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Abstract
Plant diseases cause significant agricultural losses, demanding accurate detection methods. Traditional approaches relying 
on expert knowledge may be biased, but advancements in computing, particularly deep learning, offer non-experts effective 
tools. This study focuses on fine-tuning cutting-edge pre-trained CNN and vision transformer models to classify grape leaves 
and diagnose grape leaf diseases through digital images. Our research examined a PlantVillage dataset, which comprises 
4062 leaf images distributed across four categories. Additionally, we utilized the Grapevine dataset, consisting of 500 leaf 
images. This dataset is organized into five distinct groups, with each group containing 100 images corresponding to one of 
the five grape types. The PlantVillage dataset focuses on four classes related to grape diseases, namely Black Rot, Leaf Blight, 
Healthy, and Esca leaves. On the other hand, the Grapevine dataset includes five classes for leaf recognition, specifically 
Ak, Alaidris, Buzgulu, Dimnit, and Nazli. In experiments with 14 CNN and 17 vision transformer models, deep learning 
demonstrated high accuracy in distinguishing grape diseases and recognizing leaves. Notably, four models achieved 100% 
accuracy on PlantVillage and Grapevine datasets, with Swinv2-Base standing out. This approach holds promise for enhancing 
crop productivity through early disease detection and providing insights into grape variety characterization in agriculture.

Keywords  Grape leaf disease · Image classification · Convolutional neural network · Vision transformer

Introduction

Agriculture is the production of plant and animal products 
using soil and seeds and their evaluation at various stages. 
Agriculture, in a broader sense, encompasses activities 
undertaken in a specific biological and socio-economic envi-
ronment to obtain the necessary animal and plant products 
for human nutrition (Sandhu 2021). Today, agriculture is one 
of the most important strategic sectors in the world. In the 
coming years, it is expected that the world population will 
increase significantly in developing countries, dietary hab-
its will change globally, new technologies will emerge, and 
while developed countries increasingly turn to organic foods, 
there may be a struggle with genetically modified foods in 
developing countries (Hekimoğlu and Altındeğer 2006).

One of the most consumed fruits in the world, grapes are 
also the major component used to make wine. Grape out-
put and quality therefore have a high economic value (Peng 
et al. 2021). However, grape leaves are prone to a number 
of illnesses brought on by the environment, the weather, 
and most commonly by fungi, viruses, and bacteria (Armijo 
et al. 2016). Ineffective control of grape leaf diseases causes 
the disease to spread throughout the plant, which lowers 
grape quality and output. Classic phytopathology techniques 
were initially used to identify the grape leaf disease (Ji et al. 
2020); however, manual identification techniques are labor- 
and time-intensive (Xiao et al. 2023). The reliability of 
manual identification methods decreases as more acreage 
is used for grape production. For the development of grape 
production in future, automatic recognition of grape leaf dis-
eases is crucial (Singh and Misra 2017). For these reasons, 
this study focuses on diagnosing grape diseases and grape 
types from grape leaves.

In today's agriculture, the goal is to produce the highest 
output possible with the least number of resources and effort. 
So, deep learning, machine learning, and image process-
ing methods of the present day are employed. To increase 
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earnings from agricultural products, precise quality control 
is required (Ghoury et al. 2019). Today's modern agriculture 
aims to produce the highest yield possible with the least 
amount of energy and effort. As a result, cutting-edge image 
processing, machine learning, and deep learning methods 
are employed. To increase revenues, agricultural products 
need precise quality control (Muthukannan and Latha 2018; 
Murakami et al. 2005; Paulus et al. 1997), and diagnosis and 
identification of plant pests (Abbasgholipour et al. 2011; 
Boissard et al. 2008; Shariff et al. 2006). Around the world, 
plant diseases constitute a key factor in crop losses (Aggar-
wal and Jaidka 2022). The key to sustainable agriculture is 
plant disease identification, which has grown in importance 
in the agricultural industry (Martinelli et al. 2015; Pydipati 
et al. 2006). To guarantee the quality of the harvest, it is 
essential to identify and diagnose plant diseases quickly and 
accurately, as well as to put the required controls in place 
(Zhu et al. 2020). Considering these reasons, the automatic 
detection of grape and grape leaf diseases using an auto-
mated system is important. Identifying plant diseases using 
images is a significant challenge. In recent years, several 
plant diseases and crops have seen encouraging outcomes 
from the classification of plant diseases using various 
machine learning methods (Ghoury et al. 2019).

Deep learning is a machine learning method that can 
make highly accurate predictions by working with large 
datasets, especially consisting of artificial neural networks 
(Aggarwal 2020; Coşkun et al. 2023). Artificial neural net-
works are designed based on the principles of the human 
brain, and deep learning is achieved by making these arti-
ficial neural networks multi-layered. This allows for solv-
ing more complex and abstract problems. Deep learning 
techniques have shown remarkable results, particularly in 
areas such as image and speech recognition. Deep learning 
is an important tool for increasing agricultural productivity. 
Farmers need to monitor many factors such as plant growth, 
productivity, disease, and pest control (Veziroglu et  al. 
2023). Deep learning can make more accurate predictions 
by analyzing the complex relationships among these factors. 
For example, plant growth rate can be predicted using field 
data and weather data, or disease symptoms can be detected. 
These applications help improve agricultural productivity.

The increasing use of artificial intelligence applications in 
agriculture provides solutions to plant identification and classi-
fication problems (Eli-Chukwu 2019). Recent years have seen 
the successful application of plant diagnosis systems in fields 
including yield prediction, disease identification, and spe-
cies estimation (Patrício and Rieder 2018; Manavalan 2020). 
Leaves are the most suitable option for plant identification as 
they contain species-specific features, are abundantly avail-
able, and present throughout a significant portion of the year 
(Mishra et al. 2012). Leaf image analysis and machine learning 
techniques are widely employed in plant classification (Koklu 

and Ozkan 2020; Kaya and Saritas 2019). However, existing 
methods have limitations and there is a need for more advanced 
approaches that provide deeper insights. This is where deep 
learning approaches come into the picture. Deep learning is a 
more recent method in computer vision that can extract more 
precise data. It can use leaf features that are automatically 
extracted to classify objects. Numerous deep learning-based 
leaf categorization techniques have been proposed in recent 
years (Beikmohammadi and Faez 2018; Tavakoli et al. 2021).

Deep learning also enables more efficient use of 
resources. Resources like water and fertilizer yield the best 
results when applied in the correct amounts and at the right 
time. Deep learning algorithms can analyze plant require-
ments and soil characteristics to develop optimal irrigation 
and fertilization strategies (Kiliçarslan and Pacal 2023). This 
reduces water and fertilizer usage in agricultural production 
and allows for sustainable farming practices. Deep learning 
also plays an important role in the control of agricultural 
diseases and pests. Early detection of diseases and pests is 
crucial for swift intervention and implementation of control 
measures. Deep learning algorithms can quickly diagnose 
plant diseases by analyzing symptoms and images of pests. 
This enables farmers to intervene in a timely manner and 
minimize potential losses. As a sequence, the use of deep 
learning in agriculture provides several advantages to farm-
ers. Increased productivity, more efficient resource utiliza-
tion, and enhanced capabilities in disease/pest control are 
important tools for improving agricultural production and 
implementing sustainable farming practices.

The primary objective of our study is to employ deep 
learning methods for the classification of grape diseases and 
grape leaves. By leveraging advanced techniques in deep 
learning, we aim to develop a robust and accurate system 
capable of distinguishing various types of grape diseases 
as well as classifying different grape leaf categories. This 
research seeks to contribute to the field of agricultural tech-
nology by providing an effective tool for early detection 
and classification of issues affecting grape crops. Through 
the utilization of deep learning algorithms, we endeavor to 
enhance the efficiency and precision of grape disease and 
leaf classification, ultimately aiding vineyard management 
practices. In summary, our main objective is to harness the 
power of deep learning to advance the capabilities of grape 
disease and leaf classification systems for the benefit of the 
agricultural community.

Related works

The identification and classification of plant diseases are 
crucial aspects of the agriculture industry, with far-reach-
ing impacts on crop yield, quality, and overall agricultural 
productivity. However, the field has witnessed significant 
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advancements in image processing, machine learning, and 
artificial neural network technologies, leading to substan-
tial progress in plant disease recognition and classification. 
Notably, the application of CNN (convolutional neural net-
work) and vision transformer algorithms has emerged as a 
particularly successful approach in tackling these challenges 
by automatically extracting features for image recognition 
tasks. Several studies in this domain have contributed valu-
able insights and breakthroughs, which are summarized as 
follows.

In their study, Tang et al. (2020) proposed new model 
architectures despite the use of traditional CNN for the auto-
matic diagnosis of plant diseases. Five different CNN-based 
models were tested, and ShuffleNet was found to be the most 
suitable. Compared to the baseline model, the suggested 
model showed improved discriminative ability and classifi-
cation accuracy. The advantages of the model included the 
use of squeeze-and-excitation blocks to achieve high-quality 
spatial encoding and reduce computational costs. The model 
achieved real-time and highly accurate classification of dis-
eased grape leaves (99.14%). Future research will focus on 
combining the suggested algorithm with an IoT platform to 
improve the efficiency of the automated process.

In the article by Jin et al. (2022), it was noted that the use 
of the GAN method was effective in increasing the dataset of 
grape leaf disease images, but the generated images lacked 
clarity. To address these issues, a new image enhancement 
method called GrapeGAN was proposed. GrapeGAN uti-
lized a generator and a discriminator in a U-Net-like struc-
ture designed to preserve fine-grained features and enhance 
the structural integrity of the generated images. Experimen-
tal results demonstrated that the images of grape leaf disease 
produced by GrapeGAN were of higher quality compared 
to other methods and achieved successful recognition tasks. 
Therefore, the GrapeGAN method exhibits good applicabil-
ity in improving grape leaf disease images and aims to over-
come the limitations of traditional GAN generation methods.

Ji et al. (2020) emphasized that grape diseases cause sig-
nificant losses, making it an urgent requirement to develop 
an automated diagnostic method. Given the impressive 
achievements of deep learning techniques in computer 
vision problems, the article proposes a unified CNN. Black 
rot, esca, and leaf blight leaf spot are a few common grape 
diseases that this architecture is intended to separate from 
healthy leaves. The UnitedModel, which was evaluated on 
the PlantVillage dataset, is anticipated to improve represen-
tational capability as a result of the merging of numerous 
CNNs. UnitedModel achieved a higher accuracy rate com-
pared to other CNN models and, consequently, can serve 
as a decision-support tool to assist farmers in identifying 
grape diseases.

For the automatic detection of grape downy mildew and 
grape powdery mildew diseases and the prompt delivery of 

pertinent information, Li et al. (2012) used image recog-
nition technology. The K-means clustering technique was 
used to unsupervisedly cluster disease images, and fifty vari-
ous features were then retrieved from the disease images. 
A SVM classifier was designed based on 31 effectively 
selected features for disease classification, achieving train-
ing recognition rates of 100% for both grape diseases, while 
the test recognition rates were 90% and 93.33%, respectively. 
The recognition results from SVMs with various kernels 
demonstrated that the linear kernel SVM was best suited 
for identifying diseases from images. This study provides a 
basis and point of reference for the creation of an automatic 
diagnosis system for plant diseases, as well as an efficient 
method for the quick and accurate identification and diag-
nosis of plant illnesses.

In the study by Liu et al. (2020), a new model called Leaf 
GAN is proposed for the identification of grape leaf diseases 
using deep learning. The model generates images of four 
different grape leaf diseases using generative adversarial net-
works (GANs). Using a dense connectivity technique and 
instance normalization, the model's discriminator can tell 
real disease images from phony ones. The Leaf GAN model 
ultimately produces 8,124 disease images from a total of 
4062 images of grape leaf disease. The deep regret gradient 
penalty method stabilizes the model's training. According 
to experimental findings, the Leaf GAN model generates an 
adequate number of images of grape leaf disease and offers a 
workable method for data augmentation. Experiments using 
an extended dataset and eight classification models demon-
strate that CNN-based identification achieves higher accura-
cies. The suggested data augmentation method provides a 
fresh way to deal with overfitting problems in disease detec-
tion and significantly raises the accuracy of identification.

An algorithm for automatic crop detection was put out by 
Hamuda et al. in 2017. Under various weather circumstances 
and in natural light, this system was utilized to identify cau-
liflowers in video streams, and the identification results were 
contrasted with actual data collected through manual labe-
ling. The algorithm achieved 99.04% accuracy and 98.91% 
sensitivity. A technique based on support vector machines 
was put out by Akbarzadeh et al. (2018) for classifying 
plants. The experimental findings demonstrated that the sug-
gested algorithm successfully categorized plants with 97% 
accuracy. A technique for identifying cucumber powdery 
mildew based on visual spectra was proposed by Zhang and 
Wang (2016). After being identified and categorized, the 
spectral features, and the visible light band between 450 and 
780 nm was chosen as the research range. Then, a classifica-
tion model was created using the SVM algorithm, and the 
kernel function was optimized using a radial basis function. 
According to the experimental findings, this model's accu-
racy rates were 100% and 96.25%, respectively, for a total 
accuracy of 98.13%.
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In the study by Waghmare et al. (2016), a method for the 
analysis of leaf texture and pattern recognition was proposed 
for the identification of grape diseases. The system receives 
a single plant leaf as input, and segmentation is carried out 
after background removal. A high-pass filter is used to exam-
ine the segmented leaf image and find the sick area. Finally, 
a multi-class SVM is given the extracted texture pattern. An 
intelligent technique for the identification of grape fanleaf 
virus was put forth by Mohammadpoor et al. (2020). The 
fuzzy C-mean approach is used to highlight each leaf's sick 
areas, which are subsequently identified using SVM.

CNN eliminates the need for image preprocessing and 
feature extraction steps, which are considered unnecessary 
by machine learning algorithms, as it automatically identi-
fies and extracts distinctive features for image recognition 
(Kulin et al. 2018; Zhang et al. 2018).

Numerous studies have demonstrated the successful 
use of CNN algorithms for plant disease recognition. For 
example, in the study by Fuentes et al. (2017), a CNN-
based approach was proposed for detecting diseases in 
tomato plants, achieving a high accuracy rate of 98.4%. 
In the study by Ferentinos (2018), analysis of simple leaf 
images of healthy and diseased plants for the detection and 
diagnosis of plant diseases was performed using CNN mod-
els. The models were trained with a database containing 
87,848 images and achieved the best performance with a 
success rate of 99.53%. This high success rate indicates that 
the model can be used as a useful advisory tool or an early 
warning system and has the potential to be extended into 
an integrated plant disease recognition system under real 
cultivation conditions.

Material and methods

Datasets

The importance of the dataset in achieving the success of 
deep learning architectures is undeniable. Compared to clas-
sical machine learning approaches, the large-scale dataset 
and automatic feature extraction in deep learning architec-
tures represent significant differences. This is because deep 
learning architectures inherently have a hunger for data-
driven features (Pacal 2024a).

PlantVillage dataset

In this study, the largest publicly available dataset containing 
numerous plant diseases, namely the PlantVillage dataset, 
was used to effectively detect diseases in grape leaves. The 
PlantVillage dataset includes 54,303 leaf images categorized 
into 38 species and disease groups, including both healthy 
and unhealthy samples (Hughes and Salathé, 2015). In our 

research, we focused on the grape-related categories in this 
dataset to examine the diagnosis of diseases in grape leaves. 
The PlantVillage dataset has four categories related to grape 
leaf diseases. In this study, we analyzed these four catego-
ries, which contain 4062 leaf images.

Figure 1 provides the features of healthy and diseased leaf 
images in the PlantVillage dataset for each class. Table 1 
provides a detailed overview of the characteristics of each 
grape leaf disease category in the PlantVillage dataset.

As seen in Table 1, the features of the four different grape 
leaf classes in the PlantVillage dataset used in the study 
and the data partitioning method are described. The leaf 
images, each in a separate folder, are located in a single 
folder without a distinction between validation and test data. 
To measure the generalization ability of the models and 
make the study more objective, the data is divided into 70% 
training, 15% validation, and 15% test for each class. While 
most studies in the literature only use training and validation 
data, this study creates a more ideal dataset for deep learning 
architectures by using all three subsets of data.

Grapevine dataset

In this study, a publicly available dataset called the Grape-
vine dataset is used to more effectively detect the type of 
grapes from grape leaves. The Grapevine dataset consists of 
500 leaf images, with 100 images for each of the five grape 
types in separate groups (Koklu et al. 2022). In our research, 
we used this dataset to examine the use of grape leaves for 
type diagnosis. Figure 2 provides randomly selected samples 
from Grapevine dataset.

The grape types in the Grapevine dataset are 'ak', 'ala 
idris', 'buzgulu', 'dimnit', and 'nazlı'. In this study, we ana-
lyzed these five categories. Table 2 provides detailed infor-
mation on the features of each grape class in the Grapevine 
dataset.

Deep learning architectures

Machine learning methods have achieved great accomplish-
ments for the progress and modernization of society. They 
are widely used in various applications ranging from finding 
search queries on the web to filtering social media content 
and recommendations on e-commerce websites. Moreover, 
with advancing technology, they have become an active part 
of our daily lives through smart devices. Machine learn-
ing also includes applications such as recognizing objects 
in an image, converting spoken words into written text, and 
matching specific news or social media posts to users' inter-
ests (LeCun et al. 2015).

These applications utilize deep learning techniques, 
which are a branch of machine learning methods used in 
"deep" network architectures. Deep learning enables the 
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learning of data using computational models and algorithms 
consisting of one or more layers. It can detect complex struc-
tures in large datasets using the backpropagation algorithm. 
These methods have propelled technologies developed in 
different fields, such as speech recognition, image recogni-
tion, and object detection, to the highest levels. Deep convo-
lutional networks play a significant role in tasks like image, 
video, speech, and audio processing, while recurrent net-
works enable the discovery of sequential data like text and 
speech (LeCun et al. 2015).

Although the concept of deep learning emerged in 2006 
(Hinton 2006), it gained widespread popularity, particularly 
through the ImageNet competition. The ImageNet compe-
tition provided a platform for showcasing algorithms for 
image recognition, where deep learning architectures stood 
out. Deep learning architectures have achieved remarkable 
results in the field of object recognition. Additionally, they 
are used in pattern recognition, detection, classification, 

future prediction, drug production, dictionary creation, sig-
nal processing, and medical and financial domains, as well 
as in defense industries. Studies have shown that deep learn-
ing structures yield significantly better results compared to 
other known methods (Pacal 2024b).

Convolutional neural networks

In the field of deep learning, the convolutional neural net-
work (CNN) is a key model that is utilized in many applica-
tions. Especially used in image processing and recognition 
domains, CNN has a specialized structure and operates by 
employing convolutional, pooling, and fully connected lay-
ers on input data. The convolutional layers utilize filters to 
identify and extract features from the data as output. The 
pooling layers reduce the output size while scaling the fea-
tures, and the fully connected layers are used for classifica-
tion or prediction tasks.

Fig. 1   Randomly selected samples according to classes from the PlantVillage dataset

Table 1   Grape diseases and 
their counts

Class names Total (100%) Train (70%) Validation 
(15%)

Test (15%)

Black rot 1180 826 177 177
Esca (black measles) 1383 967 208 208
Healthy 423 295 64 64
Leaf blight (Isariopsis leaf spot) 1076 752 162 162



1066	 Journal of Plant Diseases and Protection (2024) 131:1061–1080

Convolutional layer consists of a collection of trainable 
filters designed for conducting feature extraction. Assum-
ing X represents the input data with k filters present in 
the convolutional layers, the output of the convolutional 
layer can be calculated in the following manner (Eq. 1). 
wj and bj represent the weight and bias, respectively, and f 
denotes an activation function. The symbol * signifies the 
convolution operation.

Pooling layer is used to reduce the dimensions of the 
obtained feature data and network parameters. Currently, 
the most used methods for this purpose are max pooling 
and average pooling (Eq. 2). Assuming S is a p × p window 
size, the average pooling operation can be defined as fol-
lows, where xij represents the activation value at (i, j), and 
N is the total number of elements in S.

Fully connected layer: Following the last pooling layer, 
the fully connected layer is employed to transform the fea-
ture maps into a 1-D feature vector. This transformation 
can be represented as Y and z, denoting the output vec-
tor and input features (Eq. 3). In contrast, w and b rep-
resent the weight and bias of the fully connected layer, 
respectively.

(1)yj =
∑

i

f
(

xi ∗ wj + bj
)

, j = 1, 2,… , k

(2)z =
1

N
+

∞
∑

(i,j)∈S

xij, i, j = 1, 2,… , p

Fig. 2   Randomly selected samples from the grapevine dataset based on classes

Table 2   Grapevine grape classes and their counts

Class names Total (100%) Train (70%) Valida-
tion 
(15%)

Test (15%)

Ak 100 70 15 15
Ala Idris 100 70 15 15
Buzgulu 100 70 15 15
Dimnit 100 70 15 15
Nazli 100 70 15 15
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The training of CNN is performed by minimizing the 
error function through the optimization of parameters, 
resulting in improved performance. Consequently, CNN is 
a powerful artificial neural network model used to achieve 
high accuracy rates in image processing and recognition 
domains. The typical algorithm for CNN is presented in 
Algorithm 1.

Algorithm 1   Typical CNN algorithm

CNN consists of a convolutional layer that defines fea-
tures using filters on input data, an activation function that 
non-linearly transforms the convolutional outputs, a pooling 
layer that reduces the outputs while preserving features, and 
fully connected layers. Following the convolution, activa-
tion, and pooling layers, fully connected layers are used for 
classification or prediction (Fig. 3). The training of CNN is 
carried out by minimizing the error function between the 
predicted values and the actual values.

Vision transformer

A vision transformer is a deep learning model specifi-
cally designed for computer vision tasks, leveraging self-
attention mechanisms to capture long-range dependen-
cies in image data. Unlike traditional CNNs, the vision 
transformer processes input images through a transformer 
architecture, demonstrating its effectiveness in image rec-
ognition and object detection. The transformer architecture 
was created for natural language processing (NLP) tasks, 
and ViT is based on it (Pacal and Kılıcarslan 2023). The 
key component of ViT is the self-attention mechanism, 
which models the interaction between different parts of the 
input image and focuses on important features. The input 
image is divided into patches of a certain size, and these 

(3)� =
∑

i

f (wz + b) patches interact with each other through attention heads 
and fully connected layers within transformer blocks. As 
a result, the output layer produces results for classification 
or another task (Fig. 4).

One of the main advantages of vision transformer is its 
ability to handle images of different sizes and effectively 
process data. However, it can be computationally expen-
sive and demand a lot of memory and processing power.

Algorithm 2   Vision transformer algorithm

In the ViT architecture, the input image is divided into 
fixed-size patches, and each patch transforms a continuous 
vector using a process called linear embedding. Addition-
ally, positional embeddings are introduced to the patch rep-
resentations to preserve positional information. Following 
this, a series of consecutive patches (Eq. 4) are input into 
the transformer encoder. The encoder comprises alternating 
layers of multi-head self-attention (MSA) (Vaswani et al. 
2017) (Eq. 5) and multi-layer perceptron (MLP) (Eq. 6). 
Layer normalization (LN) (Ba et al. 2016) is applied before 
both MSA and MLP to reduce training time and stabilize the 
training process. Residual connections are incorporated after 
each layer to enhance overall performance.

Here, E refers to the operation of projecting patches, and 
Epos represents the positional embedding.

Here, z′
l
 refers to the output of the MSA layer, applied fol-

lowing LN to the output of the ( l − 1 ) -th layer, denoted as 

(4)z0 =
[

Ex1
p
;Ex2

p
;...;ExN

p

]

+ Epos

(5)z�
l
= MSA

(

LN
(

zl−1
))

+ zl−1(l = 1,… , L)
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zl−1 (i.e.,z0 ), and includes a residual connection. The symbol 
L represents the overall number of layers in the transformer.

Here, zl refers the output of the MLP layer, applied fol-
lowing LN to the z′

l
 obtained from the ( l − 1)-th layer, and it 

includes a residual connection. The symbol L represents the 
overall number of layers in the transformer.

There are differences in image dimension processing, 
computational complexity, transfer learning, and perfor-
mance compared to CNN architectures. By pretraining 
with large-scale datasets and using transfer learning, vision 
transformers can achieve successful results in various com-
puter vision tasks. Additionally, it allows for the processing 
of large-sized images and can be more efficient in terms 

(6)zl = MLP
(

LN
(

z�
l

))

+ z�
l
(l = 1,… , L)

of computational cost due to the absence of convolution 
operations. The typical algorithm for ViT is presented in 
Algorithm 2. Furthermore, there are different architectures 
such as patch-based, hybrid, token-based, scale-specific, 
and mobile vision transformers, each offering different 
approaches to improve performance and efficiency.

Deep learning models

In this study, the integration of a diverse set of cutting-edge 
models, encompassing 14 convolutional neural network 
(CNN) architectures and 17 vision transformer (ViT) mod-
els, serves a strategic purpose to advance the accuracy of 
grape leaf classification and disease diagnosis. The selection 
process involved prominent CNN models such as ResNet, 

Fig. 3   Operating principle of CNN

Fig. 4   Operating principle of 
vision transformer (ViT)
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DenseNet, and EfficientNet, which are widely recognized 
for their effectiveness in image-related tasks and continue 
to be popular choices. Additionally, we incorporated vision 
transformer models such as DeiT, MaxViT, and MobileViT, 
which have gained popularity in recent years for their suc-
cess in sequential tasks.

The rationale behind utilizing this array of models lies 
in their distinct architectural features and proven efficacy in 
various image-related tasks. CNNs, with their adeptness at 
capturing spatial hierarchies, are well-suited for tasks like 
leaf classification. On the other hand, vision transformers 
offer a novel perspective with their success in sequential 
tasks, presenting a valuable alternative for image analysis. 
By employing a variety of CNN and ViT models, we aim to 
explore and leverage the strengths of different architectures, 
fostering a comprehensive evaluation of their performance in 
the specific context of grape leaf classification and disease 
diagnosis.

This diverse selection is essential for understanding the 
nuanced capabilities of each model and collectively enhanc-
ing the robustness and generalization capacities of our 
approach. Through this methodology, we strive to contribute 
to the advancement of accuracy in grape-related tasks using 
deep learning techniques.

MobileVit is a version of vision transformer developed 
by Mehta and Rastegari (2021) called mobile vision trans-
former. It is designed to be run on mobile devices and ena-
bles more efficient computation. It achieves this by reducing 
the number of parameters and using more efficient convolu-
tion layers and other techniques.

DeiT, also known as data-efficient image transformer, is 
another type of vision transformer. It is specifically designed 
for image processing tasks and has the ability to achieve 
good performance with less training data compared to other 
vision transformer architectures. DeiT further enhances the 
model's performance and efficiency using techniques such 
as augmentation, interpolation, and distillation (Touvron 
et al. 2021).

Multi-axes vision transformer (MaxViT) is a type of 
vision transformer developed by Tu et al. (2022). It is 
designed to improve performance in image recognition 
tasks. It aims to capture multi-level representations of 
the image by using multiple axes. Each axis is trained to 
attend to different levels of image features. Additionally, 
it is designed to be more efficient in terms of computation 
compared to other vision transformer architectures.

Multiscale vision transformers (MViT) are transformer 
structures introduced by Fan et al. (2021) for modeling 
visual data such as images and videos. Compared to tradi-
tional transformers, MViT uses channel resolution scaling 
stages to build a feature pyramid at multiple scales. These 
stages reduce the spatial resolution of the image while 
hierarchically expanding the channel capacity. As a result, 

MViT can capture both low-level visual data and complex 
high-dimensional features using transformer principles, 
providing a useful feature for visual data modeling.

VGG is a CNN architecture developed by the Visual 
Geometry Group at the University of Oxford. This archi-
tecture has a series of convolutional and maximum pooling 
layers followed by three fully connected classification lay-
ers. The VGG network, designed by Simonyan and Zisser-
man, is developed for image detection and classification 
tasks. VGG's exceptional performance has been demon-
strated in many image classification datasets, including 
ImageNet, and has been widely used as a basis for other 
CNN models.

ResNet is a CNN architecture that uses residual connec-
tions, known as skip connections, to overcome the vanish-
ing gradient problem in deep networks. These connections 
allow the network to learn residual functions and facilitate 
the propagation of gradients throughout the network. ResNet 
has become a popular architecture in the field of computer 
vision, demonstrating exceptional performance in ImageNet 
and various other image classification tasks.

A CNN design called DenseNet was developed to over-
come the vanishing gradient issue in deep neural networks. 
It creates close connections between layers, allowing each 
layer to broadcast its own feature maps to all following lay-
ers as well as receive feature maps from all preceding ones. 
This dense connectivity structure enables consistent feature 
propagation throughout the network and efficient parameter 
sharing. DenseNet has exhibited outstanding performance 
in various image classification benchmarks and has been 
widely used in various computer vision applications.

Xception (Chollet 2017) is a CNN design that is an exten-
sion of the Inception architecture. In Xception, instead of 
traditional convolutional layers, a depthwise separable con-
volution is used, which splits the convolution stage into a 
depthwise convolution and a pointwise convolution. This 
strategy significantly reduces the number of parameters and 
computations required by the network while increasing accu-
racy. Xception has achieved impressive results in various 
image classification benchmarks and has been widely used 
in computer vision applications.

Proposed approach

The basic components of the grape leaf disease detection 
and classification study are shown in Fig. 5. The first stage of 
this study is the Dataset unit, where two separate datasets are 
used. The data processing stage is concerned with resizing, 
splitting, and applying basic data augmentation techniques 
to the images in the dataset.

In the studies conducted in the literature using deep 
learning models, it is observed that they are trained in the 
train and validation steps. However, in this study, unlike 
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the studies in the literature, the data was divided into train 
(15%), test (15%), and validation (70%). The train set is the 
dataset used for model training and optimizing its param-
eters. The validation set, on the other hand, is used for 
adjusting the hyperparameters and evaluating the overall 
performance of the model (Chauhan et al. 2021). However, 
evaluating the model based only on the train and validation 
sets may have limitations in predicting how the model will 
generalize to real-world data.

Therefore, it is important to use a test set. The test set is 
an independent dataset that has not been used during the 
training process and is used to obtain results closest to real-
world data. By using a test set, it prevents the model from 
producing incorrect results due to its familiarity with the 
train set. The performance of the model is evaluated on the 
test set, and its success in real-world scenarios is observed. 
This allows for a more reliable evaluation of the overall per-
formance and generalization ability of the model.

By using the train, test, and validation sets, the training 
process of the model can be optimized, overfitting can be 
controlled, and the real-world performance can be predicted 
more reliably. This differentiation is important in achiev-
ing reliable results and understanding how the model will 
respond to real-world data. The train, test, and validation 
splits of the PlantVillage dataset are presented in Table 1, 
and the Grapevine dataset splits are shown in Table 2.

In order to balance the class distributions, basic data aug-
mentation techniques such as flip, rotate, copy-paste, scale 
and zoom are applied to the dataset during training. These 
data augmentation techniques are particularly effective in 
small-scale datasets with low diversity, while their impact 
is less pronounced in large-scale datasets.

In the training unit, CNN and ViT models are used for 
transfer learning and classification. Transfer learning refers 

to the process of using the weights of a model trained in one 
domain for a different domain. In this study, the weights of 
CNN and ViT models trained on the ImageNet dataset are 
used for disease detection in the PlantVillage dataset, and 
trained on the Grapevine dataset are used for class detec-
tion in the Grapevine dataset. Transfer learning is especially 
beneficial in small-scale datasets, and in this study, it has 
been observed that transfer learning leads to faster conver-
gence and improved performance compared to training from 
scratch.

Following transfer learning, 14 CNN models and 17 ViT 
models undergo validation and testing processes for the clas-
sification task. The models are evaluated on the Test Data to 
derive their performance metrics. Subsequently, the model 
outputs and performance metrics are analyzed to execute the 
classification process.

Data processing

Deep learning requires data preprocessing to improve model 
performance by solving issues such as missing value han-
dling and variable transformation for numerical-focused 
algorithms. Before feeding the data into the deep learning 
model, we normalized the pixel values of the images to a 
standardized range. Normalization ensures that the model 
converges more quickly during training and is less sensitive 
to variations in input data (Thukral et al. 2023). For consist-
ency in input dimensions, a critical step involved resizing 
all images to a predefined resolution. While the majority 
adhered to the standard 224 × 224 resolution, it's notewor-
thy that specific models, such as SwinV2 (Liu et al. 2022) 
and Inception-based, utilized a resolution of 256 × 256 and 
299 × 299, respectively. This step is crucial for ensuring that 

Fig. 5   General approach for classification
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the model can handle images of uniform size, facilitating the 
learning process.

For reproducibility, unlike existing studies in the litera-
ture, we divided both public datasets randomly into three 
distinct sets: train, validation, and test (70–15-15). This 
unique approach ensures that each deep learning model 
is solely evaluated on the test data, representing unseen 
information, to reveal their true generalization capabilities. 
Tables 1 and 2 display the image counts for each class in 
every dataset, indicating the number of images in the train-
validation-test sets.

Data augmentation

Data augmentation adds variation and variability to the 
training dataset, which is essential for improving the per-
formance of machine learning models. It increases model 
robustness, decreases overfitting, and enhances generaliza-
tion capabilities through transformations like rotation and 
scaling, which increases training efficiency.

Flip augmentation involves horizontally or vertically flip-
ping the image to create new data samples. This helps the 
model learn how objects appear from different perspectives 
and aids in generalization. Rotate augmentation aims to gen-
erate various perspectives by rotating the image at a specific 
degree. This is particularly useful for models that need to 
understand the rotated appearance of objects. Copy-paste 
augmentation creates new examples by copying specific 
regions from one image and pasting them onto others. This 
method is valuable for understanding how objects change 
within different contexts. Scale augmentation generates new 
examples by resizing the image, either enlarging or reducing 
it. This is employed to learn how objects appear in different 
sizes and help the model generalize this diversity. Zoom 
augmentation creates new examples by zooming in or out of 
the image. This technique assists the model in understanding 
how objects appear up close or from a distance.

These techniques were carefully chosen based on empiri-
cal observations during the experimentation phase, aiming to 
strike a balance between introducing diversity and preserving 
the meaningful characteristics of the images (Karaman et al. 
2023). By providing these specific details, we aim to offer 
transparency in our methodology, enabling readers to better 
understand and replicate the study if needed.

Results and discussions

Experimental design

This study was conducted on a Linux computer running 
Ubuntu 22.04, equipped with an Intel Core i5 13600  K 

processor, 32 GB DDR5 RAM, and an NVIDIA RTX 3090 
graphics card. The experiments, performed using PyTorch 
with NVIDIA CUDA support, maintained a consistent envi-
ronment for training and testing all architectures, each trained 
with the same parameters.

Performance metrics

Performance metrics play an important role in evaluating the 
effectiveness of deep learning models and making informed 
decisions. These metrics are crucial for assessing model per-
formance, guiding the optimization process, reporting results, 
detecting biases and errors, making comparisons, and iden-
tifying overfitting. In this study, we specifically focused on 
criteria that are effective in grape disease identification and 
used commonly employed metrics in the literature.

Accuracy, precision, recall, and F1 score are widely used 
metrics in deep learning. Accuracy is defined as the ratio of 
correct predictions to total predictions and generally indicates 
the overall performance of the model. Precision measures the 
ratio of true positive predictions to all positive predictions and 
estimates the proportion of successful predictions made by the 
model. Recall measures the ratio of true positive predictions to 
all positive examples and shows how well the model identifies 
true positive examples. F1 score balances recall and precision 
and is defined as the harmonic mean of recall and precision. 
It is used to balance precision and recall. Each metric has a 
mathematical formula given by the following equations:

Training procedure

During training, deep learning models' accuracy and speed 
can be improved by using a variety of parameters and meth-
odologies. The two most efficient methods are data augmen-
tation and transfer learning. The performance of the model 
can also be influenced by other factors, including the input 
picture size, batch size, number of epochs, optimization 
method, learning rate, weight regularization, decay rate, and 
augmentation repetition. Each model was trained once with 
default hyperparameters, and after being saved based on the 

(7)Accuracy =
Number of correct predictions

Number of total predictions

(8)Precision =
True Positive

True Positive + False Positive

(9)Recall = Sensitivity =
True Positive

True Positive + False Negative

(10)F1 =
2*Precision*Recall

Precision + Recall
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best performance on the validation set, the generalization 
capabilities of the models were assessed using the test data.

To assure consistency and improve performance, all 
models in this study included core data augmentation tech-
niques such as scaling, smoothing, shuffling, color irregu-
larity, and flipping. The weights from the ImageNet dataset 
were used to hasten convergence and boost accuracy through 
the use of transfer learning. Most models used training and 
validation data with a 224 × 224 default input resolution. 
All models were run using the following default param-
eters: lr = 0.000001, lr_base = 0.1, momentum = 0.9, opti-
mizer = SGD, weight_decay = 2.0e-05, warmup epoch = 5, 
warmup lr = 1.0e-05.

Results

In this section, we present the results obtained from both 
CNN and vision transformer models on two distinct data-
sets: PlantVillage and Grapevine. These datasets encompass 
a wide range of grape leaf diseases and varieties, providing 
a comprehensive evaluation of the models' performance in 
different agricultural contexts.

Data processing has traditionally involved choosing 
between training-test, training-validation, or cross-validation 
methods, which may not fully demonstrate the models' per-
formance on unseen data. In contrast to the literature, this 
study implemented a training-test-validation split, randomly 
segregating the datasets into training-validation and test sets. 
Consequently, each model was exclusively evaluated using 
the unseen test set, measuring the models' generalization 
capabilities. Each model underwent training once, and the 
best model was selected based on the validation data. Subse-
quently, this model was exclusively assessed on the test data, 
representing its performance on unseen data.

The CNN models were trained and fine-tuned on the 
PlantVillage dataset, which consists of various grape dis-
eases, including Black Rot, Leaf Blight, Healthy, and Esca 
leaves. The evaluation of these models on the PlantVillage 
dataset demonstrated their ability to accurately distinguish 
between different grape diseases, achieving high levels of 
accuracy, precision, recall, and F1-score. The results show-
cased the effectiveness of CNN models in detecting and clas-
sifying grape leaf diseases, providing valuable insights for 
disease management and prevention in vineyards.

In addition to CNN models, we also evaluated vision 
transformer models on the Grapevine dataset. This dataset 
includes a diverse range of grape leaf varieties, such as Ak, 
Alaidris, Buzgulu, Dimnit, and Nazli. The vision trans-
former models, leveraging self-attention mechanisms and 
advanced neural network architectures, exhibited remark-
able performance in accurately recognizing and classifying 
the grape leaf varieties. The results revealed high accuracy, 

precision, recall, and F1-score for the vision transformer 
models, indicating their potential for reliable grape leaf rec-
ognition and characterization.

Results for the PlantVillage dataset

In this section, we conducted a thorough comparison 
between the widely used convolutional neural network 
(CNN) architecture and the emerging vision transformer 
(ViT)-based models. The objective was to assess their per-
formance and effectiveness in plant disease recognition and 
classification using the PlantVillage dataset. The comparison 
results are presented in Table 3 for the CNN models and 
Table 4 for the ViT models.

The CNN models evaluated on the PlantVillage data-
set demonstrated impressive accuracy in accurately iden-
tifying and classifying grape leaf diseases. Models such 
as VGG-13, VGG-16, VGG-19, ResNet-18, ResNet-34, 
ResNet-50, Xception, Inception-v4, EfficientNetV2-S/M/L, 
and DenseNet models achieved high accuracy scores, with 
results ranging from 97 to 100%. For example, VGG-13, 
VGG-16, and VGG-19 achieved remarkable accuracy 
scores of 99.67%, 100%, and 100% respectively. Similarly, 
the ResNet models, including ResNet-18, ResNet-34, and 
ResNet-50, demonstrated high accuracy scores of 99.02%, 
99.18%, and 99.51% respectively. The Xception model 
achieved outstanding accuracy of 99.84%, while Inception-
v4 achieved an accuracy score of 99.76%.

Furthermore, the EfficientNetV2 models, ranging 
from EfficientNetV2-S to EfficientNetV2-L, consistently 
achieved high accuracy scores ranging from 99.51% to 
100%. DenseNet models, including DenseNet121 and 
DenseNet169, also demonstrated excellent accuracy scores 
of 100% and 99.84% respectively. These accuracy scores 

Table 3   Results for CNN models on PlantVillage dataset

Model Accuracy Precision Recall F1-score

VGG-13 0.9967 0.9974 0.9974 0.9974
VGG-16 1 1 1 1
VGG-19 1 1 1 1
Resnet-18 0.9902 0.9922 0.9922 0.9922
Resnet-34 0.9918 0.9936 0.9934 0.9935
Resnet-50 0.9951 0.9960 0.9962 0.9961
Resnet-101 0.9951 0.9960 0.9962 0.9960
Xception 0.9984 0.9986 0.9988 0.9987
Inception-V4 0.9976 0.9971 0.9976 0.9973
Efficentnetv2-S 0.9951 0.9962 0.9960 0.9961
Efficentnetv2-M 0.9967 0.9950 0.9972 0.9960
Efficentnetv2-L 1 1 1 1
Densenet121 1 1 1 1
Densenet169 0.9984 0.9986 0.9988 0.9987
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emphasize the capability of the CNN models to accurately 
classify grape leaf diseases. The high accuracy achieved by 
these models indicates their potential for automated systems 
in grape leaf disease detection and classification, provid-
ing valuable insights for efficient disease management in 
agriculture.

The results for vision transformer models on the Plant-
Village dataset, as shown in Table 4, reveal their impressive 
performance in plant disease detection and classification. 
Several models achieved exceptional accuracy, with some 
reaching up to 100%. For instance, Swinv2-base-win8, 
DeiT3-base, MaxViT-small, and MaxViT-large attained per-
fect scores across all metrics, including accuracy, precision, 
recall, and F1-score. These results demonstrate the robust 
capabilities of vision transformers in accurately identifying 
and classifying plant diseases. Furthermore, other vision 
transformer models, such as Swinv2-small-win8, Mobi-
levit-s, Vit-base-patch16, and Vit-large-patch16, achieved 
high accuracy scores ranging from 99.18 to 99.84%. These 
models demonstrated strong performance across all metrics, 
including precision, recall, and F1-score. The consistently 
high accuracy achieved by vision transformers highlights 
their effectiveness in handling complex visual patterns and 
capturing important dependencies within the plant images.

The comparative analysis of the vision transformer mod-
els on the PlantVillage dataset suggests that these models 
are highly suitable for plant disease recognition tasks. In 
Fig. 6, the accuracy results of the models for the PlantVil-
lage dataset are presented in the form of a dot graph. They 
outperformed traditional manual approaches and achieved 
remarkable accuracy, surpassing the 97% threshold in most 

cases. The self-attention mechanisms employed by vision 
transformers allow them to capture important visual features, 
enabling accurate identification and classification of plant 
diseases. These findings have significant implications for 
the agricultural industry, as vision transformer models can 
aid in early disease detection, prompt intervention, and effi-
cient disease management. By leveraging the power of deep 
learning and advanced image processing techniques, farmers 
and agricultural professionals can enhance crop productiv-
ity and minimize losses. Further research is warranted to 
explore the generalizability of vision transformers across 
different datasets and plant species, paving the way for their 
widespread adoption in precision agriculture and sustainable 
crop management practices. The confusion matrices of some 
models that achieved the highest accuracy and the model 
that achieved the lowest accuracy are provided in Fig. 7. 
The ones with high accuracy are indicated at the top in blue 
color, while the ones with low accuracy are indicated at the 
bottom in red color.

When we examine the VGG16 model, we can see that it 
achieved 177 correct classifications in the black_rot class. 
In the esca class, it achieved 208 correct classifications, and 
in the healthy class, it achieved 64 correct classifications. 
Additionally, it obtained 162 correct classifications in the 
leaf_blight class. These results demonstrate the ability of the 
VGG16 model to accurately identify plant diseases. Upon 
evaluating the ResNet18 model, we observe that it achieved 
174 correct classifications in the black_rot class, 205 correct 
classifications in the esca class, and 64 correct classifications 
in the healthy class. It also obtained 162 correct classifica-
tions in the leaf_blight class. These results indicate that the 
ResNet18 model is capable of accurately classifying plant 
diseases.

In the case of the MaxViT-Small-TF-224 model, we 
can see that it achieved 177 correct classifications in the 
black_rot class, 208 correct classifications in the esca class, 
and 64 correct classifications in the healthy class. It also 
obtained 162 correct classifications in the leaf_blight class. 
These results demonstrate the effectiveness of the MaxViT-
Small-TF-224 model in accurately classifying plant diseases. 
Lastly, for the ViT-Tiny-Patch16-224 model, it achieved 173 
correct classifications in the black_rot class, 207 correct 
classifications in the esca class, and 64 correct classifications 
in the healthy class. It also obtained 162 correct classifica-
tions in the leaf_blight class. These results indicate that the 
ViT-Tiny-Patch16-224 model is also effective in accurately 
classifying plant diseases.

All of these models have achieved high accuracy rates 
on the PlantVillage dataset and have shown that they can 
classify plant diseases with accuracy. In conclusion, both 
CNN and ViT-based models demonstrate high performance 
on the PlantVillage dataset and prove to be effective tools in 
the field of deep learning.

Table 4   Results for vision transformer models on PlantVillage dataset

Model Accuracy Precision Recall F1-Score

Swinv2-Tiny-Win8 0.9935 0.9946 0.9946 0.9946
Swinv2-Small-Win8 0.9984 0.9986 0.9988 0.9987
Swinv2-Base-Win8 1 1 1 1
Mobilevit-Xxs 0.9935 0.9941 0.9948 0.9944
Mobilevit-Xs 0.9935 0.9945 0.9952 0.9948
Mobilevit-S 0.9967 0.9972 0.9976 0.9974
Vit-Tiny-Patch16 0.9918 0.9931 0.9931 0.9931
Vit-Small-Patch32 0.9918 0.9929 0.9938 0.9933
Vit-Base-Patch16 0.9967 0.9974 0.9974 0.9974
Vit-Large-Patch16 0.9984 0.9986 0.9988 0.9987
Deit3-Small 0.9935 0.9946 0.9946 0.9946
Deit3-Medium 0.9984 0.9986 0.9988 0.9987
Deit3-Base 1 1 1 1
Maxvit-Tiny 0.9967 0.9972 0.9976 0.9974
Maxvit-Small 1 1 1 1
Maxvit-Base 0.9984 0.9986 0.9988 0.9987
Maxvit-Large 1 1 1 1
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Results for the grapevine dataset

In this section, we conducted a comprehensive comparison 
between the popular convolutional neural network (CNN) 
architecture, which is regularly used in deep learning mod-
els, and the emerging vision transformer (ViT)-based mod-
els. The objective was to evaluate their performance in the 
context of the Grapevine dataset, specifically focusing on 
the detection and classification of grape leaves. To conduct 
the comparison, we trained and tested a range of CNN mod-
els and ViT models, utilizing the Grapevine dataset. This 
dataset encompasses five classes for leaf recognition: Ak, 
Alaidris, Buzgulu, Dimnit, and Nazli. The models were fine-
tuned and evaluated on this dataset to assess their accuracy 
and effectiveness in identifying and classifying the different 
grape leaf varieties. The detailed results of this comparison 
can be seen in Table 5 for the CNN models and Table 6 for 
the ViT models. These tables provide a comprehensive over-
view of the performance metrics achieved by each model, 
including accuracy, precision, recall, and F1 score. Addition-
ally, they showcase the specific grape leaf varieties and their 
corresponding classification results for each model.

Among the models evaluated, VGG-13, VGG-16, and 
VGG-19 exhibited competitive performance with accuracy 
ranging from 96 to 97.33%. The ResNet models showed 
varying results, with ResNet-101 outperforming others 
with an accuracy of 98.67%. Xception and Inception-v4 also 
demonstrated outstanding performance, achieving accuracy 
scores of 98.67% and 100% respectively. EfficientNetV2 and 

DenseNet models consistently achieved high accuracy, rang-
ing from 96.67 to 98.67%.

These findings suggest that the choice of deep learning 
architecture significantly impacts the performance of grape 
leaf recognition models. Models with complex architectures 
and the ability to capture intricate features, such as VGG, 
Xception, Inception-v4, EfficientNetV2, and DenseNet mod-
els, exhibited superior performance. However, ResNet-101 
also demonstrated exceptional accuracy, showcasing the 
potential of deeper ResNet architectures.

Among the evaluated models, several ViT models 
achieved impressive results. Swinv2-tiny-win8, Swinv2-
small-win8, MobileViT-xxs, MobileViT-xs, MobileViT-
s, ViT-tiny-patch16, ViT-base-patch16, DeiT3-small, and 
DeiT3-medium achieved high accuracy scores, ranging from 
96.67 to 100%. These models consistently demonstrated 
strong capabilities in accurately identifying and classifying 
grape leaf varieties.

ViT-small-patch32 and DeiT3-base models achieved 
slightly lower accuracy scores of 97.33%. However, they still 
exhibited competitive precision, recall, and F1-score met-
rics, highlighting their effectiveness in grape leaf recognition 
tasks. On the other hand, ViT-large-patch16, MaxViT-tiny, 
MaxViT-small, and MaxViT-base models showed relatively 
lower accuracy, ranging from 94.67 to 96%. These models 
achieved moderate precision, recall, and F1-scores, indicat-
ing their potential for grape leaf recognition but with room 
for improvement.

Overall, these models demonstrated high accuracies and 
exhibited strong classification performance on the grapevine 

Fig. 6   Comparison between CNN/vision transformer models for PlantVillage dataset
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dataset. In Fig. 8, the accuracy results of the models for the 
Grapevine dataset are presented in the form of a dot graph. 
However, it's important to consider other factors such as 
computational efficiency and model complexity when select-
ing a model for specific applications.

The confusion matrices of some models that achieved 
the highest accuracy and the model that achieved the low-
est accuracy on Grapevine dataset are provided in Fig. 9. 
The ones with high accuracy are indicated at the top in blue 
color, while the ones with low accuracy are indicated at the 
bottom in red color.

Among the CNN-based models, only the Inception_v4 
model achieved 15 correct classifications for the Ak, Ala_
Idris, Buzgulu, Dimnit, and Nazli classes. In other words, 
all classes were correctly recognized. The Resnet50 model, 
which showed the worst performance among the CNN-based 
models, achieved 13 correct classifications for the Ak class, 
11 for the Ala_Idris class, 13 for the Buzgulu class, 15 for 

Fig. 7   Confusion matrixes for PlantVillage dataset

Table 5   Grapevine dataset CNN models results

Model Accuracy Precision Recall F1-Score

Vgg-13 0.9600 0.9631 0.9600 0.9604
Vgg-16 0.9733 0.9733 0.9733 0.9733
Vgg-19 0.9733 0.9765 0.9733 0.9737
Resnet-18 0.9467 0.9467 0.9467 0.9452
Resnet-34 0.8800 0.8836 0.8800 0.8815
Resnet-50 0.8533 0.8720 0.8533 0.8540
Resnet-101 0.9867 0.9875 0.9867 0.9867
Xception 0.9867 0.9875 0.9867 0.9867
Inception-V4 1 1 1 1
Efficentnetv2-S 0.9733 0.9750 0.9733 0.9733
Efficentnetv2-M 0.9733 0.9750 0.9733 0.9733
Efficentnetv2-L 0.9733 0.9750 0.9733 0.9733
Densenet121 0.9867 0.9875 0.9867 0.9867
Densenet169 0.9867 0.9875 0.9867 0.9867
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the Dimnit class, and 12 for the Nazli class. Some classes 
also had misclassifications.

Among the ViT-based models, only the SwinV2_base_
win8 model achieved 15 correct classifications for all 
classes. In other words, all classes were correctly recognized. 
The MaxViT_tiny model, which showed the worst perfor-
mance among the ViT-based models, achieved 15 correct 
classifications for the Ak class, 14 for the Ala_Idris class, 

14 for the Buzgulu class, 15 for the Dimnit class, and 13 for 
the Nazli class. Some classes also had misclassifications.

These results demonstrate that the ViT-based models 
generally performed well on the Grapevine dataset. The 
SwinV2_base_win8 model had the highest correct classi-
fication rates among the models we examined. It is worth 
noting that this model also yielded excellent results on 
the PlantVillage dataset. However, the other models also 
achieved successful results overall.

Comparison with SOTA methods

State-of-the-art (SOTA) approaches in the area were com-
pared to the performance of the proposed deep learning-
based strategy for grape leaf disease detection and classifi-
cation. The results showcased the potential of our approach 
in achieving competitive results and advancing the cur-
rent understanding of grape leaf recognition is depicted in 
Table 7.

Table 7 provides a comparison of the proposed approach 
with state-of-the-art (SOTA) methods in grape leaf recogni-
tion and classification. The comparison includes the authors, 
year of publication, method used, dataset employed, and the 
accuracy and F1-score achieved by each method.

Koklu et al. (2022) employed a combination of CNN 
and SVM techniques on the Grapevine dataset, achieving 
an accuracy and F1-score of 97.60%. This study represents 
one of the SOTA methods for grape leaf recognition on the 
Grapevine dataset. In contrast, the proposed approach in 
2023 utilized a combination of CNN and ViT models on the 

Table 6   Grapevine dataset ViT models results

Model Accuracy Precision Recall F1-Score

Swinv2-Tiny-Win8 0.9867 0.9875 0.9867 0.9867
Swinv2-Small-Win8 0.9867 0.9875 0.9867 0.9867
Swinv2-Base-Win8 1 1 1 1
Mobilevit-Xxs 0.9867 0.9875 0.9867 0.9867
Mobilevit-Xs 0.9867 0.9875 0.9867 0.9867
Mobilevit-S 0.9867 0.9875 0.9867 0.9867
Vit-Tiny-Patch16 0.9867 0.9875 0.9867 0.9867
Vit-Small-Patch32 0.9733 0.9765 0.9733 0.9737
Vit-Base-Patch16 0.9867 0.9875 0.9867 0.9867
Vit-Large-Patch16 0.9600 0.9640 0.9600 0.9599
Deit3-Small 0.9867 0.9875 0.9867 0.9867
Deit3-Medium 0.9867 0.9875 0.9867 0.9867
Deit3-Base 0.9733 0.9750 0.9733 0.9733
Maxvit-Tiny 0.9467 0.9489 0.9467 0.9466
Maxvit-Small 0.9600 0.9631 0.9600 0.9599
Maxvit-Base 0.9600 0.9607 0.9600 0.9595
Maxvit-Large 0.9600 0.9640 0.9600 0.9540

Fig. 8   Comparison between CNN/vision transformer models for grapevine dataset
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same Grapevine dataset, achieving a perfect accuracy and 
F1-score of 100%. This signifies a significant advancement 
in grape leaf recognition performance compared to previous 
methods.

Regarding the PlantVillage dataset, Rao et al. (2021) 
utilized CNN-based models and achieved an accuracy of 
99.03%. Adeel et al. (2019) employed SVM techniques 
and achieved an accuracy and F1-score of 97.80% and 
97.62%, respectively. Yeswanth et al. (2023) and Tang 
et al. (2020) both utilized CNN models and achieved accu-
racies of 99.37% and 99.01%, respectively. In comparison, 
the proposed approach in 2023, using CNN models on the 
PlantVillage dataset, achieved a perfect accuracy and F1-
score of 100%. This outperforms all the previous SOTA 
methods on this dataset, highlighting the superiority of 

the proposed approach in grape leaf recognition. Overall, 
the proposed approach utilizing a combination of CNN 
and ViT models demonstrates exceptional performance, 
achieving perfect accuracy and F1-score on both the 
Grapevine and PlantVillage datasets. This showcases the 
effectiveness and superiority of the proposed approach 
over the existing state-of-the-art methods in grape leaf 
recognition tasks.

Limitations and future directions

While our study has made significant strides in the applica-
tion of deep learning for grape leaf classification and dis-
ease diagnosis, acknowledging certain limitations is crucial. 

Fig. 9   Confusion matrixes for 
grapevine dataset

Table 7   Proposed approach 
over state-of-the-art methods

Author Year Method Dataset Accuracy (%) F1-score (%)

Koklu et al 2022 CNN and SVM Grapevine 97.60 97.60
Proposed approach 2023 CNN + ViT Grapevine 100 100
Rao et al 2021 CNN PlantVillage 99.03 N/A
Adeel et al 2020 SVM PlantVillage 97.80 97.62
Yeswanth et al 2023 CNN PlantVillage 99.37 N/A
Tang et al 2020 CNN PlantVillage 99.01 N/A
Proposed approach 2023 CNN + ViT PlantVillage 100 100
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Firstly, relying on digital images for disease detection may 
not fully capture the dynamic and evolving nature of plant 
diseases in real-world agricultural environments. Addition-
ally, although the PlantVillage dataset is comprehensive, it 
may not encompass the entire spectrum of potential varia-
tions in grape diseases. Moreover, the relatively small size 
of the Grapevine dataset could impact the measurement of 
generalizability. The potential limitation of generalizing our 
models to different environmental conditions and grape vari-
eties needs consideration. Furthermore, the study's focus on 
specific diseases and leaf types may limit its applicability to 
a broader range of plant-related issues.

To address these limitations and advance the field, future 
research should explore the integration of multimodal data, 
including larger datasets and additional sources such as dif-
ferent locations, environmental factors, and weather pat-
terns. This holistic approach has the potential to enhance the 
robustness and real-world applicability of disease detection 
models. Collaboration with plant pathology and agronomy 
experts can provide valuable insights for model improve-
ment and result validation. Future studies may broaden the 
scope beyond grapes by investigating the transferability of 
models to different crop types. The inclusion of real-time 
monitoring and advanced sensors could facilitate the devel-
opment of more sensitive and adaptable systems for early 
disease detection in the field.

Conclusion

This study illuminates the transformative impact of deep 
learning techniques on addressing the complex challenges 
posed by plant diseases in agricultural contexts. Traditional 
approaches, rooted in expert knowledge, are often limited 
by inherent biases and subjectivity. Leveraging the power 
of computing and image processing advancements, our 
research delves into grape leaf classification and disease 
diagnosis using a combination of 14 CNN and 17 vision 
transformer models. The notable success of models like 
Swinv2-Base, achieving perfect accuracy on both the Plant-
Village and Grapevine datasets, underscores the potential of 
deep learning in accurate disease detection and classifica-
tion. This breakthrough not only marks a significant stride in 
bolstering crop productivity through early disease detection 
but also introduces a promising avenue for characterizing 
various grape varieties.

Looking beyond the technical achievements, the practical 
applications of our study resonate deeply within the agri-
cultural sector. Our models offer a transformative potential 
for farmers and practitioners, facilitating informed deci-
sion-making, optimizing production efficiency, and forti-
fying sustainable agricultural practices. By harnessing the 

synergy of digital imagery and computational algorithms, 
our approach enables timely identification and intervention 
in plant diseases, mitigating production losses and fostering 
a more resilient and sustainable agricultural landscape. As 
we advance into an era where the convergence of technol-
ogy and agriculture becomes increasingly vital, this research 
stands as a testament to the potential of deep learning to 
revolutionize the way we approach plant health and agricul-
tural sustainability.
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