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Abstract
The confused flour beetle, Tribolium confusum Jacquelin du Val, 1863 (Coleoptera: Tenebrionidae) is a major pest on 
stored grains. Chemical pesticides are usually used to control stored grain pests but insecticides residue and other negative 
effects on human and environmental health are the constrain ones in this concern. The biological control agents such as 
entomopathogenic nematodes (EPNs), which are used to control different harmful organisms, get attention in the alternative 
control methods. The aim of this study was carried out to determine biocontrol potential of local entomopathogenic nema-
tode isolates, Steinernema carpocapsae (Tokat-Bakışlı05), S. feltiae (Tokat-Emir), Heterorhabditis bacteriophora (TOK-
20), and H. bacteriophora (11KG) against adult beetles of confused flour beetle under controlled conditions. EPNs isolates 
were applied at four different concentrations i.e., 0.0, 25, 50 and 100 IJs/beetle in 1 ml of distilled water at 15 and 25 ± 1 °C 
temperatures. The highest mortality rates for H. bacteriophora (11KG) and H. bacteriophora (TOK-20) isolates at 25 ± 1 ºC 
were determined as 91.0 and 81.2%, respectively. H. bacteriophora (11KG) and H. bacteriophora (TOK-20) were found to 
be the most effective EPNs at a concentration of 100 IJs/beetle at 15 ºC with a mortality of 57.7 and 55.6%, respectively. 
Mortality rates for the adult confused flour beetle were increased with an increasing the concentration of all EPNs species 
and also the degrees of temperature. Results showed that local EPNs isolates may use as an alternative biological control 
agent for T. confusum. Efforts should be made to develop new formulations that will allow nematodes to survive until they 
find their hosts, and they also need to be tested under field conditions.

Keywords Biological control · Entomopathogenic nematodes · Steinernema carpocapsae · S. feltiae · Heterorhabditis 
bacteriophora · Tribolium confusum

Introduction

The confused flour beetle, Tribolium confusum Jacquelin du 
Val (Coleoptera: Tenebrionidae), is one of the most harm-
ful pests of stored grain beetle, native to Africa, but usu-
ally found all over the world (Hagstrum and Subramanyam 
2009). As a secondary pest, the confused flour beetle pri-
marily prefers infested or mechanically damaged grains. 
Both adults and larvae are responsible for severe post-har-
vest losses, particularly in stored products, such as wheat, 
maize, barley, sorghum, oilseeds, spices, bran, and dried 

herbs. (Boyer et al. 2012; Hagstrum et al. 2013). Post-har-
vest losses in developed countries are estimated that 5–10%, 
whereas this rate rises to 75% in developing countries (Box-
all 2001; Hodges et al. 2011; Mason and McDonough 2012).

Chemical insecticides are considered the primary con-
trol method for insect pests. However, the high frequency 
and widespread use of chemical insecticides stimulates the 
development of resistance in insects and causes environ-
mental pollution as they cannot be broken down easily. The 
demand for pesticide-free products in society, and environ-
mental problems caused by the use of synthetic chemical 
pesticides against such pests, encourage scientists to search 
for different control options (Lu and Wu 2010; Alkan 2020; 
Ertürk et al. 2020).

The EPNs are widely used in many countries and have 
attracted interest as potential biocontrol agents. They can be 
preferred in the control of harmful insects due to their wide 
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host range, active host seeking, easy and low cost mass pro-
duction, long-term efficacy, easy application, compatibility 
with most chemicals and environmentally safe for humans and 
other non-target organisms (Kaya 1990; Shields et al. 1999; 
Rumbos and Athanassiou 2017; Vitta et al. 2017; Belien 2018; 
Yuksel et al. 2019; Yağci et al. 2021a, b). EPNs are obligate 
parasites and they have the ability to actively search for their 
host. A number of stimuli factors such as the body tempera-
ture of the host insect, the  CO2 released by the host, the host’s 
feces, and kairomones are affecting the effectiveness of infec-
tive juveniles (IJs) (Athanassiou et al. 2008; Rasmann and 
Turlings 2008; Rumbos and Athanassiou 2012; Tülek et al. 
2015; Yağcı et al. 2021c). The IJs, the only free life stage of the 
EPNs, enter the host through natural openings or penetrate into 
the insect cuticle. The toxins produced by the symbiotic bacte-
ria, Xenorhabdus spp. (Enterobacterales: Morganellaceae) and 
Photorhabdus spp. (Enterobacterales: Morganellaceae) associ-
ated with EPNs sacrifice the host within between 24 and 48 h 
(Woodring and Kaya 1988; Shapiro and Lewis 1999; Forst 
and Clarke 2002; Tülek et al. 2015; Canhilal 2016; Alotaibi 
et al. 2022).

EPNs are promising alternatives to chemical pesticide that 
are widely used in agricultural biological control programs 
(Ffrench-Constant et al. 2007). Steinernematidae and Heter-
orhabditidae are well known and utilized endoparasites for 
numerous agricultural insect pests. However, the pathogenic-
ity of EPNs on insect pests of stored commodities are limited 
despite that EPNs have the potential for control of coleopteran 
pests (Duncan and McCoy 1996; Laznik et al. 2010; Javed 
et al. 2020). EPNs have received little attention in post-har-
vest protection except for Steinernema carpocapsae and S. 
feltiae that so far are the most commonly tested steinernematid 
nematode species against stored product pests (Rumbos and 
Athanassiou 2017).

It is clear that in vitro experiments are primary and essential 
for the success of field experiments. Therefore, the present 
study aimed to determine the pathogenicity, virulence, and 
biocontrol potential of different native EPNs isolates from Tür-
kiye of S. carpocapsae (Tokat-Bakışlı05) (Weiser) (Rhabdi-
tita: Steinernematidae) and S. feltiae (Tokat-Emir) (Filipjev) 
(Rhabditita: Steinernematidae), Heterorhabditis bacteriophora 
(TOK-20) Poinar (Rhabditita: Heterorhabditidae), H. bacte-
riophora (11KG) Poinar (Rhabditita: Heterorhabditidae) at 
different concentrations and temperature on the mortality of 
T. confusum adults under laboratory conditions.

Materials and methods

Insect rearing

Tribolium confusum

Adults of T. confusum were grown on cracked wheat-con-
taining 5% brewing yeast (w/w), aged between 7 and 28 days 
(Athanassiou et al. 2016) in a 1000 ml capacity glass jar. The 
insect culture was raised in continuous darkness in a climate 
chamber at 25 ± 1 °C and 60 ± 5% relative humidity (R.H.) 
(Nüve ID 501, Ankara, Türkiye). The culture has been rear-
ing since 2010 in the Entomology Laboratory of the Plant 
Protection Central Research Institute, Ankara, Türkiye.

Galleria mellonella

Wax moth Galleria mellonella L. (Lepidoptera: Pyrali-
dae) larvae, which are known susceptible to infection of 
entomopathogenic nematode species, were used in the 
experiments (Barrón-Bravo et al. 2021). For this purpose, 
the original stock culture of G. mellonella was received from 
the Department of Plant Protection, Faculty of Agriculture, 
Tokat Gaziosmanpaşa University, Türkiye. All EPNs cul-
tures were raised in the Nematology Laboratory of the Plant 
Protection Central Research Institute, Ankara, Türkiye since 
2018. The larvae of G. mellonella were fed on a diet contain-
ing glycerin (500 g), honey (500 g), wheat flour (890 g), dry 
baker’s yeast (222 g), milk powder (445 g), and beeswax 
(125 g). Beeswax and dry baker's yeast were melted and then 
mixed with other materials. The prepared artificial diet has 
been stored in the refrigerator for the intended use.

The last instar larvae of G. mellonella were used, accord-
ing to Mohamed and Coppel (1983). Wax moth eggs were 
kept in the diet in one liter glass jar under 16:8 h light and 
dark under 23–24 ± 1 °C degree (Nüve ID 501, Ankara, Tür-
kiye). After about 30 days, the wax moth’s last larvae were 
obtained for mass rearing.

Entomopathogenic nematodes culture

Steinernema carpocapsae (Tokat-Bakışlı05), S. feltiae (Tokat-
Emir), Heterorhabditis bacteriophora (TOK-20), and H. bac-
teriophora (11KG) were obtained from the Plant Protection 
Department of Tokat Gaziosmanpaşa University, Türkiye. 
The nematode species were identified by Dr. Selçuk HAZIR 
and Dr. Harun ÇİMEN (Department of Biology, Faculty of 
Arts and Sciences, Aydin Adnan Menderes University, Aydin, 
Turkey) based on morphometric and molecular analyzes 
(Kepenekci et al. 2017, 2018; Çağlayan et al. 2020). EPNs 
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were gathered on the last stage larvae of the greater wax moth 
at 25 ± 1 °C and 60 ± 5% R.H. under laboratory conditions 
according to Kaya and Stock (1997). For mass rearing of EPNs 
isolates; ten instar larvae of G. mellonella were placed in six 
cm diameter Petri-dishes lined with Whatman paper (No.1, 
Whatman International, Maidstone, UK), and wetted with dis-
tilled water. Suspension of juveniles of each nematode isolate 
were prepared, and then applied on the greater wax moth lar-
vae. Petri-dishes were sealed with a parafilm, and then placed 
in the incubator at 25 ± 1 °C and 60 ± 5% R.H. IJs were col-
lected from infected larvae by using the “White trap” method 
(White 1927).

Biossays

Experiments were conducted in 6 cm Petri-dishes under 
controlled conditions (15, 25 °C and at constant 65% R.H.). 
The dishes lined with Whatman paper (No.1 Whatman Inter-
national, Maidstone, UK) and 0, 25, 50, and 100 IJs/larva 
concentrations were prepared. The determined nematode 
concentrations were added to the filter paper with a pipette 
in 1 ml of distilled water to each Petri-dish. Ten T. confusum 
adults were introduced into Petri-dishes containing 5 g steri-
lized cracked wheat. For control treatments, only distilled 
water was used. Petri-dishes were sealed and then wrapped 
with Parafilm to prevent insects from escaping. The Petri-
dishes were put in a rearing chamber. Mortality of beetles 
was checked at 48, 72, and 96 h after the inoculation. Dead 
beetles were counted at each time interval (Yuksel et al. 
2019; Yağci et al. 2021a, b, c). The whole experiment was 
repeated three times with different dates. Each treatment was 
replicated five times and 10 individuals were used in each 
replicate.

Data analysis

The data obtained from the concentrations screening tests 
were first converted to percentage mortality, and then arcsine 
transformation was carried out (Zar 1999; Warton and Hui 
2011). To separate the mean differences, Tukey’s multiple 
range test was used at 5% significance levels. All statisti-
cal analyses were performed using MINITAB Release 18 
statistical software with the general linear model in order 
to determine the statistical interactions between treatments 
(Mckenzie and Goldman 2005).

Results

The insecticidal activity of EPNs isolates against T. confu-
sum was determined, in order to be used as biological con-
trol agents. All tested EPNs isolates caused varying levels 
of death and were found significant (P < 0.05). Also, the 

mortality rate increased with increasing concentrations, tem-
perature, and exposure times (Tables 1, 2). The adults of T. 
confusum were found susceptible to all EPNs isolates. The 
results show that all EPNs isolates increased the mortality 
of T. confusum (P < 0.05) when compared with the control 
group, which recorded a maximum mortality of 0.7% at all 
temperatures, exposure times, and concentrations.

Mortalities of confused flour beetle varied strongly at 
15 °C (Table 1). H. bacteriophora (TOK-20), recorded the 
highest mortality rate with 57.7% at a concentration of 100 
IJs/adult after 96 h of exposure. H. bacteriophora (TOK-20) 
isolate was the most effective, which caused 17.4% mortal-
ity at 50 IJs/adult concentration after 96 h of exposure. S. 
carpocapsae (Tokat-Bakışlı05) showed the highest efficacy 
of 36.5% at the concentration of 100 IJs/adult after 96 h of 
exposure.The highest mortality rate for S. feltiae (Tokat-
Emir) was 36.6% at the concentration of 100 IJs/adult after 
96 h of exposure. However, the lowest effect at the concen-
tration 25 IJs/adult was recorded with 1.6% mortality after 
48 h. The highest mortality rate of 55.6% was resulted at a 
concentration of 100 IJs/ml from H. bacteriophora (11KG) 
isolate at 15 °C after 96 h of exposure.

The results showed that the highest mortality rate was 
91% for H. bacteriophora (11KG) at 100 IJs/adults concen-
tration after 96 h post treatment at 25 °C (Table 2). This 
mortality rate of H. bacteriophora (TOK-20), S. feltiae 
(Tokat-Emir), S. carpocapsae (Tokat-Bakışlı05) depicted 
81.2, 74.1, 56.1%, respectively. The lowest mortality rate 
in all isolates at 25 IJs/adult were less at 25 °C temperature 
and all exposure period. It was found that the mortality rate 
was increased proportionally as exposure time passed from 
the inoculation.

Discussion

This research studies showed that the virulence and bio-
control potantial of different EPNs isolates against T. con-
fusum is dependent on ambient temperature and nematode 
concentration. Rumbos and Athanassiou (2012) found that 
S. carpocapsae caused low mortality rate (15.2 and 22.4%) 
on T. confusum after 4 and 8 days of exposure at 27 °C and 
70% R.H. Alikhan et al. (1985) noted that the effect of S. 
carpocapsae against Tribolium confusum at two different 
concentration and calculated 48–56 h after death, and they 
caused low mortality levels. In the previous studies, Majić 
et al. (2021), studied the pathogenicity of different strains 
of S. feltiae at different concentrations of 0, 300, and 700 IJs 
 insect−1 at 15 and 25 °C temperatures against T. castaneum. 
They found that the activity did not exceed than 82.0% 
depending on the insect biological stage, temperature, and 
EPNs concentration. Furthermore, Kepenekci et al. (2015) 
tested the virulence of H. bacteriophora, S. carpocapsae, 
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and S. feltiae against the T. castaneum and T. confusum 
adults under three different temperatures (15, 20, and 25 °C) 
and found that S. carpocapsae was the most effective to the 
T. confusum (85.35%) and T. castaneum (86.47%) adults and 
other isolates were less effective. Javed et al. (2020) reported 
that different concentrations of S. pakistanenses (LM07), S. 

bifurcatum (LM-30) depicted higher mortality rates against 
T. confusum, at 30 ºC than at 20 ºC. They added that the 
same EPNs species were found to increase mortality rates 
with an increase in temperatures. Also, Laznik et al. (2010) 
reported that three different isolates of S. feltia showed vary-
ing efficacy against S. oryzae adults, and this difference is 

Table 1  Efficacy of entomopathogenic nematode isolates on mortality rate of confused flour beetle at 15 °C

♦  Means with the same lower-case letter in a column do not differ significantly (Anova P < 0.05. Tukey test)
♦♦  Means with the same upper-case letter in a row do not differ significantly (Anova P < 0.05. Tukey test)

EPNs Isolates Concentrations 
(IJs/adult)

Mortality rate after (h)

48 72 96

S. carpocapsae
(Tokat-Bakışlı05)

25 1.9 ± 3.2bc♦A♦♦ 3.6 ± 3.6bcA 3.6 ± 3.6cA F = 0.39
df = 2, 42, P > 0.05

50 6.1 ± 4.7abA 9.1 ± 5.4bA 12.2 ± 4.2bA F = 0.88
df = 2, 42, P > 0.05

100 12.2 ± 4.2aC 22.3 ± 0.7acC 36.5 ± 0.6aA F = 17.43
df = 2, 42, P < 0.05

0 0.2 ± 1.3cA 0.2 ± 1.3A 0.2 ± 1.3cA F = 0.0
df = 2, 42, P > 0.05

F = 8.23
df = 3, 56
P < 0.05

F = 19.48
df = 3, 56 P < 0.05

F = 41.60
df = 3, 56 P < 0.05

S. feltiae
(Tokat-Emir)

25 1.6 ± 2.6bA 2.2 ± 2.7cA 4.5 ± 2.4cA F = 1.14
df = 2, 42, P > 0.05

50 1.1 ± 2.4bB 10.4 ± 1.2bA 12.6 ± 1.9bA F = 15.58
df = 2, 42, P < 0.05

100 16.3 ± 6.5aB 30.1 ± 3.3aAB 36.3 ± 3.5aA F = 4.72
df = 2, 42, P < 0.05

0 0.0 ± 0.0bA 0.0 ± 0.7cA 0.2 ± 1.3bA F = 1.05
df = 2, 42, P > 0.05

F = 16.15
df = 3, 56
P < 0.05

F = 44.48
df = 3, 56 P < 0.05

F = 42.32
df = 3, 56 P < 0.05

H. bacteriophora (TOK-20) 25 0.4 ± 1.8bB 0.7 ± 2.2cAB 4.0 ± 3.0cA F = 3.55
df = 2, 42, P < 0.05

50 1.1 ± 2.4bB 10.2 ± 2.4bA 17.4 ± 1.0bA F = 20.73
df = 2, 42, P < 0.05

100 22.4 ± 1.8aC 43.9 ± 1.3aC 57.7 ± 2.4aA F = 28.22
df = 2, 42 P < 0.05

0 0.0 ± 0.7bA 0.0 ± 0.7cA 0.0 ± 0.7dA F = 0.0; df = 2, 42 P > 0.05
F = 41.98
df = 3, 56
P < 0.05

F = 92.57
df = 3,56 P < 0.05

F = 109.93
df = 3, 56 P < 0.05

H. bacteriophora (11KG) 25 0.4 ± 1.8bA 0.7 ± 2.2bcA 0.7 ± 2.2bA F = 0.11
df = 2, 42 P > 0.05

50 3.6 ± 3.6bA 4.8 ± 3.7bA 5.2 ± 4.1bA F = 0.17
df = 2, 42 P > 0.05

100 44.9 ± 3.0aA 49.3 ± 2.0aA 55.6 ± 2.6aA F = 0.0
df = 2, 42 P > 0.05

0 0.2 ± 1.3bA 0.2 ± 1.3c 0.7 ± 2.2bA F = 0.58
df = 2, 42 P > 0.05

F = 65.32
df = 3, 56
P < 0.05

F = 65.32
df = 3, 56 P < 0.05

F = 70.32
df = 3, 56 P < 0.05
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due to the origin of the isolates. It was concluded that dif-
ferent isolates of the same EPNs species showed different 
activity for the target insect.

In the present study, especially in the Heterorhabditis spe-
cies were observed of weak mortality rates even at the high-
est concentrations, time, and temperature. On the contrary, 

Eldefrawy and Raheem (2017) found 100% mortality of T. 
confusum at variable doses of 1000, 2000, and 3000 IJs of 
H. bacteriophora.

Another comment to be made on this subject is that the 
smaller the host's biomass, the lower the infection density 
by EPNs (Wójcik 1986). T. confusum adults are small-sized 

Table 2  Efficacy of entomopathogenic nematode isolates on mortality rate of confused flour beetle 25 °C

♦  Means with the same lower-case letter in a column do not differ significantly (Anova P < 0.05. Tukey test)
♦♦  Means with the same upper-case letter in a row do not differ significantly (Anova P < 0.05. Tukey test)

EPNs Isolates Concentrations 
(IJs/adult)

Mortality rate after (h)

24 48 72

S. carpocapsae
(Tokat-Bakışlı05)

25 3.7 ± 2.6c♦A♦♦ 7.3 ± 3.3cA 8.8 ± 4.1aA F = 1.40
df = 2, 42, P > 0.05

50 18.1 ± 0.9bB 34.4 ± 1.1bA 41.1 ± 1.3bA F = 23.8
df = 2, 42; P < 0.05

100 36.6 ± 2.8aB 48.0 ± 1.0aAB 56.1 ± 1.3aA F = 8.57
df = 2, 42, P < 0.05

0 0.0 ± 0.0dA 0.0 ± 0.7dA 0.0 ± 0.7dcA F = 0.5
df = 2, 42, P > 0.05

F = 75.21
df = 3, 56 P < 0.05

F = 112.24
df = 3, 56
P < 0.05

F = 113.99
df = 3, 56
P < 0.05

S. feltiae
(Tokat-Emir)

25 13.7 ± 0.5cB 18.8 ± 0.8cAB 22.9 ± 0.8bA F = 7.53
df = 2, 42, P < 0.05

50 27.1 ± 0.6bC 38.4 ± 0.9bB 46.0 ± 0.4aA F = 22.93
df = 2, 42, P < 0.05

100 39.9 ± 0.6aC 57.6 ± 1.5aB 74.1 ± 3.9dA F = 23.31
df = 2, 42, P < 0.05

0 0.4 ± 1.8dA 0.7 ± 2.2dA 0.7 ± 2.2cA F = 0.11
df = 2, 42, P > 0.05

F = 121.53
df = 3, 56
P < 0.05

F = 123.08
df = 3, 56
P < 0.05

F = 132.01
df = 3, 56 P < 0.05

H. bacteriophora
(TOK-20)

25 10.0 ± 3.4cB 19.6 ± 0.7cA 21.6 ± 0.7bA F = 7.01
df = 2, 42, P < 0.05

50 21.3 ± 3.2bB 32.3 ± 1.2bA 37.8 ± 1.0aA F = 7.22
df = 2, 42, P < 0.05

100 46.6 ± 1.1aB 61.4 ± 2.5aB 81.2 ± 6.9dA F = 14.65
df = 2, 42, P < 0.05

0 0.0 ± 0.0dA 0.2 ± 1.3dA 0.2 ± 1.3A F = 1.08
df = 2, 42, P > 0.05

F = 76.07
df = 3, 56 P < 0.05

F = 133.82
df = 3, 56 P < 0.05

F = 119.45
df = 3, 56 P < 0.05

H. bacteriophora
(11KG)

25 7.5 ± 4.8cB 20.5 ± 3.8cA 32.3 ± 1.1bA F = 12.43
df = 2, 42, P < 0.05

50 22.4 ± 2.5bB 36.3 ± 1.2bA 40.4 ± 1.6bA F = 8.90
df = 2, 42, P < 0.05

100 59.0 ± 1.6aB 80.5 ± 4.8aA 91.0 ± 5.6aA F = 14.39
df = 2, 42, P < 0.05

0 0.0 ± 0.7dA 0.4 ± 1.8dA 0.4 ± 1.8cA F = 0.658
df = 2, 42, P > 0.05

F = 81.31
df = 3, 56 P < 0.05

F = 95.89
df = 3, 56 P < 0.05

F = 143.79
df = 3, 56
P < 0.05
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insects. Due to the low biomass of this insect, it is thought 
that nematodes cannot produce new generations in high 
numbers within the insect body and this causes low mor-
tality rates. As it is known, the bacteria that carry by the 
nematodes transform the insect body mass into a nutrient 
medium to complete the nematode life cycle. According to 
the obtained results, the mortality occurring in the exposed 
to EPNs insects varies depending on virulency, nematode 
species and strains, insect species, insect biological stages, 
EPNs concentrations, exposure time, and temperature. 
Unlike synthetic pesticides, EPNs like other insect patho-
gens, cause slow mortality in insects (Moore et al. 2000). 
Although the insect biological stage is considered an essen-
tial parameter in insect individual’s rapid or slow death, 
the larval stage is out of the scope of this study. Athanas-
siou et al. (2008) revealed that T. confusum larvae are more 
sensitive than adults to EPNs. They added that S. feltiae 
caused larval stage mortality rates ranging from 79 to 100% 
after 7 to 14 days of nematode exposure at the highest dose, 
respectively. One could say that an adult insect body was 
assessed to be less likely to be invaded by IJs due to the 
dense sclerotized integument, which presents a significant 
barrier to penetration of EPNs, when compared to a larval 
body structure.

Conclusions

The present study indicated that the S. feltiae (Tokat-
Emir), S. carpocapsae (Tokat-Bakışlı05), H. bacteriophora 
(11KG), and H. bacteriophora (TOK-20) isolates can be 
used for control of T. confusum adults under controlled con-
ditions. H. bacteriophora (11KG) was the most effective 
species against the confused flour beetle at 25 °C. EPNs are 
considered to have a high potential for biological control 
agents in storage facilities. Besides that, a few species have 
also been reported as commercially available (Grewal 2002; 
Georgis et al. 2006). However, there may be some difficul-
ties in the effective use of nematodes as biocontrol agents 
under storage conditions. In order for nematodes to survive 
in these conditions, adequate humidity levels must be pro-
vided (Doberski 1981). These difficulties require efforts to 
develop new formulations that will enable nematodes to sur-
vive until they find their hosts and need to be tested under 
field conditions.
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