the apple disease classifica-
tion system. The authors extracted 37 different features from 
the segmented images. These features were selected using 
genetic algorithm and CFS, and then SVM was employed 
as a classifier to detect three leaf diseases of apples. The 
presented model is less complex because of the utilization of 
a lesser number of features, with 94% accuracy rate. Zhang 
et al. (2017) employed a sparse representation classification 
algorithm after extracting shape and colour characteristics 
from lesions to classify cucumber leaf diseases of seven dif-
ferent types. In another study, local binary patterns were 
utilized to extract features and employed a one-class clas-
sifier to distinguish between diseased and healthy leaves in 
crops (Pantazi et al. 2019). Recent research used multiple 
features like colour histograms, Hu Moments, Haralick, 
and LBP for feature extraction, followed by different algo-
rithms to classify tomato diseases (Basavaiah and Anthony, 
2020). In another study, for feature extraction, fractional-
order Zernike moments (FZM) was used, and SVM was 
employed for disease identification in grape leaf (Kaur et al. 

Table 1   Traditional machine learning-based studies for plant disease identification

Authors Datasets Technique Features taken Accuracy

Shrivastava and Pradhan 
(2021)

Rice dataset with 619 images SVM Colour feature (172 features) 94.6%

Chuanlei et al. (2017) Apple dataset SVM Colour, shape, and texture 94%
Zhang et al. (2017) Own Sparse representation clas-

sification algorithm
Shape and colour features 85.7%

Prajapati et al. (2017) Own SVM Shape, colour, and texture 
(88 features)

88.57%

Pantazi et al. 2019 Own SVM Texture and colour 95%
Kaur et al. (2019) Grape SVM FZM 97.34%
Basavaiah and Anthony 

(2020)
Tomato disease with 500 

images
Random forest and Decision 

tree
Hu moments, colour histo-

grams, Haralick, and LBP
Decision Tree = 90% 

Random For-
est = 94%

Kumar et al. (2018) PlantVillage Exponential SMO + SVM 82 features extracted by 
SPAM

92.12%

Mustafa et al. (2020) LeafSnap, Flavia, and ICL Hybrid 
SVM + PNN + NB + FIS

Binarization and individual 
level discrete 2D wavelet

99.10%

Kurmi et al. (2021) Pepper, potato, and tomato SVM SIFT 94.35%
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2019). The author used a dataset comprising 400 images 
and yielded a 97.34% accuracy. Kurmi et al. (2021) used 
SVM to classify the disease associated with common pepper, 
potato, and tomato. Discriminative features were generated 
using Fisher vectors, which involved multiple-order differ-
entiation of Gaussian distribution. The study reported 94.7% 
accuracy. Mustafa et al. (2020) employed a hybrid technique 
for early disease associated with ten different herb species. 
The author utilized odour extraction using an electronic 
nose for analysing odour and used it with shape, colour, and 
texture features, yielding a classification score of 99.10%. 
Kumar et al. (2018) utilized subtractive pixel adjacency 
matrix and extracted 686 features, further reducing these 
features (82 features) by the spider monkey optimization 
algorithm. These reduced features were then sent to SVM, 
which reported 92.12% accuracy.

However, conventional machine learning, which involves 
extracting features manually, is afflicted with limitations 
stemming from its computational complexity and signifi-
cant energy consumption (Sachar and Kumar 2021). A 
recent research study for classifying diseases in plants using 
machine learning is summarized in Table 1.

Using deep learning approaches with automated feature 
extraction in crop disease diagnosis research continues to 
surpass the performance of traditional machine learning 
approaches (Turkoglu et al. 2022). Convolutional neu-
ral networks (CNNs) are the most commonly proposed 
deep learning methods for diagnosing disease using plant 
leaf images. Numerous other deep learning models have 
also been suggested for this task. Table 2 demonstrates 
the effective application of several CNN models for plant 
disease diagnosis, utilizing various plant datasets. These 
models have achieved remarkable accuracies exceeding 
99%. Plant disease diagnosis research has been done on 
the PlantVillage dataset majorly (Mohanty et al. 2016; 
Shoaib et al. 2023). Dheeraj and Chand (2023) utilized 
EfficientNet B0 model to detect diseases of pepper, potato 
and tomato. Their work achieved 99.79% accuracy score. 
Gokulnath (2021) proposed a fusion approach with CNN 
for identifying diseases in plants. The proposed LF-CNN 
model achieved 98.83% accuracy. Error rate in loss func-
tion was reduced by the fusion approach, which enhanced 
the accuracy score of the model. Nigam et  al. (2023) 
developed a disease classification system for three rust 
diseases associated with wheat. Their method used Effi-
cientNet B4 model and attained 99.35% accuracy on their 
own dataset of 6556 images. Ensemble-based CNN models 
have also been developed. Turkoglu et al. (2022) utilized 
an ensemble of six CNN models and achieved 97.56% 
accuracy score. In this research study, authors created 
their own dataset named Turk-Plant dataset, having 15 
types of disease and a total of 4447 images. In another 
study, an ensemble model was developed by employing 

MobileNetV2 and Xception. The study concatenated the 
features extracted by these two models and yielded 99.10% 
performance accuracy (Sutaji and Yıldız, 2022). However, 
it should be noted that ensemble models are more time-
consuming and result in larger model file sizes because of 
their massive parameters. Karthik et al. (2023) proposed 
a coffee disease identification system where authors used 
Inception module with multihead attention mechanism to 
extract a complex pattern from the leaf images. Filters of 
various sizes were used at many scales and abstraction 
levels.

Research work by Kaya and Gürsoy (2023) employed 
the image fusion approach where both RGB and seg-
mented images were used as dual input, and DenseNet121 
was utilized as a classification model. The experimental 
study obtained 98.17% average accuracy when executed 
on PlantVillage. Various CNN models with feature fusion 
approaches were also presented for plant disease recog-
nition (Yang et al. 2021; Fang et al. 2022; Zhang et al. 
2022). Fan et al. (2022) introduced a feature fusion and 
transfer learning-based approach for plant leaf disease 
classification, which yielded an average performance accu-
racy of 99.5% across three different datasets. The majority 
of the work using CNN with a feature fusion approach was 
done on own data rather than on the standard PlantVillage 
dataset. Table 2 provides literature work on CNN models 
used for the classification of plant diseases along with the 
dataset used and accuracy results.

Comparing techniques presented in the literature is a 
difficult task because of variations in the datasets used. 
Furthermore, some techniques focus on classifying solely 
four plant diseases, while others are designed to classify 
over 38 types of plant diseases. While some models pre-
sented in the literature exhibit high performance, their 
complex network architecture and computationally expen-
sive nature represent a significant drawback.

Referring to previous research work, the current study 
concentrates specifically on the DenseNet121 architec-
ture, which has been modified and named Lightweight 
DenseNet121 (LWDN). The LWDN has been utilized for 
extraction of features and categorization of diseases in the 
current study. The advantage of the LWDN is that it pro-
vides competitive performance for plant disease identifi-
cation while employing a reduced number of parameters 
than classical CNN models. Additionally, this research 
study entails a comparative evaluation of the proposed 
model with seven classical CNN models to determine its 
performance.
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Materials and methods

This section presents a description of the proposed model 
and a comprehensive overview of the dataset used in this 
study.

Dataset

The proposed research study utilizes the PlantVillage aug-
mented dataset (https://​data.​mende​ley.​com/​datas​ets/​tywbt​
sjrjv) to classify images based on plant species and their 
associated diseases. The PlantVillage dataset comprises 39 
categories, including background images, encompassing 

fourteen plant species exhibiting distinct plant diseases. 
A total of 14 distinct plant species were examined, among 
which 17 categories were found to exhibit fungal diseases, 
while four were identified as having bacterial diseases. Addi-
tionally, two species were observed to have viral diseases, 
two were found to be affected by fungal diseases, and the 
remaining one was affected by mite-induced disease. The 
healthy category of plant leaves contains 12 different plant 
species, and the total number of images is 61,486. Each 
image comprised R, G, and B channels and had a size of 
256 × 256. The whole collection of 61,486 images had prop-
erly distributed to train, validation, and test in the ratios 80%, 
10%, and 10%, respectively.

Table 2   Related work using CNNs for plant disease identification

Research work Dataset Model/technique Accuracy

Mohanty et al. (2016) PlantVillage AlexNet and GoogleNet 99.35%
Ramcharan et al. (2017) Cassava leaf disease dataset Inception v3 96.6
Liu et al. (2017) Apple leaf diseases AlexNet 97.62%
Ma et al. (2018) Cucumber PlantVillage Custom CNN 93.4%
Too et al. (2019) PlantVillage DenseNet 99.75%
Kamal et al. (2019) PlantVillage MobileNet 98.34%
Chen et al. (2020a) Apple, grape, potato (PlantVil-

lage), own maize, and rice disease 
dataset

MobileNetV2 99.94% on PlantVillage 99.85% on 
own dataset

Chen et al. (2020b) PlantVillage maize, own rice and 
maize

VGGNet with Inception modules 92% on PlantVillage Maize, 80.38% 
custom maize and 92.00 on own rice 
dataset

Jiang et al. (2020) Own rice leaf disease dataset Customized CNN (feature extrac-
tor) + SVM (classifier)

96.8%

Abbas et al. (2021) PlantVillage Tomato DenseNet121 with C-GAN 94.34% and 97.11% on PlantVillage 
and PlantVillage with synthetic 
images dataset, respectively

Atila et al. (2021) PlantVillage EfficientNet (B0–B7) 99.91% and 99.97% on EfficientNet 
B5 and B4, respectively for original 
and augmented dataset

Shin et al. (2021) Custom strawberry dataset ResNet-50 98.11%
Yang et al. (2021) Custom citrus ResNet with feature fusion and 

attention mechanism
97.89%

Gokulnath (2021) PlantVillage LF-CNN 98.93%
Turkoglu et al. (2022) Turk-Plants For feature extraction, the Ensemble 

model used and SVM was used as 
classifier

97.56% and 96.83% for MV and EF 
model, respectively

Fan et al. (2022) Coffee and two apple leaf InceptionV3 (deep features) with 
handcrafted features

97.12% on coffee, 92.59% and 99.79% 
on two apple datasets

Naik et al. (2022) PlantVillage and own chilli leaf 
dataset

SECNN 99.28% on combined dataset

Sutaji and Yıldız (2022) PlantVillage and own dataset Ensemble MobileNetV2 and Xcep-
tion

99.10% on PlantVillage, 99.52% on 
own dataset

Kaya and Gürsoy (2023) PlantVillage Multi-headed DenseNet 98.17%
Nigam et al. (2023) Own wheat dataset EfficientNet B4 99.35%
Dheeraj and Chand (2023) PlantVillage EfficientNet B0 99.79%
Karthik et al. (2023) BRACOL Inception module with attention 

mechanism
98.57%

https://data.mendeley.com/datasets/tywbtsjrjv
https://data.mendeley.com/datasets/tywbtsjrjv
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Method overview

This section covers the developmental process of the pro-
posed model for identifying plant diseases. It includes a 
background of DenseNet121 architecture which serves 
as the base architecture, and some added structure to the 
DenseNet121 architecture to minimize the number of param-
eters and mitigate overfitting while attaining a reasonable 
performance level.

DenseNet121

Convolutional neural networks (CNNs) have garnered wide-
spread attention as a promising solution for image classifi-
cation tasks, specifically in the detection of plant diseases. 
Several pre-trained models are available to facilitate the 
classification of various image types. Furthermore, trans-
fer learning has also been utilized for image classification 
applications by leveraging pre-trained models. The present 
approach involves modifying the top layers of pre-trained 
models to enable the classification of novel image catego-
ries. Given the diversity of plant leaf characteristics, a pre-
trained neural network can effectively address this challenge, 
making transfer learning (TL) an area of focus for research-
ers in plant disease detection (Kılıç and Inner 2022). Sev-
eral pre-trained convolutional neural network (CNN) models 
have been proposed for image classification tasks (He et al. 
2016; Brahimi et al. 2017; Alom et al. 2018; Alzubaidi et al. 
2021; Uğuz and Uysal 2021; Pandey and Jain 2022). How-
ever, amidst these models, DenseNet outperforms the rest in 
recognition accuracy and computation time by utilizing sub-
stantially fewer amount of parameters. (Singh et al. 2019).

DenseNet is one of the deep learning architectures that 
enable efficient propagation of information by providing 
direct access to loss function and gradient to each layer, 
thereby enhancing the depth of training (Huang et al. 2017). 
This is achieved by interconnecting all layers in a feed-
forward manner, where all layers are densely connected to 
each other, unlike ResNet (He et al. 2016). DenseNet merges 
image features by utilizing a concatenation operator, and it 
employs considerably fewer parameters compared to other 
CNN models. DenseNet comprises various architectures, 
namely DenseNet-121, DenseNet-160, and DenseNet-201, 
with each architecture having a distinct number of layers. In 
this study, DenseNet-121 was chosen, which comprises [5 + 
(6 + 12 + 24 + 16) × 2) = 121] layers and possesses a moder-
ate count of trainable parameters.

•	 Transition layers: Three (6, 12, 24)
•	 Pooling and Folding layers: Five
•	 Classification layer: Sixteen
•	 Dense blocks: 2(1 × 1 and 3 × 3 conv)

Convolutional neural networks generate the lth output 
layer by performing a nonlinear transformation, Hl, on the 
output of the preceding layer, Xl-1 (Huang et al. 2017). In 
contrast, DenseNet concatenates the output features of the 
layers with the input features instead of adding them together 
(Zhang et al. 2019). The DenseNet architecture enhances the 
propagation of information between layers by granting direct 
access to the feature maps of all previous layers as inputs to 
the lth layer. The mathematical expression of the operation 
is as follows:

The concatenation of the output maps of previous layers 
is represented as a tensor X0, X1, X2, X3,…….., Xl-1 in Eq. (1), 
while Hl represents a nonlinear transformation function (Cai 
et al. 2021). The function Hl comprises four primary compo-
nents: pooling, activation function (ReLU), convolution and 
batch normalization. The increase rate k is used for enhance-
ment of the generalization ability of the lth layer. The value 
of k is defined as:

Here, k [0] represents the initial channel number.
The DenseNet model has input, dense, and transition 

blocks. Input blocks have a convolutional layer of 7 × 7 fol-
lowed by batch normalization (BN), rectified linear unit 
(ReLU) and Max pooling layer of dimension 3 × 3. After the 
input block, dense blocks are there with BN, ReLU, and 1 × 1 
convolutional, followed by another set of BN, ReLU and 
3 × 3 convolutional layer. The transition block is composed 
of BN, ReLU, 1 × 1 convolutional, followed by an average 
pooling layer of dimension 2 × 2. The DenseNet architecture 
differs from other deep learning models, such as residual 
networks, that rely on feature summation and have a large 
number of parameters. Instead, DenseNet incorporates dense 
blocks with a growth rate of k that are concatenated to every 
layer of the network. This technique enables efficient end-
to-end propagation of feature inputs from preceding layers 
to succeeding layers, facilitating the propagation of high-
quality gradients even at bigger depths while maintaining a 
relatively less amount of parameters.

This makes it a suitable choice for the task at hand. Simi-
lar to other deep convolutional neural network (DCNN) 
models, the DenseNet architecture includes a downsampling 
layer to avoid resource depletion during feature extraction. 
Specifically, it incorporates a transition layer that uses 1 × 1 
convolution and a 2 × 2 average pooling operation with 
strides of 1 and 2 for dimensionality reduction in feature 
maps. This aids in maintaining computational efficiency dur-
ing training and inference.

(1)Xl = Hl

(

X0, X1, X2, X3, ..,Xl−1

)

(2)k[l] = (k[0] + k(l−−1))
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The proposed LWDN architecture

Traditional convolutional neural networks (CNNs) typi-
cally adopt a strategy for stacking multiple convolutional 
layers to improve performance results. The complexity of 
the computation and the parameters count both rise with this 
method. Despite possessing considerably fewer parameters 
than most DCNNs, the DenseNet model remains subject to 
high computational demands. In this regard, the proposed 
method seeks to reduce both the parameters and computation 
complexity of the DenseNet121 model while preserving its 
performance. Considering the main objective of DenseNet, 
which is to process large datasets like ImageNet containing 
over 1000 categories and 14 million images, replicating and 
training this proposed model is challenging due to the con-
straints of the available computational resources. Further-
more, employing the entire model’s structure for the limited 
dataset at hand only contributes to increased complexity and 
resource consumption. Therefore, through a proposed model 
pruning, model concatenation and feature fusion technique, 
a model named lightweight DenseNet121 (LWDN) has been 
created.

Model pruning and concatenation technique

To reduce the parameter size and computational complexity 
of DenseNet121, we applied a pruning technique to remove 
a significant number of layers from the architecture. This 
resulted in a shortened end-to-end structure that is more effi-
cient in terms of computational resources while still getting 
an adequate level of performance accuracy in plant disease 
classification. Generally, pruning performs layer reduction 
which eventually reduces the parameter count and size of 
the architecture (Das et al. 2020). Figure 1 shows the pro-
posed model pruning technique where six dense blocks are 
there, followed by a transition layer. This transition layer 
is then connected to another set of four dense blocks. The 
pruned model, referred to as the Lightweight DenseNet1 
model (LWDN_1), significantly reduced the amount of 
parameters and depth of the original DenseNet121 model. 
The pruned model retains the original architecture but with 
a reduced number of parameters, enabling efficient training 
and deployment. Initially, the DenseNet121 architecture has 
8 M parameters and a network length of 430, whereas the 
pruned LWDN_1 architecture has a parameter amount of 

Fig. 1   Architecture of the proposed LWDN model
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624 k and a network length of 81. Thus, the parameter size 
has been decreased by 92 per cent.

The LWDN_1 model has a lesser number of parameters 
due to its reduced network complexity. However, when 
trained on the PlantVillage dataset, it has comparatively 
lower performance than other classical CNN models, as 
shown in the ablation study. Further pruning of the network 
does not enhance the performance, as described in the abla-
tion study. It is noteworthy that pruning results in a network 
with fewer layers, facilitating quicker weights propagation 
during training, and saving a substantial amount of comput-
ing resources. However, in the present study, this advantage 
is accompanied by a significant disadvantage as well. Reduc-
ing the number of layers for feature generation or extrac-
tion ultimately leads to decreased model performance due 
to the limited trainable parameters when compared to the 
base DenseNet121 model. To overcome this challenge, the 
proposed method incorporated a feature fusion and model 
concatenation approach (Montalbo 2021).

To extract the relevant feature to enhance the perfor-
mance, we replicated the LWDN_1 architecture, named 
LWDN_2, and then these two were combined together to 
form lightweight DenseNet (LWDN). Through the feature 
fusion approach, features are fused together to give a robust 
feature set. The proposed study added a set of additional 
layers consisting of global average pooling or GAP (Kamal 
et al. 2019), a dense layer with 512 units utilizing ReLU 
as an activation function, dropout with a value of 0.5, suc-
ceeded by a dense layer with 256 units and ReLU activation, 
and dropout with value 0.5 connected with another dense 
layer (Dahl et al. 2013) with thirty-nine units with Softmax 
classifier (Fu et al. 2022). The advantage of global average 
pooling (GAP) in dense neural networks is that it provides 
a more compact and interpretable feature representation 
for each class. Instead of flattening the feature maps into a 
vector and passing it through a fully connected layer, GAP 
averages each feature map channel-wise. It returns a single 
value for each channel. Furthermore, the ReLU activation 
function employed in the layer introduces nonlinearity to the 
network and restricts output values to binary (1 or 0), thus 
increasing efficiency and reducing the computational cost. 
Additionally, the dense layer with Softmax function com-
prises only thirty-nine neurons, each corresponding to one 
class of interest. The output values from this layer represent 
the probability that a given input image belongs to each of 
the different classes. The Softmax function applied in this 
layer normalizes these probabilities, ensuring that they sum 
up to 1.0, thereby making it easier to interpret the results as 
probabilities. The purpose of incorporating additional layers 
is to enhance model performance and mitigate overfitting 
concerns (Bevers et al. 2022). The architecture of the pro-
posed LWDN model is shown in Fig. 1.

Different technique for training pruned network

The utilization of certain techniques can mitigate the issue 
of reduced trainable parameters and performance result-
ing from pruning. However, deploying similar models may 
result in feature redundancy and a corresponding increase 
in computational costs without significant improvement. As 
a remedy, this study proposes the use of diverse methods to 
train each pruned model and generate a range of distinctive 
features. Specifically, the proposed scheme employs fine-
tuning and partial layer freezing techniques to address the 
aforementioned issues. By using these techniques, the model 
can generate a range of distinctive features that can aid in 
improving overall performance.

Initially, both LWDN_1 and LWDN_2 models lever-
age their image recognition capability by transfer learning 
approach and learn the features from the ImageNet data-
set, thus improving their performance on the plant disease 
detection task. Following this pre-training phase, the models 
undergo fine-tuning and partial layer freezing to facilitate the 
classification of plant diseases. In this study, partial layer 
freezing refers to the setting of a model’s layers to a frozen 
state so that the pre-trained weights obtained from ImageNet 
are preserved from being overwritten during training (Isik-
dogan et al. 2020). Only the concatenation layer and the 
proposed set of ending layers are updated during training. 
The concept of layer freezing is a technique derived from 
fine-tuning, which enables adjustment of pre-trained weights 
by model towards the newly added ending layers, thereby 
effectively solving particular tasks (Montalbo 2021). How-
ever, when the same technique is applied to the other model, 
outputs are generated with no contribution to the feature set. 
As a contrasting approach, the other model’s layers were set 
to an unfrozen state, allowing new weights to flow and gen-
erate diverse features throughout its entire network. Specifi-
cally, in one of the LWDN models, LWDN_1, its layers were 
frozen, while in LWDN_2, all layers were retrained using 
ImageNet and PlantVillage datasets to generate a distinct 
feature set. As a result, the proposed approach, which com-
bines fine-tuning and new weights re-initialization, resulted 
in a broad range of diverse features being curated.

Fine‑tuning hyper‑parameters

Before the commencement of the training process, hyper-
parameters and a loss function are chosen for the model. 
The hyper-parameters denote the configurable components 
of a deep learning model, which can significantly influence 
its learning process and cannot be modified during training 
(Yu and Zhu 2020). A loss function was also incorporated 
to calculate and minimize errors during both the training 
and validation stages. Optimal selection of hyper-parameters 
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and loss function plays a critical role in achieving efficient 
results. Notably, unlike other studies, no rigorous optimiza-
tion techniques were employed in this work for hyper-param-
eter fine-tuning. This approach demonstrated the model’s 
adaptability and reproducibility with the dataset.

Learning rate (LR), optimizer, batch size (BS), loss func-
tion, epochs, and dropout rate (DR) are the tuned hyper-
parameters of the model. These hyper-parameters of the 
model have been defined in Table 3. The learning rate is 
set to be 0.0001, and batch size has a value of 16, which 
gives a faster training process. Adam optimizer (Kingma 
and Ba 2014), which generally has faster convergence with 
less memory compared to Adagrad, SGD (Ruder 2016) and 
RMSprop (Tieleman et al., 2012), has been selected. A drop-
out with a value of 0.5 gave satisfactory regularization and 
prevented overfitting of the model. Along with the proposed 
model, different competing models have also been experi-
mented with the same settings of hyper-parameters. Select-
ing an appropriate loss function is essential in evaluating and 
enhancing the overall performance of deep convolutional 
neural networks (DCNNs), along with hyper-parameters. 
Because of the presence of thirty-nine classes in the dataset, 
the categorical cross-entropy loss (CCE loss) was selected as 
an ideal choice for the Softmax classifier over binary cross-
entropy (Too et al. 2019). In Eq. (3), N denotes the thirty-
nine classes, and for every diagnosed class p in each instance 
i of N, the model computed the count of errors made on each 
observation j based on its true values y. For each diagnosis p, 
the loss is computed using the natural log function (https://​
ml-​cheat​sheet.​readt​hedocs.​io/​en/​latest/​loss_​funct​ions.​html).

Performance metrics

This research study employed a confusion matrix to evaluate 
and visualize the interpretation of efficacy of the presented 
model in accurately detecting and categorizing plant dis-
eases. The diagonal value in the confusion matrix represents 
the number of correct instances for a specific class. Consid-
ering the dataset contains more than two classes, the present 

(3)CCEloss = −

N
∑

i

yj,i log
(

pj,i
)

a

study can be classified as a multi-class classification task. 
The performance metrics were computed using the indices 
described in Eqs. (4)–(7). True Positive (TP) is the count of 
instances in which the model accurately predicts a positive 
outcome in a specific category, indicating that both the pre-
diction and the actual result are positive. True Negative (TN) 
gives the count of the instances where the model correctly 
predicts a negative outcome, indicating that both the predic-
tion and the actual result are negative. False Positive (FN) is 
the count of the cases where the model predicts a negative 
outcome, but the actual result is positive, and False Positive 
(FP) is the count of the cases where the model predicts a 
positive result, but the actual result is negative (Hossin and 
Sulaiman 2015). Figure 2 displays the confusion matrix of 
the proposed model. For instance, 89 out of 100 samples 
have been correctly identified with 11 misclassifications in 
the Class 11, “Corn Northern Leaf Blight”. For the remain-
ing classes, the proposed method gives good results and dif-
ferentiates all the diseased categories very well.

In this research, several performance metrics have been 
utilized to assess the efficacy of the proposed LWDN in 
accurately identifying and classifying plant diseases. Spe-
cifically, the metrics accuracy (Acc), precision (Prec), recall 
(Rec), and F1 score have been used. Accuracy is defined as 
the proportion of correctly classified cases out of the total 
cases in the dataset. It gives the ratio of correctly classi-
fied plant samples. Precision measures the proportion of 
correctly classified positive samples (i.e. disease-infected) 
among all the samples classified as positive. Recall meas-
ures the proportion of percentage of positive samples (i.e. 
disease-infected) correctly classified among all the actual 
positive samples in the dataset. The F1 score is computed 
as the harmonic mean of precision and recall, serving as a 
consolidated score for evaluating the overall performance of 
a classification system. It offers a comprehensive evaluation 
of the model’s performance, considering both precision and 
recall simultaneously.

For x is disease category/class:

(4)Prec(x) =
TP(x)

TP(k) + FP(k)

Table 3   Settings of training 
hyper-parameter

Hyper-parameters Value Description

Learning rate 0.0001 Controls the weights of the model with respect to the loss gradient
Batch size 16 Number of images used in an iteration
Optimizer Adam To reduce the loss function during the training phase by adjusting 

the neural network parameters
Epochs 50 Complete iteration over a given dataset during the training phase
Dropout rate 0.5 To prevent overfitting

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
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(5)Rec(x) =
TP(x)

TP(k) + FN(k)

(6)F1Score(x) =
2 ∗ Prec(x) ∗ Rec(x)

Prec(x) + Rec (x)

In addition, the validated DCNNs were subjected 
to performance analysis using various data visualiza-
tion techniques, such as learning curves, area under the 
receiver operating characteristic (AUROC), and area under 
the precision–recall (AUPR). Floating point operations or 
FLOPs, defined as number of operations required by model 

(7)Acc (x) =
TP(x) + TN(x)

TP(x) + TN(x) + FP(x) + FN(x)

Fig. 2   LWDN model’s confusion matrix
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for the classification task, were calculated for all models 
using Keras-flops python package (Tokusumi 2020).

Experiment study and results

This section discusses the experimental findings in detail 
and a comparative study of various models.

Experiment setup

In this experimental study, the Python programming lan-
guage was used, and all experiments were conducted on 
NVIDIA DGX GPU servers. These servers were equipped 
with 512 GB RAM and 8 high-speed Tesla V100 GPUs, 
with each GPU having a capacity of 32 GB. The deep learn-
ing package employed for the study was Keras, with Ten-
sorFlow serving as the backend. Pre-trained convolutional 
neural network (CNN) models from Keras applications, 
including VGG16, DenseNet121, MobileNetV2, NasNet-
Mobile, Xception, EfficientNet B0, and InceptionV3, were 
considered in this study.

Dataset preparation

In this research, the dataset preparation involved several 
steps. First, the dataset was partitioned into three distinct 
subsets, namely training, testing and validation set, with 
respective proportions of 80%, 10%, and 10%. In the second 
step, all the images in the dataset were resized to dimensions 
of 224 × 224 pixels. The third step involved normalizing the 
image intensity values to reduce the network computational 
complexity. Specifically, the procedure of normalizing the 
intensity values of each pixel involved dividing them by 255, 
resulting in a normalized numerical range between 0 and 1.

Performance comparison with CNN models

In this research, the performance of the proposed work was 
analysed by comparing it with seven CNNs that were evalu-
ated as benchmark methods. These CNNs included Mobile-
NetV1, MobileNetV2, EfficientNetB0, NASNetMobile, 
DenseNet, and XceptionNet models and were established 
using transfer learning that used pre-trained weights from 
ImageNet. In these CNN models, the classification layer was 
eliminated, and a new fully connected Softmax layer was 

Fig. 3   Accuracy and loss curve 
of LWDN model

Table 4   Work comparison under various CNN models on PlantVillage dataset

Model name Precision Recall F1 score Accuracy Total training 
time (min)

Time per 
epoch (min)

Total parameters FLOPs (G)

DenseNet121 0.9966 0.9966 0.9966 0.9966 199.42 3.99 7,703,655 5.7
VGG16 0.9799 0.9784 0.9783 0.9784 174.63 3.49 15,118,695 30.7
Xception 0.9928 0.9901 0.9897 0.9901 341.87 6.84 22,051,919 9.14
EfficientNet B0 0.9970 0.9969 0.9969 0.9969 227.03 4.54 4,846,794 0.796
InceptionV3 0.9919 0.9917 0.9918 0.9917 153.30 3.07 22,993,223 5.7
MobileNetV2 0.9927 0.9925 0.9925 0.9925 159.03 3.18 3,055,207 0.614
NasNetMobile 0.9946 0.9945 0.9945 0.9945 412.38 8.25 4,952,251 1.15
LWDN (Proposed) 0.9939 0.9937 0.9936 0.9937 104.57 2.09 1,521,319 5.83
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added with the actual number of classes in the dataset. The 
CNN models were then trained and subjected to extensive 
experimentation on the PlantVillage dataset. Figure 3 dis-
plays the accuracy and loss curve of the proposed method, 
while performance comparisons of various CNN models are 
presented in Table 4. The proposed method demonstrated 
acceptable performance during model training, with high 
accuracy and low loss, as shown in Fig. 3. The plots of both 
training and validation show similar trends, with similar 
values, as accuracy is continuously maximized, and loss is 
minimized. The accuracy score of all experimented models 
in ascending order is shown in Fig. 4. Performance compari-
son of proposed LWDN and other competing CNN models 
is visualized using a radar/spider chart and shown in Fig. 5, 
which uses three evaluation metrics. Model covering the 
maximum area in radar chart is better, thus LWDN is better 
than some model in terms of performance as shown in Fig. 5. 
Table 4 indicates that the proposed LWDN has a competi-
tive performance of 99.37% which is comparatively higher 
than VGG16, MobileNetV2, XceptionNet, and InceptionV3. 
The proposed model takes the least time for training, with 

104.57 min, compared to competing CNN models. LWDN 
has a total of 1,521,319 parameters, the least among the 
CNN model listed in Table 4. The LWDN model was able 
to obtain 99.39% precision and 99.37% recall value when 
experimented on PlantVillage. EfficientNet B0 achieved 
the highest performance due to the use of compound scal-
ing method, with 99.69% accuracy with 4.8 M parameters 
among all models. DenseNet121, EfficientNet B0, and Nas-
NetMobile have better performance with 99.66, 99.69, and 
99.45 per cent accuracy, but these models have an extensive 
amount of parameters with 7.7 M, 4.8 M, and 4.9 M param-
eters and more training time. The proposed LWDN takes 
93% fewer parameters compared to InceptionV3 and Xcep-
tion, 90% fewer parameters compared to VGG16, and 50% 
fewer parameters compared to MobileNetV2. MobileNetV2 
takes the least amount of computing power (FLOPs) due to 
the use of NAS technology but has a significantly higher 
parameter count and lower performance than LWDN. While 
FLOPs (floating point operations) is not the sole determinant 
of whether a model is lightweight, it is an important factor to 
consider alongside other metrics, such as number of param-
eter and training time. In the proposed model, floating point 
operations is 5.83G because we concatenated two pruned 
DenseNet models. However, training time and parameter 
amount are comparatively lower than other models, thus 
rendering it a lightweight model.

LWDN achieved good results with a performance score 
of over 99%. Some samples have been misclassified. For 
instance, 39 samples out of 6149 have been inaccurately 
identified. Average F1 score of the LWDN model yielded 
99.36%.

In order to perform a comprehensive evaluation, this 
study employed AUROC analysis to visually capture the bal-
ance between the sensitivity and specificity of the models. 
A higher AUROC indicates better performance of a DCNN 
model, while an AUROC value of < 0.5 implies that the 
model cannot effectively distinguish or identify a particu-
lar case (Geetharamani and Pandian 2019). The proposed 
model demonstrated outstanding sensitivity and specificity 
performance, with a consistent AUC of 1.00 for all thirty-
nine classes in the PlantVillage dataset.

In addition to the AUROC, the AUPR curve is also com-
monly used as a graphical metric for evaluating model per-
formance, particularly in cases of unbalanced data distribu-
tion (Jeni et al. 2013). Unlike AUROC, AUPR emphasises 
on the count of incorrect diagnoses cases while still consid-
ering the region under the curve. Except for five classes, the 
proposed LWDN model attained a micro-average AUPR of 
1.00 for the majority of categories in the PlantVillage data-
set. However, the model’s performance in class 4, class 8, 
class 11, class 20, class 29, class 30, class 32, and class 36 
has an AUPR of 0.992, 0.987, 0.988, 0.998, 0.999, 0.992, 
0.998, and 0.999, respectively, that indicate a challenge in 
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accurately diagnosing these diseases. For the remaining 
classes, model have AUPR score of 1.

Statistical analysis of results

To validate the experimental results on PlantVillage, Fried-
man statistical test was utilized (Friedman 1937). The sta-
tistical test can determine whether the CNN models differ 
significantly from each other. The null hypothesis (H0) 
assumed here is that all models have the same performance. 
The alternative hypothesis (H1) assumed here is that there is 
at least one model that outperforms at least one other model. 
The rationale for selecting the Friedman test stems from its 
high statistical power when the number of compared entities 
exceeds five.

For a given D dataset and n models to be compared, mod-
els are ranked on a scale of 1 (worst) to n (best). The final 
rank of the models will be computed by averaging the rank 
over all the datasets. We have experimented on the PlantVil-
lage dataset only, so the average of the rank is not needed. 
The rejection or acceptance of null and alternative hypoth-
esis depends on p value test statistics. If the p value is lesser 
than 0.05, it indicates that there is a significant difference 
among all the models, and null hypothesis is rejected. Here, 
we considered precision, recall, and F1 score for Fried-
man statistic test. Table 5 shows the ranking of the models 
using Friedman test. The results indicate that the p value of 
0.0049, obtained from the test, is less than 0.05, indicating 
that the null hypothesis of no significant difference between 
the models is rejected. Therefore, it can be inferred that con-
siderable difference exists among all the models.

Model size comparison

In terms of computational time, LWDN outperforms the 
other seven CNN models. Additionally, LWDN has the 
smallest model file size of 13.8 MB, making it a suitable 

option for implementation on mobile devices that are con-
strained by limited storage capacity. The benefits of using 
LWDN include its ability to achieve competitive perfor-
mance with a reduced number of parameters. EfficientNet 
B0, the best-performing model among all, has a model file 
size of 59 MB, which is 77% larger than LWDN. Figure 6 
illustrates model file sizes comparison of the various CNN 
models.

Performance comparison against previous research

Table 6 illustrates the comparative performance analysis 
of the proposed study with some compact models devel-
oped. These studies used either of original or augmented 
PlantVillage dataset. The presented study has an accuracy 
of 99.37% with 1.5 M parameters and outperforms the work 
by Thakur et al. (2023), Kaya and Gürsoy (2023) and Arun 
and Umamaheswari (2023), which provides an accuracy of 
99.16% with 6 M parameters, 98.17% with 8.13 M param-
eters and 98.14% with 2.87 M parameters, respectively. 
The proposed model is the smallest CNN model in terms of 
parameter size, developed for the whole PlantVillage dataset 
with remarkable performance, justifying the computational 
betterment of the proposed study.

Ablation studies

To showcase the efficiency of the LWDN architecture, an 
ablation study was conducted. This study involved remov-
ing certain parts of the deep learning architecture to evalu-
ate their contributions to the overall network performance. 
The objective of the ablation analysis was to measure the 
robustness of the deep learning architecture’s performance 
against structural changes caused by ablations, where lay-
ers and blocks were either added or removed. Specifically, 
one block was removed from the model at a time, and the 
model’s performance was evaluated without the removed 

Table 5   Ranking of CNN models using Friedman test on various per-
formance metric on PlantVillage dataset

Model name Rank

Precision Recall F1 score

DenseNet121 2 2 2
VGG16 3 2 1
Xception 3 2 1
EfficientNet B0 3 1.5 1.5
InceptionV3 3 1 2
MobileNetV2 3 1.5 1.5
NasNetMobile 3 1.5 1.5
LWDN (Proposed) 3 2 1
p value 0.0049
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block. Names of models resulting from these ablations are 
as follows.

LWDN_6_2: Lightweight DenseNet121 architecture with 
six blocks followed by a transition layer and two blocks 
left and replicated the same architecture and concatenated 
these two architectures.
LWDN_6_3: Lightweight DenseNet121 architecture with 
six blocks followed by a transition layer and three blocks 
left and replicated the same architecture and concatenated 
these two architectures.
LWDN_6_5: Lightweight DenseNet121 architecture with 
six blocks followed by transition layer and five blocks 
left and replicated the same architecture and concatenated 
these two architectures.
LWDN_1: Lightweight DenseNet121 architecture with 
six blocks followed by a transition layer and four blocks 
left.

Originally, the proposed LWDN model consisted of six 
dense blocks, succeeded by a transition layer, and followed 
by four dense blocks.

One by one, these dense blocks are removed, or one dense 
block is added to architecture and are named as mentioned 
above. The performance comparison of the ablated mod-
els is summarized in Table 7. All the models experimented 
with the same set of hyper-parameters. As the results show, 

removing or adding any block to the LWDN architecture 
worsens the performance of the model. Thus, the presented 
architecture has the optimum performance. LWDN has the 
best performance with 1.5 M parameters among all these 
ablated models. It should be noted that increasing the num-
ber of dense blocks in LWDN will lead to an increase in 
computational load, resulting in a slower training process, 
and there may not be a significant improvement in accuracy. 
Though the reduction in dense block decreases the com-
putation complexity, performance is not improved. Among 
all the ablated models, LWDN have the best performance 
accuracy, while LWDN_1 takes the least number of param-
eters but has 98.65% accuracy. The performance of the 
LWDN_6_5, which has one more block than the proposed 
LWDN, is 99.29%. LWDN_6_5 takes 6.05G FLOPs and 
9% more parameters amount than LWDN, thus justifying 
the optimum pruning of the existing DenseNet architecture. 
Therefore, it is relevant to infer that the proposed LWDN 
possesses a good trade-off among accuracy, parameter 
amount, and training time.

Conclusion

It is imperative to develop memory-efficient CNN models 
that can still achieve high levels of accuracy in image iden-
tification, with easy deployment on portable and mobile 

Table 6   Computational comparison of the LWDN model with various prior research studies

Study Method Accuracy (%) Number of parameters

Geetharamani and Pandian (2019) Nine-layer CNN model 96.46 –
Mohanty et al. (2016) GoogleNet 99.35 7 M
Too et al. (2019) DenseNet121 99.75 7.1 M
Sutaji and Yıldız (2022) Ensemble MobileNetV2 and Xception 99.10 26.5 M
Hanh et al. (2022) EfficientNet B3 and EfficientNet B5 99.99 on both original and aug-

mented PlantVillage dataset
10.6 M and 28.2 M for 

EfficientNet B3 and B5, 
respectively

Kaya and Gürsoy (2023) Multi-headed DenseNet 98.17 8.13 M
Arun and Umamaheswari (2023) PCCDL-PSCT 98.14 2.87 M
Thakur et al. (2023) VGG-ICNN 99.16 6 M
LWDN (Proposed Study) Modified DenseNet121 named light-

weight DenseNet (LWDN)
99.37 1.5 M

Table 7   Performance of ablated 
models on the PlantVillage 
dataset

Model Name Precision Recall F1 Score Accuracy Number of 
parameters

Training 
time (min)

FLOPs (G)

LWDN_6_5 0.9932 0.9929 0.9928 0.9929 1,680,039 109.27 6.05
LWDN_6_3 0.9880 0.9874 0.9873 0.9874 1,371,047 101.07 5.62
LWDN_6_2 0.9876 0.9865 0.9865 0.9865 1,229,223 97.3 5.43
LWDN_1 0.9874 0.9865 0.9866 0.9865 897,127 92.45 2.91
LWDN (Proposed) 0.9939 0.9937 0.9936 0.9937 1,521,319 104.57 5.83
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devices. This investigation aimed to examine the capabili-
ties of a lightweight and efficient network architecture with 
competitive performance results that can fulfil the neces-
sary design specifications for embedded and mobile vision 
applications. In this research study, a lightweight deep learn-
ing model named lightweight DenseNet (LWDN) has been 
developed by pruning the DenseNet121 architecture for plant 
disease identification. We pruned the majority of layers of 
the original DenseNet121, replicated the model and then 
concatenated these models to generate the robust feature 
set. Pruning of the DenseNet121 model has been done in 
such a way that the overall parameter count is approximately 
1.5 M, with no significant reduction in the performance of 
the model for plant disease diagnosis. DenseNet121 model 
was pruned and then replicated. These two pruned models 
were trained in different way to generate distinct feature set. 
In one of the pruned models, all layers were frozen, and in 
another one, all layers were unfrozen and trained on Ima-
geNet and PlantVillage dataset. Additionally, this work also 
considered the implementation of seven other state-of-the-
art models. For testing the performance of the model, the 
PlantVillage dataset has been used. The proposed LWDN 
has an advantage over other state-of-the-art CNN architec-
tures in terms of fewer parameter sizes and lesser compu-
tational cost and complexity. LWDN is a pruned version of 
DenseNet121 architecture with six dense blocks followed by 
a transition layer and another four dense blocks. The trade-
off between accuracy and computational cost has driven the 
development of a compact and computationally inexpensive 
LWDN model through the utilization of pruning and con-
catenation techniques. It was found that the training time of 
the proposed LWDN was minimal, with 104.57 min. With 
a lightweight design and a substantially reduced parameter 
size of 1.5 M, LWDN outperforms some of the compara-
tively larger models like MobileNetV2, VGG16, Xception, 
and InceptionV3 and attained a success rate of 99.37% on 
the PlantVillage dataset with 50% fewer parameters com-
pared to MobileNetV2. By replicating the pruned network, 
LWDN has improved feature production. Thus, even with 
a small network structure, the proposed model reported 
remarkable accuracy towards plant disease identification. 
As evidenced by the results obtained in this study, the pro-
posed technique of re-structuring and training the DCNN 
model like DenseNet121 can significantly preserve its per-
formance while simultaneously saving on disc capacity and 
computing cost. The proposed lightweight model LWDN 
can be deployed on mobile and portable devices with lim-
ited computational capacity and storage. Furthermore, future 
researchers can use this method for other benchmark datasets 
and with a different model to produce realistic and better 
results. Additionally, further investigation can be carried out 
for low-performance results on some classes.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s41348-​024-​00915-z.
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