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Abstract
This present study aims to evaluate the insecticidal activity of a bioactive molecule, menthol, against a pest species, Rhy-
zopertha dominica (F. 1792) (Coleoptera: Bostrichidae). Effects were examined on mortality, enzymes of intermediary 
metabolism (ALP, GOT and GPT), nutritional reserves, digestive enzymes, and oxidative stress biomarker. Toxicological 
tests revealed the insecticide activity of this treatment with a dose–response relationship. In addition, ingestion  (LC50 at 
24 h: 0.69 µl/ml) is the most effective mode of application compared to fumigation  (LC50 at 24 h: 302 µl/L air). The obtained 
results revealed an increase in the percent repellency as a function of concentrations. Moreover, the biochemical study shows 
that the treatment decreases the protein content and the energy reserves. In addition, it disrupts the activity of enzymes of 
intermediary metabolism (ALP, GOT and GPT) in R. dominica adult. Finally, menthol also disrupts the digestive enzymes 
activity in treated adults compared to controls. Indeed, the treatment reduces the specific activity of α-amylase, protease, 
chitinase, and lipase.

Keywords Menthol · Rhyzopertha dominica · Toxicity · Repulsion · Energy reserves · Digestive enzymes · Enzymatic 
biomarkers

Introduction

Chemical pesticides and fumigants (methyl bromide, phos-
phine) are crucial tools for controlling stored grain insect 
pests. However, these compounds led to possible risks to 
none-target organisms and had contributed to pest resistance 
development to pesticides (Venkatesan et al. 2016). These 
issues have prompted scientists to search for new classes 
of safer pest control agents that would be inexpensive, 
biodegradable, non-toxic to humans, and environmentally 
friendly.

Some studies have shown insecticidal and physiological 
effects of essential oils of aromatic plants and their con-
stituents (Oftadeh et al. 2020; Dutra et al. 2020; Gong and 
Ren 2020). Insecticidal activity, antifeedant, repellency, and 

insect growth regulation are just a few of the many proper-
ties that pesticides of a botanical origin might have (Guettal 
et al. 2021a, b; Sayada et al. 2021a). Before using these 
substances to combat pests, it is crucial to have a thorough 
understanding of plant essential oils (EOs), or their active 
metabolites, and how they interact with the physiology of 
insect pests (Shahriari et al. 2019). The majority of the 
reports are based on the fumigant activity of essential oils 
rather than their constituents. Several studies have confirmed 
that these activities are due to their compounds (menthol, 
menthone, carvone, limonene, β-ocimene, and dihydrota-
getone), which act on the nervous system of the insect by 
disrupting the functions GABAergic (Tong and Coats 2012) 
and aminergic (Enan 2005) systems and by inhibiting ace-
tylcholinesterase (Abdelgaleil et al. 2009).

Plant essential oils are typically composed of complex 
mixtures of mono-and sesquiterpenoids, such as 1,8-cineole, 
eugenol, and menthol (El-Saadony et al. 2022). Menthol and 
its derivatives were reported to exhibit insecticidal (Samar-
asekera et al. 2008) and antifeedant activity (Rajkumar et al. 
2019) against flies, beetles, mosquitoes, and mites and affect 
also their behavior (Abed-Vieillard et al. 2014; Himmel 
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et al. 2019). The insect repellent activity of menthol and its 
derivatives against stored product pests has been reported 
(Aggarwal et al. 2001; Shimomura et al. 2020).

So, we have tested the toxicity, the repellent activity, and 
the biochemical effects of menthol with an emphasis on 
digestive enzymes such as α-amylase, lipase, and general 
protease of Rhyzopertha dominica (F. 1792) (Coleoptera: 
Bostrichidae).

Additionally, the effects of this bioactive molecule on the 
amounts of protein, carbohydrate, and lipid in the treated 
adult were also taken into consideration under laboratory 
conditions. Finally, enzymes of intermediary metabolism 
have been analyzed.

Materials and methods

Insects rearing

The mass rearing of R. dominica was carried out in the Lab-
oratory of Water and Environment in Larbi Tebessi Univer-
sity (Tebessa, North east Algeria). The insect rearing carried 
out in cubic containers with 1 kg wheat was maintained at 
temperature of 27 ± 1 °C and relative humidity of 65 ± 5%. 
All experiments used adult insects aged 7 to 14 days.

Menthol

( ±)- Menthol (> 98%) were purchased from Sigma-Aldrich.

Fumigant bioassay

After preliminary screening, menthol dissolved in acetone 
(3% w/v) was applied at different concentrations: 83.33, 
166.67, 333.33, and 666.67 μl/L air to disks of Whatman 
filter paper (2.5 cm in diameter), attached to the under-
side of plastic vial caps. This test is carried out in plastic 
vials (60 mL) ; in each of them 10 adults (both sexes) were 
released. Insects used as controls were maintained in the 
same conditions without treatment. Each concentration 
was replicated three times. The number of dead and alive 
insects was counted after 24, 48, and 72 h from the start of 
exposure.

After correction of observed mortality (Abbott 1925), 
lethal concentrations  (LC25,  LC50 and  LC90) with their 95% 
confidence interval (CI) were determined.

Contact toxicity

After preliminary screening, 0.5 ml aliquot of the appro-
priate dilutions of menthol (0.5; 1; 2 and 4 mg/ml in ace-
tone) was applied to 5 g of wheat grains in plastic bottles. 
The grains were shaken thoroughly to ensure uniform 

distribution product in grains. After complete evaporation 
of the solvent for 15 min, 10 adults of R. dominica without 
sexing are introduced into the bottle. The bioassay was car-
ried out in four repetitions for each concentration. A control 
series is conducted in parallel, and the wheat grains receive 
only acetone solvent (0.5 ml). Insects used as controls were 
maintained in the same conditions with acetone. The mor-
talities recorded at 6, 12 and 24 h after treatment were cor-
rected according to Abbott's (1925) correction formula in 
order to eliminate natural mortalities:

where Mt = mortality with treatment
Mc = mortality with control
A nonlinear regression was used to determine the lethal 

concentrations  (LC25,  LC50, and  LC90) and their fiducial lim-
its (95% FL).

Repellent activity

The Talukder and Howse (1994) method was used to exam-
ine menthol's repellency. Filter paper circles of 9 cm in 
diameter were cut into two halves. On one half of each of 
the filter-papers, 0.5 ml of each of the four menthol solutions 
(5, 10, and 20 l/ml) was uniformly applied. On the second 
halves that acted as the control, acetone was applied. The 
treated and untreated half-circles are dried until the total 
evaporation of the solvent; then, they were joined by adhe-
sive tape and placed in the Petri dish. In the center of the 
dish, ten adults were liberated. Each treatment was repli-
cated five times, and the percentages of insects present on 
treated (G) and control (P) areas were recorded after 15 min, 
30 min, 1 h, 2 h, and 3 h. The repulsion percentage (RP) was 
calculated using the following formula:

where Nc is the percentage of beetles present in the control 
half.

The average values were calculated and assigned as 
ranked by Mc Donald et al. (1970) by a repulsive differ-
ent class varying from 0 to V [Class 0 (RP < 0.1%), class I 
(RP = 0.1% −20.0%), class II (RP = 20.1–40.0%), class III 
(RP = 40.1–60.0%), class IV (RP = 60.1–80.0%), and class 
V (RP = 80.1–100.0%)].

Determination of biochemical profile

In order to investigate the sublethal effects of menthol on 
the biochemistry and physiology, insects were treated with 
 LC25 and  LC50. These two concentrations permit us to obtain 
a sufficient number of survivors following treatment to 

(1)
%Mortality =

[

(%Mt − %Mc) ∕ (100 − %Mc)
]

∗ 100

RP (%) = (Nc − 50) × 2
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perform different experiments compared to  LC90 (Kissoum 
et al. 2020). Samples were collected from control and treated 
series and subjected to extraction. The method described 
by Shibko et al. (1966) was used to extract the biochemical 
components (proteins, carbohydrates, and lipids). The whole 
body of the control and treated insects (3 replicates each 
containing ten individual) was weighed and then placed in 
1 ml of 20% trichloroacetic acid. Using bovine serum albu-
min as a standard and Coomassie Brilliant Blue as the rea-
gent, proteins were quantified following the Bradford (1976) 
technique. Using anthrone as the reagent and glucose as the 
standard, carbohydrates were determined using the Ducha-
teau and Florkin (1959) method. The method of Goldswor-
thy et al. (1972) was used to measure lipids, with vanillin 
serving as a reagent and sunflower oil as the standard.

Digestive enzyme assay

Control and treated  (LC25 and  LC50) adults were sampled for 
digestive enzymes analysis. Dinitrosalicylic acid (DNS) was 
used as the reagent and 1% soluble starch as the substrate to 
measure the activity of α-amylase (Bernfeld 1955). Accord-
ing to Garcia-Carreno and Haard's (1993) method, protease 
activity was measured using casein (1%) as a substrate. The 
lipase assay was performed according to the method of Tsu-
jita et al. (1989).

Enzymes of intermediary metabolism

A BIOSCAN commercial kit was used to assess the activity 
of alanine and aspartate aminotransferase. At 340 nm, the 
absorbance was measured. The alkaline phosphatase was 
quantified by BIOLABO commercial kit. At 405 nm, the 
absorbance was measured.

Statistical analysis

The mean ± SEM are used to present the data. Numbers of 
individuals and repetitions were also mentioned. Data were 
analyzed using one-way analysis of variance (ANOVA) and 
Tukey’s post hoc test to compare treatment means using 
GraphPad Prism v.7.00 for Windows (GraphPad Software, 
Inc., http:// www. graph Pad. com).

Results

Insecticidal activity

Figure 1 shows the percent mortality in R. dominica treated 
with different concentrations of menthol by fumigation. 
These mortalities increase significantly according to the 
applied doses and the time after treatment in R. dominica 

treated by fumigation at 24 h (F3,8 = 85.78; p < 0.0001), 48 h 
(F3,8 = 96.53; p < 0.0001), and 72 h  (F3,8 = 136; p < 0.0001). 
On the lethal times, the concentration of 0.5 μl/ml of men-
thol eliminated 50% of the population of R. dominica in 
42.97 h and 90% during 251.90 h of treatment. When 4 μl/ml 
of menthol is applied, LT50% was 2.26 h, while the LT90% 
was 6.00 h (Table 2).

Otherwise, application of menthol by contact revealed 
an increase in mortality as a function of the applied 
doses and the time after treatment at 6 h (F3,12 = 109.3; 
p < 0.0001), 12  h (F3,12 = 136.2; p < 0.0001), and 24  h 
(F3,12 = 75.27; p < 0.0001) (Fig. 2). The results show that 
menthol applied by contact exerts an insecticidal activity 
with a dose–response relationship against R. dominica. We 
calculated  LC25 and  LC50 values of menthol along with their 
fudicial limits (Table 1). In addition, it is noted that menthol 
applied by contact is more toxic compared to fumigation.

On the lethal times, the concentration of 83.33 μl/L of 
menthol eliminated 50% of the population of R. dominica in 
the 169.10 h and 90% during 793.40 h of treatment. When 
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666.67 μl/L of menthol is applied, LT50% is 4.78 h, while 
the LT90% is 18.52 h (Table 2).

Repellent activity

The percentage of repellency shows an increase accord-
ing to the applied concentrations. The high repulsion rates 
(93.33%) are observed at 30 min with the highest concentra-
tion (20 µl/ml). These percentages increase at 30 min after 
treatment and decrease thereafter with exposure time. In 
addition, we note that this treatment is classified in category 
V of repulsion (Table 3).

Effects on digestive enzyme activities

α-amylase activity decreases significantly (F5,12 = 18,49: 
p < 0,0001) in the treated adults with menthol without dose 
effect  (LC25 Vs  LC50: p > 0.05). The results of general pro-
tease activity showed a significant reduction in the treated 
series  (LC25 and  LC50) (F5.12 = 39.75: p < 0.0001) compared 
to the control with a dose effect at 48 h and 72 h after treat-
ment  (LC25 vs.  LC50: p < 0.0001). Finally, the results of 

lipase activity revealed a significant decrease (F5,12 = 27.79: 
p < 0,0001) in the treated series with  LC25 and  LC50 as com-
pared to control (Table 4).

Effect in enzymes of intermediary 
metabolism

Treatment of adults with two doses of menthol significantly 
increased the activity of alanine and aspartate aminotrans-
ferases at 12 and 24 h after treatment (ALT:  F5,12 = 8.88: 
p = 0.0010 and AST:  F5,12 = 44.17: p < 0.0001). However, the 
activity of alkaline phosphatases was increased significantly 
in all treatments compared to the control (F5,12 = 40.53: 
p < 0.0001) (Table 5).

Table 1  Efficacy of menthol 
applied on adult of R. 
dominica: determination of 
lethal concentrations and their 
confidence intervals (95%)

Bold value indicates lethal concentration

Treatment Times (hours) Hill Slope R2 LC25
(95% FL)

LC50
(95% FL)

LC90
(95% FL)

Fumigation
(µl/L air)

24 2.36 0.97 189.9
(87.54–320.8)

302
(197–453.7)

763.80
(404.90–3055)

48 2.12 0.97 148.5
(57.45–279.3)

249.1
(154–387.9)

700.50
(329.60–3326)

72 1.87 0.97 100.4
(29.44–181.9)

72.01
(12.52–185.90)

581.20
(260,40–2963)

Contact (µl/ml) 6 2.05 0.97 1.03
(0.46–1.79)

1.77
(1.15–2.73)

5.17
(2.58–23.78)

12 2.09 0.99 0.60
(0.44–0.77)

1.02
(0.84–1.23)

2.94
(2.00–4.72)

24 2.12 0.99 0.41
(0.27–0.53)

0.69
(0.56–0.83)

1.95
(1.32–3.23)

Table 2  Efficacy of menthol applied on adult of R. dominica: deter-
mination of lethal times

Treatment Concentrations Hill Slope R2 LT50 LT90

Fumigation 
(hours)

0.5 µl/ml 1.24 0.99 42.97 251.90
1 µl/ml 1.30 0.99 12.32 66.02
2 µl/ml 1.55 0.98 5.86 24.23
4 µl/ml 2.25 0.99 2.26 6.00

Contact (hours) 83.33 µl/L 1.42 0.98 169.10 793.40
166.67 µl/L 0.85 0.91 108.30 1433
333.33 µl/L 0.85 0.93 25.32 330.9
666.67 µl/L 1.62 0.88 4.78 18.52

Table 3  Repellent effect (RP %) and repellent class (RC) of menthol 
on R. dominica adults

Concentrations Periods RP % RC

5 µl/ml 15 min 33.33 II
30 min 40.00 III
1 h 26.66 II
2 h 20.00 II
3 h 13.33 I

10 µl/ml 15 min 53.33 III
30 min 66.66 IV
1 h 53.33 III
2 h 46.66 III
3 h 60.00 IV

20 µl/ml 15 min 86.66 V
30 min 93.33 V
1 h 86.66 V
2 h 66.66 IV
3 h 60.00 IV
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Effect in nutritional reserves

A significant reduction in the total protein content is 
noted after treatment with the two concentrations applied 
(F5.12 = 106.1; p < 0.0001). A dose effect was observed at 
24 h  (LC25 vs.  LC50: p < 0.0001) and 48 h  (LC25 vs.  LC50: 
p = 0.0132) (Fig. 3A). The results mentioned in Fig. 3B 
showed a significant decrease in lipid content in the treated 
series at  LC25 and  LC50  (F5.12 = 537.6: p < 0.0001) with a 
dose effect at 24 h  (LC25 vs  LC50: p = 0.0132) and 48 h  (LC25 
vs.  LC50: p < 0.0001). The carbohydrate content revealed a 
significant decrease in the treated series at  LC25 and  LC50 
(F5,12 = 85.77: p < 0.0001) compared to the controls, with 
a dose effect at 48 h  (LC25 vs  LC50: p < 0.0001) (Fig. 3C).

Discussion

Insecticidal activity

In our study, menthol applied on R. dominica was evaluated. 
Mortality increases with the concentration and the expo-
sure time. The fumigant activity of menthol and 1,8-cin-
eole, on different stored product pests, was demonstrated 
(Erler 2005). They achieved less than 99% mortality against 
many insect species tested. Menthol was most effective as 

fumigant against Tribolium castaneum and Callosobruchus 
maculatus (Tripathi et al. 2001). The fumigant activity of six 
main monoterpenoids of EOs from aromatic plants grown 
in Turkey such as 1,8-cineole, γ-terpinene, carvacrol, men-
thol, thymol, and terpinene-4-ol was tested against Tribo-
lium confusum adults and Ephestia kuehniella larvae. The 
results showed a variation in the fumigant activity of these 
molecules with the most active constituent being carvacrol 
(Erler 2005). In terms of  LT50 values (h) at 46.2 mg/l air, the 
following monoterpenoids had the highest levels of activity 
against T. confusum adults: carvacrol, 3.9; thymol, 15.1; -ter-
pinene, 19.1; terpinen-4-ol, 162.2; 1,8-cineole, and menthol, 
both of which were quite potent. However, Mentha piperita 
oil and menthol showed either less or no activity against 
Aedes aegypti (Samarasekera et al. 2008).

Effect in digestive enzymes

Currently, one of the most important aspects of pest con-
trol is the selective inhibition of digestive enzymes of many 
insect pests (Yazdani et al. 2013). In the midgut, digestive 
enzymes hydrolyze food macromolecules into smaller mol-
ecules, thus facilitating their absorption. Proteins, carbo-
hydrates, and lipids constitute the majority of food macro-
molecules and are hydrolyzed by proteases, amylases, and 
lipases, respectively. The application of menthol disrupts 
the activity of digestive enzymes in adults of R. dominica 
compared to controls with a dose–response relationship. 
The activity of three enzymes studied was significantly 
reduced. These results are consistent with previous stud-
ies which were demonstrated the reduction of α-amylase, 
proteases, and lipases activities in pests such as R. domi-
nica treated with Lavandula angustifolia EO (Sayada et al. 
2021a), Trogoderma granarium treated with Eucalyptus 
globulus EO (Tine et al. 2021a), and R. dominica treated 
with Schinus molle EO (Tine et al. 2021b).α-amylase is a 
midgut and salivary enzyme involved in the metabolism of 
starch and other carbohydrates, and its level of activity is 
diet dependent (Shekari et al. 2008). Some plant extracts and 
plant-derived molecules inhibited α-amylase activity in vitro 
(Yazdani et al. 2013). The reduced activity of α-amylase by 
plant-based compounds could imply their cytotoxic effect on 
the midgut epithelial cells those synthesize insect α-amylase 
(Senthil-Nathan et al. 2006; Zibaee and Bandani 2010). This 
result is consistent with previous studies which were dem-
onstrated the reduction of α-amylase activities in pests such 
as E. kuehniella (Shahriari et al. 2017), Ectomyelois cerato-
niae (Ramzi et al. 2014), Glyphodes pyloalis (Yazdani et al. 
2013), Pieris rapae (Hasheminia et al. 2011) after treatment 
with botanical toxins.

Proteases are a class of enzymes that catalyze the hydrol-
ysis of peptide bonds in proteins to release their correspond-
ing amino acids (Pascual-Ruiz et al. 2009). They can be 

Table 4  Effect of menthol, applied on adults of R. dominica on activ-
ity of α-amylase, protease, and lipase (mean ± SE; n = 3 replicates 
each of 10 insects). Different small letters indicate a significant differ-
ence between control and treated series (p < 0.01)

Periods Treatment α-amylase Protease Lipase

48 h Control 5.36 ± 0.04a 2.93 ± 0.15a 6.46 ± 0.77a

LC25 4.90 ± 0.12b 2.88 ± 0.06a 4.16 ± 0.31b

LC50 4.52 ± 0.09b 1.80 ± 0.09b 2.01 ± 0.29c
72 h Control 5.03 ± 0.04a 3.06 ± 0.14a 6.71 ± 0.14a

LC25 4.64 ± 0.08b 2.62 ± 0.15a 4.76 ± 0.06b

LC50 4.43 ± 0.17b 1.72 ± 0.04b 3.68 ± 0.47b

Table 5  Activities of enzymes of intermediary metabolism 
(mean ± SE; n = 3 replicates each of 10 insects; U/mg protein) post-
treatment of menthol in adults of R. dominica. Different small letters 
indicate a significant difference between control and treated series 
(p < 0.01)

Periods Series ALT AST ALP

48 h Control 0.243 ± 0.034a 0.108 ± 0.004a 0.416 ± 0.026a

LC25 0.316 ± 0.012a 0.148 ± 0.007a 0.540 ± 0.007a

LC50 0.373 ± 0.022b 0.170 ± 0.003a 1.069 ± 0.050b

72 h Control 0.258 ± 0.009a 0.117 ± 0.011a 0.399 ± 0.099a

LC25 0.291 ± 0.023a 0.258 ± 0.016b 0.561 ± 0.073a

LC50 0.373 ± 0.034b 0.337 ± 0.032c 0.955 ± 0.036b
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altered by botanical insecticides which interfere with the 
production of certain types of proteases and prevent them 
from digesting ingested proteins (Senthil-Nathan et  al. 
2006). Similar results have been reported in Periplaneta 
americana (Paranagama et al. 2001) and G. pyloalis (Khos-
ravi and Sendi 2013) treated with azadirachtin, in T. granar-
ium larvae treated with E. globulus EO (Tine et al. 2021a), in 
R. dominica treated by S. molle EO (Tine et al. 2021b), and 
Lavandula angustifolia (Sayada et al. 2021a). Many insect 
species have reported a decrease in protease activity after 
exposure to botanical insecticides (Paranagama et al. 2001).

Lipases play a very important role in the storage and 
mobilization of lipids. These enzymes are also involved 
in several physiological processes such as reproduc-
tion, growth, and defense against pathogens (Lemaitre 
and Miguel-Aliaga 2013). Similar observations were 
noted in Chilo suppressalis treated with A. annua (Zibaee 
et  al. 2008), in Cnaphalocrocis medinalis treated with 
azadirachtin (Senthil Nathan et al. 2006), in T. granarium 
larvae treated with E. globulus EO (Tine et al. 2021a) and 
R. dominica exposed to S. molle EO (Tine et al. 2021b). 
Decreased lipase activity by botanical insecticide could be 
due to disturbance of digestion and metabolism processes 
(Senthil- Nathan et al. 2006; Zibaee and Bandani 2010).

Exposure to lethal concentrations considerably affected 
the enzymatic activities of an organism, reflecting the bio-
chemical disturbances (Kiran et al. 2015). Indeed, any dis-
turbance in the activity of digestive enzymes reduces access 
to nutrients essential to the functioning of the body. Fur-
thermore, this reduction in nutrient utilization capacity may 
be related to a conversion of the energy required for bio-
mass production into induction enzymes activity involved in 
detoxification essential oils and their components (Senthil-
Nathan et al. 2005). Inactivation of digestive enzymes leads 
to poor nutrient utilization, retarded development and death 
by starvation (Gatehouse and Gatehouse 1999).

Effect on intermediary‑involved enzymes

In the body of insects, transamination is the most important 
physiological process, for formation of protein needed for 
various functions (Chapman et al. 2013). It also plays an 
important role in insect energy processes such as alanine to 
proline conversion (Hakkak et al. 2018; Sugeçti and Büyük-
güzel 2018). Transaminase enzymes (GOT and GPT) are 
mitochondrial enzymes which involved in transamination 
and found in hemolymph and fat bodies of insects (Nation 
2008). They are released in the hemolymph of insects only 
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when the cells are damaged or destroyed (Abo El Maka-
rem et al. 2015a; b; Pradel and Albert 2021). They are cru-
cial for the Krebs cycle's transformation of aspartate and 
α-ketoglutarate into oxalate and glutamate, respectively, 
which enables insects to adapt to oxidative stress (Hak-
kak et al. 2018). Our results revealed an increase in GOT, 
GPT, and PAL in R. dominica treated with menthol. These 
results might suggest that menthol application enhanced 
transaminase enzyme activity due to toxic stress. The study 
of Abo El Makarem et al. (2015a; b) showed a significant 
increase in the GPT activity after treatment of S. granarius 
with sublethal concentrations of basil and clove while basil 
oil increased the activity of GOT indicating of increased 
synthesis of both enzymes. Significant differences were 
found among activities of ALT and AST in the hemolymph 
of Chrysodeixis chalcites larvae (Lepidoptera: Noctuidae) 
reared on lemon balm, corn, and dill, respectively (Mardani-
Talaee et al. 2014). Increased transaminase activity might 
have been required by insects to metabolize amino acids to 
obtain energy under stress. In fact, the varying effect of plant 
extracts on GOT and GPT activities might be due to the 
effect on the synthesis or functional levels of these enzymes 
directly or indirectly by altering the cytomorphology of 
the cells (Nath 2000). Our results agreed with some other 
findings on the effect plant oils on GOT and GPT activates 
(Abdel-Latif and Al Moajel 2004; Arshad et al. 1999; Has-
san 2002; Tabassum et al. 1994). However, decreased enzy-
matic activity of transaminases was reported in Helicoverpa 
armigera (Lepidoptera: Noctuidae) fed on a diet containing 
β-cytosterol with dose-dependent (Mishra et al. 2020). The 
studies of Khater and El-Shafiey (2015) showed a decrease 
in alanine and aspartate aminotransferase activity in Tribo-
lium castaneum treated with Wedelia trilobata and Melissa 
officinalis EOs. Decreased alanine aminotransferase activity 
may be due to lack of energy supply through proline or the 
need for aminoacids due to tissue damage caused by the 
compounds used (Goharrostami et al. 2022).

Alkaline phosphatase is hydrolytic enzyme that separate 
phosphate groups from various molecules such as nucleo-
tides, proteins, and alkaloids in alkaline conditions (Nation 
2016). The activity of this enzyme indicates the efficiency 
of digestion and absorption of nutrients in the stomach and 
their transfer to fat bodies (Goharrostami et al. 2022). The 
results of this study revealed an increase in PAL in R. domi-
nica adults treated with menthol. Our results disagree with 
those found in G. pyloalis larvae treated with thyme EO, thy-
mol, and carvacrol compounds (Goharrostami et al. 2022) 
and in E. kuehniella treated with Teucrium polium (Lami-
aceae) EO and α-pinene (Shahriari et al. 2019). Significant 
differences were found among activities of alkaline (ALP) 
phosphatase in the hemolymph of Chrysodeixis chalcites 
larvae (Lepidoptera: Noctuidae) reared on lemon balm, corn, 
and dill, respectively (Mardani-Talaee et al. 2014). The lack 

of digestive function and decreased metabolism caused by a 
decrease in the release of phosphate groups for the produc-
tion of energy can be indicated by a drop in the activity of 
this enzyme group (Selin-Rani et al. 2016; Senthil-Nathan 
2006).

Effect on biochemical composition

Essential oils and their components interfere with several 
insect functions: metabolic, biochemical, physiological, 
and behavioral (Mann and Kaufman 2012). Several stud-
ies have shown fluctuation of biochemical composition of 
insect’s body treated with EOs and their components (Guet-
tal et al. 2021a, b; Sayada et al. 2021b; Tine et al. 2021a, b). 
In the present investigation, the application of menthol to 
R. dominica adults resulted in a decrease in the biochemical 
parameters (carbohydrates, lipids and proteins content) at 
different periods after treatment. This decline could be due 
to the reduction in the diet of insects since menthol could 
have a deterrent effect.

The reduction of proteins is a frequent phenomenon in 
insects treated with toxic products (Nation et al. 2008); it can 
be attributed to one or more factors, such as the reduction in 
their synthesis or increase in their degradation to detoxify 
the active ingredients present in plant extracts or essential 
oils (Vijayaraghavan et al. 2010). The breakdown of proteins 
into amino acids is intended to facilitate their incorporation 
into the Krebs cycle as ketone acids to compensate for low 
energy levels caused by stress (Nath et al. 1997). Moreover, 
the reduction in protein reserve may also be due to the physi-
ological adaptation of the insect to a state of stress caused 
by insecticides (Ribeiro et al. 2001).

However, an increase in protein levels has been reported 
in R. dominica treated with S. molle (Tine et al. 2021a), in T. 
granarium treated with E. globulus (Tine et al. 2021b), in R. 
dominica (Tine et al. 2017) and Sitophilus granarius treated 
with azadirachtin (Guettal et al. 2021a, b).

Carbohydrate plays a major metabolic role in the devel-
opment cycle (Steele 1981) and constitutes an essential 
source of energy. Our results show a significant reduc-
tion in carbohydrate levels in adult of R. dominica treated 
with menthol. Similar results were reported in S. granarius 
treated with citrus oil and azadirachtin (Guettal 2021a), in 
T. castaneum treated with the of Agastache foeniculum EO 
(Ebadollahi 2013), in S. granarius treated with C. limonum 
EO (Guettal et al. 2020), in T. granarium treated with S. 
molle (Tine et al. 2021b), and in R. dominica treated with 
E. globulus (Tine et al. 2021a). Glucose depletion may 
be due to the stress conditions imposed on these insects 
which require more energy to cover energy expenditure via 
induction by neuropeptides (Mojarab-Mahboubkar et al. 
2015). It may also be due to an acceleration of glycogen-
olysis in the fat body, the transport of glycogen from the 
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fat body to the hemolymph in response to energy depletion 
when individuals are exposed to toxins (Zibaee 2011).

Lipids are the main source of energy in insects 
(Beenakers et al. 1985). Our results showed that treatment 
of adult R. dominica with menthol induced a significant 
decrease in lipid content. The same observations were 
made in S. granarius treated with Citrus oil (Guettal et al. 
2020), azadirachtin (Guettal et al. 2021b) and combination 
Aza-EO (Guettal et al. 2021a), in R. dominica treated with 
E. globulus EO (Tine et al. 2021a), and in T. granarium 
treated with S. molle EO (Tine et al. 2021b). The deple-
tion of this biochemical component after treatment is due 
to the stress induced following exposure to an insecticide 
(Sancho et al. 1998) which results in an alteration of their 
synthesis (Klowden 2007), to hormonal dysfunction that 
controls lipid metabolism (Steele 1981), to the use of this 
metabolic reserve (Sak et al. 2006), to the formation of 
lipoproteins, to the repair of cellular damage, and to the 
increase lipolysis to provide energy (Lohar and Wright 
1993; Steele 1985).

Reducing the amount of energy resources, the proteins, 
carbohydrates, and lipids considered one of the main 
strategies in the insect pest management because of their 
important roles in insect biochemical pathways, growth, 
metamorphosis, reproduction, and diapause (Arrese and 
Soulages 2010; Senthil-Nathan 2013).

Conclusions

The menthol exhibited contact and fumigant toxicity 
against lesser grain borer adults confirming its potential 
use as a natural alternative to synthetic insecticides against 
stored-product insect pests. In addition, the strong repel-
lent activity evidence suggests a possible application to 
flush out insect infestation from empty stores before fresh 
grain is introduced. Moreover, the perturbation of diges-
tive enzymes affects growth and reproductive events via 
depressive effects on energy reserves. This study gives 
additional information on plant derivative products and 
their use in integrated pest management in the storage 
sites.
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