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Abstract
Weed detection and classification are considered one of the most vital tools in identifying and recognizing plants in 
agricultural fields. Recently, machine learning techniques have been rapidly growing in the precision farming area related 
to plants, as well as weed detection and classification techniques. In digital agricultural analysis, these techniques have played 
and will continue to play a vital role in mitigating health, agricultural, and environmental impacts, improving sustainability, 
and reducing herbicides. Deep learning-based models are employed to solve the more sophisticated agricultural issues using 
individual CNN networks and hybrid models. Such models showed promising results. This paper highlights the major trends 
from the particular review of detection and classification approaches for weed plants. This review elaborates on the aspects 
of using traditional methods and deep learning-based methods to solve weed detection problems. It provides an overview 
of various methods for weed detection in recent years, analyzes the benefits and limitations of existing machine learning 
techniques, including deep learning techniques, and introduces several related plant leaves, weed datasets, and weeding 
machinery. Evaluation of the existing techniques has been compared, taking into account the real-world dataset used, 
images’ capacity, and shortcomings. Furthermore, this study helps to introduce the promising results and identify critically 
the remaining challenges in achieving robust weed detection, which could support noteworthy agricultural problems and 
assist researchers in the future. The significance of this study is to provide the potential techniques for solving illumination, 
overlapping, and occlusion issues of leafy plants, as well as other plant issues.

Keywords Weed species detection · Computer vision · Deep learning · Machine learning · Real-world data

Introduction

Detection of weed plants is an important step in facing 
the difficulties of the agricultural environment. In the 
agricultural field, weed plants, as shown in Fig. 1, are 
unwanted plants for their adverse impact on a crop’s 
productivity as they compete with crops for significant 
environmental resources (Adhikari et al. 2019; Hamuda 
et al. 2016). Its an aspect of plant or vegetation that grows 
in the incorrect location and obstructs the growth of crops, 
cultivating forests, or plantations. These weeds can slow the 
growth of the crop and reduce the farm’s yield. Therefore, 
these weeds should be identified and detected. Accurate 
weed detection assists in increasing crop productivity and 
income by improving the management system to extract a 
particular group of weeds (Wang et al. 2019a). Previously, 
the farmer used the manual hand-removal technique to 
remove the weeds manually. It detected the weeds by 
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testing every region of the farm. Then, it plucked them 
out manually using their hands. Manual weeding presents 
numerous challenges, including time and cost constraints, 
labor-intensive detection work, and negative effects on crop 
productivity and the environment (Osorio et al. 2020).

Later, some automatic approaches commenced using 
advanced technology to remove the weeds, such as 
herbicides, chemical treatments for large-scale agricultural 
regions (Hamuda et  al. 2016), and automatic machines 
that do not use image processing and pattern recognition 
techniques to detect the weeds. Recently, image processing 
and computer vision methods have been used to assist in site-
specific weed management procedures to apply herbicide on 
a per-weed basis within a field (Etienne 2019). However, 
developing a weed detection system faces a major challenge, 

which requires annotated training data to differentiate 
between weeds and crops under various conditions, as 
illustrated in Fig. 2. Several studies focused on detecting 
multi-species of weeds by separating the weeds from grass 
(Binch and Fox 2017). Rumex obtusifolius L. (dockleaf) 
and Urtica are two significant broad-leaved weed plants 
that have spread across much of the globe (Kounalakis et al. 
2018; Šeatović et al. 2008; Van Evert et al. 2009). These are 
serious weeds and necessitate further work to be conducted. 
Urtica has smaller leaves than Rumex, and their edges are 
serrated (Binch and Fox 2017). They are low in nutrients 
and contain a lot of oxalic acids. Oxalates can cause animal 
health problems if taken in large amounts by animals, and 
they can also degrade product quality (Kounalakis et al. 
2019).

Fig. 1  Various weed plant species
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The main problem encountered by scientists in 
vegetation analysis is how to employ a method that can 
detect weed plants despite the presence of the illumination, 
overlapped, and occluded leaves of plants. Segmentation 
approaches for real-world images were insufficient in 
terms of accuracy and efficiency. Thus, it needs an efficient 
method, but with higher efficiency, to detect the optimum 
features that enhance the classification accuracy. Occluded 
leaves must be separated precisely and adequately without 
any distortion in the image. The previous works were 
implemented for an automated weed spraying system or 
weed control system. It helps the farmer reduce the time-
consuming, hand-labor cost, and avoid herbicide pollution 
of the environment. Therefore, it is required to develop 
detection methods that are based on artificial intelligence 
techniques to optimize the use of agrochemicals. A variety 
of detection and classification algorithms have been 
employed to build automated weed maps from UAV data 
in recent studies (Herrmann et al. 2013; Tian et al. 2020; 
Wang et al. 2019a; Weis et al. 2008).

When dealing with complicated data, however, recent 
state-of-the-art works have been proven (Alam et al. 2020; 
Gao et al. 2018; Liakos et al. 2018) that machine learning 
methods are more accurate and efficient than traditional 
parametric algorithms. Among these machine learning 
algorithms, support vector machines have been popularly 
used for weed and crop classification (Abouzahir et al. 
2018; Bakhshipour and Jafari 2018; Brinkhoff et al. 2020; 

Zhang et al. 2019). On the other hand, Kazmi et al. (2015) 
employed the KNN algorithm to detect creeping thistle 
in sugar beet farms. This paper aims to investigate real-
world data problems that face weed detection in precision 
farming. The following are the study's contributions:

• Study the effects of using real-world data for detecting 
broad-leafed weed plants.

• Investigate the machine learning techniques that were used 
to deal with real-world scenarios.

• A discussion of current methods for addressing features, as 
well as the implications of transfer learning and additional 
contextual information on the accuracy of these classifiers, 
as well as the accompanying augmentation strategies.

• A description of recent research on publicly available 
plant datasets, as well as a review of the data augmentation 
structures.

The following sections constitute this paper: The real-world 
dataset and its properties are described in Sect. 2. In Sect. 3, we 
go through the present state of weed detection and show how 
recent advances in detection and classification methods have 
been demonstrated in real-world weed images. The challenges 
of weed detection are highlighted in Sect. 3. Section 4 covers 
the discussion and future work, pointing to outstanding 
problems and future research possibilities connected to weed 
identification, as well as how to use the results to benefit from 
categorization in smart agriculture.

Fig. 2  The impacts of weed on agriculture and the importance of automated weed detection in agriculture
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Real‑world data

Real-world data refers to the data that is captured under 
various circumstances of illumination, overlapping, 
occlusion, diseases, and growth-stage regardless of the 
visibility of the whole leaf or plant and noises. Initially, real-
world conditions are a worth-mentioning issue in vegetation 
that has a significant impact on weed detection. Several 
cases face weed detection in their natural environment, 
including illumination, occlusion, and overlapping, which 
are inherent issues in real-world data as shown in Fig. 3. 
Partial occlusion is one of the real-world conditions that 
change the size and shape of the leaf, which reduces the 
accuracy of classification (Wang et al. 2019a) by more than 
5% (Hall 2018).

Table 1 depicts the specifications of the dataset that is 
utilized in the methods of various researchers. Occlusion 
means that some parts of a leaf are totally or partially 
covered by another leaf. It occurs due to various conditions, 
such as growth stages and the orientation of the camera 
during capturing (Hamuda et al. 2018; Lin 2010). Another 
reason for occlusion is the planting process, when the farmer 
plants extra seeds at the same site to increase the potential 
rate of germination. Additionally, weed can cause occlusion 
when it covers the crop’s leaves (Tian 1995). Usually, 
the potential for occlusion and overlapping occurrences 
increases in late growth stages (Espejo-Garcia et al. 2020; 
Fernández-Quintanilla et al. 2018).

An overview of weed detection systems

Both RGB and infrared (IR) imaging sensors have been 
employed in the field to acquire images for weed detection. 
The collected images are then fed as inputs to the processing 
techniques. Pre-processing, segmentation, feature extraction, 
and classification are common procedures in image 
processing (Weis and Sökefeld 2010). Figure 4 illustrates 
the general workflow and the input and output of each 
processing procedure.

Pre‑processing phase

The goal of the pre-processing phase is to improve 
the quality of the obtained pictures and make the ROI 
segmentation phase easier. The key goal of this phase is 
to improve segmentation and classification accuracy by 
removing background noise and increasing object visibility. 
Noise can occur due to various causes, such as low-
resolution images, various illumination, inaccurate camera 
sensors, and undesired objects like soil, plastic, and other 

residues (Hamuda et al. 2017; Kamilaris and Prenafeta-
Boldú 2018). Koščević et al. (2020) stated three reasons for 
image illumination, including real farm images were taken 
under a natural lighting source; real-world images were 
taken under unreal lighting, and artificial images were taken 
under unreal lighting. Several factors have an impact on the 
image pre-processing, such as various illuminations, plant 
distribution in the field, the growth stage of the plants, and 
overlapping or occlusion leaf. Despite the multi-capturing 
image techniques for weed identification, contrast is still 
considered one of the most arduous challenges in image 
processing that necessitates an enhancement due to the 
various illumination conditions that cause noise.

Ali et al. (2017) and VijayaLakshmi and Mohan (2016) 
utilized Histogram Equalization (HE) to achieve three 
advantages, enhance the image contrast, remove background 
information, and provide the facility to process the redundant 
information and hidden details. Husham et  al. (2016), 
Kumar and Prema (2016) and Li et al. (2016) employed the 
Adaptive Median Filter technique for noise removal and 
alleviating image distortion instead of the standard median 
filter. AMF overcame the lack in removing the tiny details, 
which cannot be filtered out via the normal median filter. 
Then, morphological operations, including dilation and 
erosion, are performed to eliminate the small-sized weeds 
and extract the soybean crop images. Their results revealed 
that the proposed technique can detect or identify weeds of 
similar size and color. In another work, Sathesh and Rasitha 
(2010) mentioned that the limitations of AMF are that it is 
considered expensive and rough to compute. Adams et al. 
(2020) utilized size reduction and data augmentation in 
deep learning. They used an image resizing (size reduction) 
technique to scale down the image resolution. It converts 
the input image to a standard small square size of 256 × 256, 
224 × 224, 128 × 128, 96 × 96, and 60 × 60 pixels. Espejo-
Garcia et al. (2020) claimed that 224 × 224 is the optimal 
resolution for VGG-16, DenseNet, and MobileNet networks 
due to the high performance that was registered with this 
size. The benefit of their technique is that it minimizes the 
computing time.

Adhikari et al. (2019), dos Santos Ferreira et al. (2019), 
Hari et al. (2019), Krizhevsky et al. (2012), Lin et al. (2020) 
and Olsen et al. (2019) used data augmentation technique 
to address the short-scale dataset images and reduce the 
overfitting. They used such a technique to increase the 
training account of synthetic images to be adjusted and 
generalized in real-world issues (Chen et al. 2017; Kamilaris 
and Prenafeta-Boldú 2018; Mortensen et al. 2016; Namin 
et al. 2018; Sladojevic et al. 2016; Sørensen et al. 2017). 
Generalization is the process of testing or predicting the 
trained network on new data that has never been seen before 
(Sharma et al. 2020). Nonetheless, Wang et al. (2019a) 
state that the problem with training large-scale data is not 
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Fig. 3  Different real-world conditions for weed plants in agriculture a–c illumination, d–f overlapping leaves, g–i occlusion leaves, k–m leaves 
diseases
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effective due to its being time-consuming in calculating 
and annotating. Table 2 summarizes the use of the most 
prevalent pre-processing algorithms for vegetation imagery 
in machine learning and deep learning. In deep learning, 
the more training images fed into a deep learning network, 
the more accurate the predicted outcome images will be. 
In precision farming, weed segmentation is a challenging 
case for real-time applications. Mis-segmentation affects 
classification accuracy and causes low performance in 

weed detection (Hamuda et al. 2016). Occlusion and natural 
illumination contribute to a lack of segmentation and reduce 
classification accuracy (Slaughter et al. 2008). On the other 
hand, high segmentation performance plays a crucial role 
in enhancing precision farming and effective herbicide 
treatment (Hamuda et al. 2016).

Table 1  A description of the previous works' datasets

Author Image resolution Image format Number of images Capturing device

Lin (2010) 800 × 600 pixels RGB 2325 images of 6 weed species 
(1319 for training and 1006 for 
testing)

Camera

Kounalakis et al. (2016) Various resolution RGB 100 images of Rumex 
obtusifolius L

High-resolution camera

Binch and Fox (2017) 224 × 224 pixels RGB 10,000 images of Rumex and 
Urtica weed plants

Robot

Hamuda et al. (2018) 3840 × 2160 pixels RGB 12 MP Camera
Gao et al. (2008) 403 × 216 pixels Spectral band 96 total images for four types of 

weeds; Rumex, Convolvulus 
arvensis, Cirsium arvense and 
Zea mays

NIR camera

Abouzahir et al. (2018) 4000 × 3000 pixels RGB high-resolution Not mentioned A digital camera fixed to a drone 
and flying at a height of 4 m

Bakhshipour and Jafari (2018) 960 × 1280 pixels RGB 50 images of sugar beet and four 
common weeds in the sugar 
beet

Digital camera fixed at a height 
of 0.5 m

Espejo-Garcia et al. (2020) 128 × 128 pixels RGB 504 images Camera
Osorio et al. (2020) 1280 × 960 pixels Multi-spectral bands 100 images UAV
Alam et al. (2020) High-resolution RGB high-resolution 291 total images of 3 classes. 97 

images for each type of class
high-resolution camera

Fig. 4  General weed detection procedures
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Weed segmentation phase

According to Chen et al. (2014); Sørensen et al. (2017), 
both crops and weeds have a similar green color, making 
the differentiation process quite tricky. They used 
image segmentation to separate an image into various 
distinguishable regions by highlighting the ROI. Generally, 
the vital benefits of segmentation images are stated below:

• To simplify the learning process,
• to facilitate the selection of optimum features,
• to detect the weeds.

For image segmentation, there are two types of 
methodologies covered under computer vision: machine 
learning-based and deep learning-based.

Color index‑based machine learning methods

According to Wang et  al. (2019a), the color index is 
classified as one of the segmentation methods since it is 
used to separate the foreground from the background. Many 
works utilized color space transformation or color-based 
to separate the three standard channels of any color, Red, 
Green, and Blue (RGB) as a first stage to identify crops from 
the background. Woebbecke et al. (1995) invented Excessive 
Green color (ExG), ExG-ExR by Meyer and Neto (2008), 
Modified ExG (MExG) by Guo et al. (2013) and Burgos-
Artizzu et al. (2009) implemented threshold algorithms in 
precision farming to recognize between the two classes, 
soil background class, and plant vegetation class depend on 
vegetation segmentation. Few studies utilized color space-
based methods as an end-to-end for the distinguishing 
(Slaughter et  al. 2008). The process of transforming a 
gray image into a binary image is known as thresholding. 
Otsu (1979) is the first algorithm applied to determine the 
threshold value. Additionally, the threshold technique is 
based on both color space and leaf shape. To identify the 
class, thresholds were mainly applied to a transformation of 
the original image; for example, several color indices-based 
systems were discussed and employed either zero thresholds 

or a threshold based on Otsu's method. Selecting the proper 
threshold value can play an essential role in segmentation. 
For example, if the threshold value is set to be extremely 
high, some interesting areas would be combined with other 
areas to form one big area.

Finlay (2012) employed other data transformation 
techniques such as CIE Lab, Hue, CIE XYZ, Cyan, Majenta, 
Yellow, and Black (CMYK). ExG was deployed by Liu 
et al. (2016) to separate five seedlings species and five 
densities in a wheat field. Their proposed method counted 
the number of overlapped patches using a chain code-based 
skeleton optimization method. The performance of their 
ExG was 89.94% accuracy as an average to compute the 
number of wheat seedlings. Li et al. (2016) used the HSI 
(Hue, Saturation, and Intensity) model for analyzing colors 
to simulate the way that the human eyes can recognize the 
colors’ contrast. They elucidated the principal fact that 
despite the diversity in plants’ species colors, crops and 
weeds almost share the green color to various degrees. 
This contrast was observed in the hue and saturation bands. 
The intensity band represented by I band in HSI depends 
on changing the illumination under real light conditions. 
On the other hand, illumination has a low effect on the 
hue and saturation bands. The proposed method attained 
68, 83, 97, and 99% accuracy to discriminate celery 
cabbage, amaranthus tricolor, broccoli, and Chenopodium, 
respectively.

To decrease the overall noise of the dataset produced 
by the impact of illumination variations, the Normalized 
Difference Vegetation Index (NDVI) masks were used as 
one of the background reduction approaches (Haug et al. 
2014; Lee et  al. 2015; Prasanna Mohanty et  al. 2016). 
Kumar and Prema (2016) employed CIE Lab color space 
in their proposed Wrapping Curvelet Transformation-Based 
Angular Texture Pattern (WCTATP) Extraction technique 
for weed identification in the carrot field. The CIE Lab 
adjusts or balances the optimum contrast through the 
spectral feature. Firstly, Red, Green, and Blue (RGB) color 
space was transformed into absolute sRGB color space to 
set the contrast and correct the balance. After that the sRGB 
color was converted to CIE XYZ values, after which they 

Table 2  Some pre-processing 
methods in the agricultural field

Author Method Pros Cons

Husham et al. (2016) Adaptive median filter (AMF) Removing the tinny details Not discovered
Ali et al. (2017) Histogram equalization (HE) – Simplicity – Over-enhancement

– Easy implementation – Over-smoothing
 Image artifacts

Sørensen et al. (2017) Data augmentation – Generalize the model to 
adapt to the real-world

Data augmentation

Adams et al. (2020) Size reduction Reduce the computing time 
for training the network

Size reduction
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were transformed into linear sRGB values. Once the CIE 
XYZ value has been obtained, the D65 standard illuminant 
algorithm is performed to convert it to CIE Lab. Finally, the 
pixels were grouped into clusters depending on the dominant 
color of each pixel using the K-means method to separate the 
soil background, and plant vegetation.

Hamuda et al. (2017) proposed HSV for recognizing 
weeds, soil, and cauliflower crops using a threshold value for 
each band to identify the ROI. After which, morphological 
operations of erosion and dilation were applied. Their 
method achieved high performance with low detection error 
using controlled light conditions. The drawback with such 
a method was the sensitivity of HSV to the color, which is 
affected by leaf diseases and various illumination conditions 
that make sense. The author claims that the HSV color space 
is effective in addressing the illumination variations. The 
HSV color space, on the other hand, is more matched with 
human color perception and durable to illumination change, 
according to Hamuda et al. (2017).

Ali et  al. (2017) used Hue Saturation Value (HSV) 
color space to obtain various illumination spaces. These 
transformations aim to produce a superior predictive model 
than using the original form of the input image. Concerning 
contrast and noise issues, several methods are conducted 
to eliminate undesired noises and enhance the image's 
deformations. Wang et  al. (2019a) utilized background 
removal, foreground pixel extraction, or non-green pixel 
removal like soil, and other residues. Background removal 
is one of three factors, besides the transfer learning scheme 

and pooling category, affecting the performance of the fine-
tuning technique for the pre-trained model (Espejo-Garcia 
et al. 2020).

Rangarajan and Purushothaman (2020) proposed three 
color spaces for (YCbCr): Hue Saturation Intensity (HSV), 
grayscale, and Green (Y), Blue (Cb), and Red (Cr). The 
proposed work used the images obtained from the previous 
color spaces with the Visual Geometry Group16 (VGG-16) 
model to classify the eggplant diseases. The experimental 
results showed a high accuracy in classification for the 
images handled by the YCbCr color space. The author 
focused on five various diseases that threaten the Eggplant. 
Notably, all the images were generated manually due to 
the nonexistence of the related images. The extracted 
features were classified using the multi-class support 
vector machine (MSVM).

Espejo-Garcia et  al. (2020) and Kumar and Prema 
(2016) utilized the normalization or contrast scheme 
was used for contrast enhancement or color adjustment. 
Contrast means that the distribution of the pixel’s 
intensity value varies from the contiguous pixels, or 
it denotes the image resolution. Several factors have a 
great effect on image contrast, such as the distribution 
of black and white, boundary severity, and the duration 
of pattern recurrence. The normalization algorithm was 
used to eliminate the impact of the various illumination 
conditions like light, and shadow of the color channels. 
Moreover, the normalization algorithms can be used for 
background removal. This algorithm normalized the image 

Table 3  Transformation of 
common color spaces in 
vegetation

Author Method Description/formula

Burgos-Artizzu et al. (2009) MExG MExG = 1.262G − 0.884R − 0.311B

Guo et al. (2013) HSV V = M; withM = max

m = min; p = 60m∕M

Guo et al. (2013) CIE XYZ X = 0.607R + 0.174G + 0.200B

Y = 0.299R + 0.587G + 0.114B

Z = 0.066G + 1.116B

Guo et al. (2013) YcbCr Cr = 0.713(R − Y) + 128

Cb = 0.564(B − Y) + 128

Guo et al. (2013) ExG-ExR ExG-ExR
Li et al. (2016) HIS

H =

{

𝜃 ifB ≤ G

360 − 𝜃 ifB > G

� = cos−1
{

1

2
[(R−G)+(R−B)]

[

(R−G)2+(R−B)(G−B)
]1∕2

S = 1 −
3

(R+G+B)
[min(R,G,B)]

I =
1

3
(R + G + B)

Kumar and Prema (2016) CIE Lab L∗ =
{

116Y
1

3 ifY > k;903.3Y ifY ≤ k
}

with

k = 0.008856

a∗ = 500(f (X) − f (Y))with f (t) =
{

t
1

3 if t > k

7.787t + 0.1379 if t ≤ k}

b∗ = 200(f (Y) − f (Z))
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in its green channel. Table 3 depicts the common color 
spaces in the vegetation field. As a result, Rangarajan 
and Purushothaman (2020) found that using gray and 
HSV color space with ResNet-101, GoogLeNet, AlexNet, 
and DensNet-201 classifiers resulted in low accuracy. 
However, ResNet-101 and GoogLeNet achieved higher 
results with RGB images than AlexNet and DensNet-201.

Learning‑based segmentation methods

Although colored-spaced methods achieved promising 
results in the segmentation of green plants, their ability to 
deal with real illumination conditions such as sunny and 
cloudy days is limited. Colored-spaced methods achieved 
promising results in the segmentation of green plants, their 
ability to deal with real illumination conditions such as 
sunny and cloudy cases is limited. Two types of learning-
based methods are stated under this section; the first one 
is the supervised-learning method, and the second one is 
the unsupervised-learning method.

Supervised learning‑based segmentation methods Tian 
and Slaughter (1998) presented the Environmentally 
Adaptive Segmentation Algorithm (EASA), a partially 
supervised learning algorithm, to segment cotyledon 
crops in outdoor plants under different lighting conditions. 
Their algorithm was based on the automatic generation of 
a look-up table (LUT) of the RGB images. A group of 
observations was considered self-learning for clustering 
to build the structure of similar pixels. Clustering is 
considered the key point of EASA. The advantage of this 
algorithm is the ability to process the daytime changing 
conditions from the environmental cases compared with 
other trained methods under sunny conditions. One of the 
drawbacks of such an approach is that it requires a large 
amount of data to train. Furthermore, it demonstrated low 
quality in detecting the cotyledon crop under overcast 
conditions. Bergasa et  al. (2000) applied Gaussian 
Mixture Modeling (GMM) to work with real-world 
RGB images and multi-backgrounds. Meyer et al. (2004) 
developed Fuzzy Clustering (FC) to extract and recognize 
plants from soil and other residue using ExR and ExG 
color space for real-time application. The benefit of this 
method is the ability to differentiate the green plants from 
the background. The segmentation performance of such a 
method is decreased when the green pixels in the image 
are smaller than 10% due to insufficient color information.

Ruiz-Ruiz et  al. (2009) utilized EASA to segment 
sunflower crops under real-world conditions. They adapted 
EASA to work with different color spaces instead of 
using RGB, they employed Hue saturation (HS) and Hue 
(H). The authors claimed that using RGB color space 
is an insufficient process due to the convergence in the 

properties of the green color on the gray scale between 
the background and foreground objects. For this reason, 
clustering is an inadequate process. There are two stages 
to their method. The first stage of the segmentation process 
is the training stage. The second stage is generating the 
LUT for generalizing the segmentation in the real-world. 
As a result, the EASA technique that used RGB color space 
(Tian and Slaughter 1998) is regarded as time-consuming 
compared to EASA that used Hue and saturation (HS) or 
Hue (H) individually (Ruiz-Ruiz et al. 2009).

Zheng et  al. (2009) developed Mean-Shift and Back 
Propagation Neural Network (MS-BPNN) algorithm to 
enhance the segmentation performance. This method was 
implemented in the real-world to test various green plant 
species in different illumination conditions. To evaluate the 
segmentation quality of this method, two of the color-based 
methods CIVE, and ExG are employed for the benchmark. 
The mis-segmented areas are measured by manually 
labeling the foreground pixels with ones and the background 
pixels with zeros. Then, these values are compared to the 
segmented images to calculate the min, max, and average 
values of the mis-segmented rate. The overall results show 
that MS-BPNN outperformed both the CIVE and ExG in 
terms of segmentation quality and efficiency.

Zheng et al. (2010) proposed a different approach to 
enhancing the segmentation accuracy in soybean plants. 
They combined two methods, including MS with the Fisher 
Linear Discriminant (MS-FLD) approach. To evaluate the 
segmentation performance, they compared three color-based 
approaches, including CIVE, NDI, and, ExG with their 
proposed approach. The performance of the three color-
indices showed acceptable results, but they were unstable 
for all tested images compared with MS-FLD. However, the 
computation time was also assessed with the tree vegetation 
color-based. The evaluation demonstrated that the running 
time for the three compared methods was less than the 
proposed approach by 0.0156 and 3.3906 s, respectively.

Guo et  al. (2013) produced the Decision Tree 
Segmentation Model (DTSM) to segment wheat crops 
from the background for images captured under various 
illumination conditions. DTSM trained the extracted 
features using the Classification and Regression Trees 
(CART) classifier for creating the decision tree and noise 
removal. Unlike color-space methods, the threshold value 
is not considered in DTSM to be adjusted for each new 
image. However, the disadvantage of such a method is the 
use of training data. ExG, ExG-ExR, and MExG are three 
color indices that were utilized to evaluate the segmentation 
performance of the proposed model with these methods. The 
results showed that the DTSM outperformed the three color 
indices in segmenting the natural luminous and dim images.
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Unsupervised learning‑based segmentation methods Yu 
et  al. (2013) adopted a combination approach of the hue-
intensity (HI) look-up table and the Affinity Propagation 
(AP) clustering algorithm called AP-HI to separate the 
maize crops from the background under natural illumination 
conditions. To verify the validity of this method, five 
different methods were used, including three color-indices: 
CIVE, ExG, and ExGR with Otsu, one with mean threshold, 
and the fifth with EASA (Tian and Slaughter 1998). The 
results demonstrated that AP-HI achieved high performance 
in the segmentation of the maize in various illimitation 
circumstances. It scored 96.68%, while EASA registered 
93.2%. The advantage of AP-HI is the robustness to 
illumination changes. The disadvantage of such a method 
is that it shows low results in classifying some highlighted 
leaves’ patches. Geometrical distribution was utilized by 
K-Means to structure the similar pixels with common 
features into groups (Behmann et  al. 2015). Kumar and 
Prema (2016) used k-means to separate the background 
from the foreground and filter the image. The problem with 
K-means is that it requires a known number of clusters, 
which is difficult when there are unspecific numbers of plant 
species to be grouped in a cluster. To solve this problem, 
Hall et al. (2017) proposed the Dirichlet Process Gaussian 
Mixture Model (DPGMM), which does not require prior 
knowledge of cluster accounts (Hall et al. 2017; Wang et al. 
2019a).

Deep learning‑based segmentation models The researchers 
scrambled forward to develop their network depending on 
convolution, and deconvolution layers such as UNet, SegNet, 
reSeg multiscale FCN, and DeepLabV3 (Chen et al. 2017). 
Each of these segmentation models has its own powerful 
strength if it is applied to the correct dataset (Zhang et al. 
2018). Long et al. (2015) used a fully convolutional network 
(FCN) based on deep learning for image segmentation. Their 
method employed convolutional layers to increase the ability 
to detect accurate features better than the features extracted 
by traditional machine learning methods. Volpi and Tuia 
(2016) employed a Fully Convolutional Network (FCN) for 
pixel-wise segmentation to classify a vast area of vegetation. 
Multi-architecture versions of FCN are developed for pixel-
based high-fidelity UAV remote sensing imagery in an end-
to-end style. The first three generations included FCN-8s, 
FCN-16s, and FCN-32s. Lottes et  al. (2016) employed a 
fully connected network (FCN) for semantic segmentation. 
The experimental test exploits robust results with data that 
has never been applied before, so that it can generalize to 
work with real data.

Furthermore, it handled the data with various growth 
stages. The problem with their approach is that it addressed 
the crop or weed individually on an obvious background 
represented by the soil. In this case, the presence of 

overlapping issues is relatively low. Their approach 
evaluated the performance’s accuracy on recall to report 
94% and 91% for crops and weeds, respectively. Mortensen 
et al. (2016) explored the adapted VGG-16 for pixel-wise 
classification or semantic segmentation of RGB multi-
species imagery. Their proposed approach adapted the 
depth of the original VGG-16 to fit the number of classes. 
Furthermore, the fully connected layers of the convolutional 
connected layer were modified. In addition, 32-strides were 
added to the deconvolutional layer to make the output layer's 
size match the input layer's original size. They used the data 
augmentation technique in their approach to increase the 
dataset artificially.

Transfer learning was utilized in such an approach by 
fine-tuning the pre-trained weights to reduce the time-
consuming process of building from scratch. The problem 
with such an approach is that it is time-consuming to 
address the online conditions and the low accuracy in 
detecting small objects with fine details. The reported 
results of this network were 79% for pixel accuracy of 
multi-class images. Di Cicco et al. (2017) concluded that 
SegNet-based crop-weed segmentation can learn from data 
generated artificially. Transfer learning (life-long learning) 
technique was defined as the method of reusing or recycling 
knowledge gained from solving a certain problem. With 
a small number of changes in the original weights for the 
previous pre-trained model, the new transferred knowledge 
is ready to tackle a new separate task. This technique was 
employed to overcome the limitations of deep learning for 
the identification of high-resolution images. Another benefit 
of the transfer learning method is that the information in 
each image is recognized using features transferred from 
a previously trained CNN model (Kounalakis et al. 2019). 
Furthermore, the transfer learning approach is used to 
reduce the time-consuming for images labeled by the 
experts, which are then transferred into the synthetic world 
(Di Cicco et al. 2017; Pan and Yang 2009). Furthermore, 
transfer learning was utilized to overcome the overfitting 
issue (Espejo-Garcia et al. 2020). The disadvantage of their 
technique is that when the pre-trained data is smaller than 
the new data for achieving one task at a specific time. In this 
regard, multitask learning was utilized to reduce the time by 
achieving multitasks simultaneously instead of performing 
one task sequentially as in transfer learning; as a result, it 
enhances the generalization performance (Caruana 1997).

A novelty of the CNN-based approach proposed by 
Badrinarayanan et al. (2017) is the SegNet convolutional 
network for semantic pixel-wise segmentation. Some 
advantages of SegNet are the low consuming time, good 
utilizing memory, low number of parameters compared with 
other relevant networks, and finally, the ability to segment 
the overlapped plants. The author produced two versions of 
the SegNet network, the old small network consisting of only 
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eight layers, while the bigger version consists of 26 layers to 
handle the multi-classes. Whereas the problem with a new 
big version network is overfitting when addressing a small 
number of classes. Another CNN architecture for semantic 
segmentation was conducted by Milioto et al. (2018) to 
identify the sugar beets, weed, and background of the RGB 
images in real-time. They extracted extra information from 
14 channels using color-indices without the need for NIR-
infrared information to reduce the cost. Furthermore, their 
method addressed the heavily overlapping, various growth 
stages, and illumination. A new FCN model was proposed 
by Mohammadimanesh et al. (2019) to classify multi-classes 
in wetlands employing polarimetric (PolarSAR) imagery. 
The architecture of their CNN model consists of two stages; 
the encoder stage and the decoder stage. The first one is to 
extract the high-level features, while the second one is to 
up-sample into the spatial resolution of the original input 
size using the output data of the encoder stage as input data 

to feed it. Their proposed model used escape connections 
between the encoder and decoder layers. These connections 
are useful in transferring information between these two 
layers to enhance the extraction of spatial features. The 
results of the proposed model achieved 93% classification 
accuracy, which is higher than the FCN-8s and FCN-32s. 
The problem with their CNN model is ground truth images' 
limitations for remote sensing applications. Table 4 depicts 
the previous summary work.

Zhao et al. (2019) utilized UNet, or U-shaped network 
for segmentation, especially semantic segmentation tasks, 
which achieved high performance in medical images. It 
consists of two parts. The first one is the encoder, which 
shrinks or contracts the input image. The second one is a 
decoder, which expands the image to recover its original 
size. The encoder part contains max-pooling layers. The duty 
of the decoder part is to up-sample the low-level features 
to fit the original input size. The two parts are connected 

Table 4  Summary of weed plants segmentation approaches used by various authors

Plant disease detection architectures and fruit detection architectures

Work Task Method Evaluation Dataset

Kadir (2014) Crop identification GLCM Achieved 97.19%, and 95% 
for identifying the Flavia, 
and Foliage datasets 
respectively

Flavia, and Foliage datasets

Haug et al. (2014) Reduce illumination NDVI Achieved 94% as an average 
for background removal

70 images of organic carrot 
under controlled conditions

Mortensen et al. (2016) Segment the object Adapted VGG-16 Achieved 79% accuracy for 
semantic segmentation

Segment 7 types of classes

Kumar and Prema (2016) Weed identification CIE Lab + AMF + K-means Achieved a high result 
than SVM for weed 
identification

A set of 500 images for 
training, 500 images for 
testing, and 150 images for 
evaluation was generated 
from a carrot field and a 
Brinjal field

Liu et al. (2016) Background subtractor ExG color space Achieved 89.94% as an 
average for wheat seedlings 
counting

Real-world images of wheat 
seedlings

Lottes et al. (2016) Not mentioned FCN model (for semantic 
segmentation)

Achieved 94% and 91% as 
average on recall for crops 
and weeds, respectively

Sugar beet crops, corn crops, 
and weeds

Hamuda et al. (2017) Not mentioned HSV + Morphological 
operations

Achieved 98.9% accuracy in 
differentiating crops from 
weeds and soil under real 
conditions

Cauliflower crop, and three 
weeds’ species

Di Cicco et al. (2017) Not mentioned Basic SegNet Achieved around 90% in 
precision measure for the 
real data, and around 80% 
in precision measure for 
synthetic data to detect the 
crop from weed and soil 
under real conditions

A virtual crop field

Rangarajan and 
Purushothaman (2020)

Not mentioned HSV + YcbCr Achieved a high result than 
SVM for crop disease 
detection

Eggplant (Solanum 
melongena)
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via a bottleneck. The encoder was created to extract low-
level features, whereas the decoder was created to extract 
high-level features. Direct concatenation was utilized to 
merge the decoder and encoder parts. Despite the high 
performance of UNet with 3D architecture to benefit from 
the extra features, it still suffered from consuming memory 
and calculation complexity issues due to the vast number 
of parameters. Noori et al. (2019) used 2D architecture to 
overcome the memory issue in 3D architecture for brain 
tumor segmentation. One of the advantages of UNet 
convolutional layers is using the skip connection between 
the low-level characteristics from the encoder layers, and 
the high-level characteristics from the decoder layers using 
a residual unit.

However, Mahdianpari et al. (2018) claimed that using 
the skip connection not only facilitates the propagation of 
information in two directions, including forward propagation 
and backward propagation for computations but also 
assists in provide a powerful design network. Some studies 
used UNet for crop or weed detection and as one of the 
classification approaches for woody vegetation on satellite 
imagery.

Feature extraction and classification phase

In agriculture, there are four groups of descriptive features: 
visual textures, spatial contexts, spectral features, and 
biological morphological features (Slaughter 2014).

Visual texture feature

Humans can discern various aspects of texture through their 
senses, such as recognizing soft or hard, coarse or fine, and 
smooth or rough. In vision-based methods, the texture of 
an image is represented by calculating the clustered pixels’ 
intensity in the spatial. The Grey Level Co-occurrence 
Matrices (GLCM) method was used for extracting the 
texture feature. Texture analysis is one of the most vital 
features utilized in identifying plant species or focal areas 
to extract extra useful information (Bakhshipour et al. 2017; 
Kadir 2014; Wang et al. 2019a).

Van Evert et al. (2009) used two-dimensional Fourier 
analysis to detect Rumex obtusifolius, a broad-leaved 
weed, in a grass background. In the case of an image of 
R. obtusifolius, Fourier analysis revealed a significant 
contribution of high-frequency basis functions to the 
overall signal. The presence or absence of R. obtusifolius 
is determined by comparing the relative contributions of 
various basis functions to the original signal. The following 
Equation was used to convert photos from color to gray 
scale:

Spatial contexts feature

Principally, this feature is considered one of the oldest 
features, which was used to identify the plant cultivar 
using its leaves. In one of the first trials, Guyer et  al. 
(1986) depended on the accounted number of leaves. 
Besides, McCarthy et al. (2010) used the shape and length 
of each leaf as a spatial feature to recognize the little corn 
plants. In their method, elongatedness, index, moment, and 
central moment were used to determine the leaf's shape. 
Although the shape played an important role in identifying 
the leaf, it was still insufficient without employing other 
properties (Guyer et al. 1986). The curvature method is 
one of the earliest methods of detecting partially occluded 
leaves, proposed by Franz et al. (1991) to depict the edges 
of both fully and not fully occluded leaves. The author 
elucidated the impact that a not fully occluded leaf was 
recognized by aligning the resampled curvatures for every 
species. The problem with their method was that curvature 
alone was not sufficient to detect different aspects of 
serration.

According to Tian (1995), any plant's location is 
determined using the spatial image features of certain 
cotyledons. Their method employed the stem center 
during the seeding stage to specify the information plant 
location. Woebbecke et al. (1995) suggested a technique 
for distinguishing between dicot and monocot weeds, 
which represent two types of weed plants found in the 
western USA. The researcher suggested that the best time 
to handle these weeds must be considered between 14th 
and 23rd days. This young age is considered the ideal 
age for these weeds because their shape remains stable 
during this period. Lin (2010) claimed that shape-based 
computer vision approaches are ineffective for handling 
the occlusion issue.

Hall et  al. (2015) evaluated hand-crafted methods 
against self-extracted methods to depict the performance 
of feature extraction. To increase the challenge, the 
researcher created artificial images such as rotation, 
scaling, illumination, and occlusion to simulate the real-
world conditions for the application on the Flavia dataset. 
The classification accuracy results demonstrated that the 
combination of both approaches achieved approximately 
97% with a 0.6% error rate, while the machine learning 
method achieved 92% with a 1.6% error rate. However, the 
classification accuracy for ideal conditions outperformed 
5.7% as an average. Weed segmentation is regularly an 
issue for all weed classification systems that exploit visual 
shapes to classify plants (Hall 2018). He used AlexNet 

(1)I = rR + gG + bB
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and GoogLeNet to extract the boundary of the object or 
contour in a segmented plant image.

Spectral feature

Generally, most plants tend to be green regardless of their 
differences in size, direction, and occlusion under fixed 
illumination, which facilitates the segmentation process 
of vegetation. The worst part of vegetation segmentation 
occurred when some undesirable damages, occlusions, 
diseases, or shadows resulted in green color variation (Bai 
et al. 2014).

Biological morphology features

In agricultural fields, any plant or any of their parts have 
five biological morphology features represented by shape, 
structure, size, pattern, and color. Shape features play an 
essential role in both identifying plant species by human 
experts and image analysis for weed recognition (Slaughter 
et al. 2008; Slaughter 2014; Woebbecke et al. 1995). Some 
undesirable materials, such as clay or dead leaves, cause 
the occlusion and physical appearance changes of the leaf 
(Bai et al. 2014). Sarkar and Wolfe (1985) investigated the 
eight-neighbor code of the eight directions N, NE, NW, S, 
SE, SW, W, and E as a feature to identify the shape. This 
code represents the low degree of curvature of the chain-
coded tomato boundary. The author showed that the natural 
shape has a high curvature, whereas the unnatural shape has 
a minimum angle in the abnormal area. Their algorithm was 
designed to work under ideal conditions such as illumination 
and non-occlusion leaves. Initially, many techniques 
based on biological morphology were conducted to detect 

plants’ multi-species (Franz et al. 1991; Guyer et al. 1986; 
Woebbecke et al. 1995). These techniques examined the 
shape feature of the leaf’s parts and the complete leaf in an 
extensive range. The shape feature of the leaf represented 
by curvature is a crucial tool in detecting the plant species, 
while the shape of the whole leaf represented by height 
and width was noteworthy for distinguishing the occluded 
and overlapped issues. The importance of these techniques 
is to achieve high accuracy and precision in the detection 
of biological morphology features within unreal-world 
conditions when the leaves are well-separated (Lee et al. 
1999).

Søgaard (2005) utilized an active shape-based approach 
to handle the large-scale various plant shapes to classify 
the weeds. Shape or template techniques were employed to 
detect the leaf shape and the complete plant structure during 
growth stages. Notably, the previous template technique 
was designed to acquire an image of a seedling via a digital 
camera fixed on the top of the covered cylinder. The cylinder 
is covered with a cloth material to diffuse and decrease the 
amount of unrequired sunlight, or shadows. His approach 
applied to 19 various types of plants that were located on a 
Danish farm. Its usage was restricted to being applied only 
for the non-real computational time of weed maps, which 
was considered a robust processing speed compared with 
real-time images. Furthermore, Persson and Åstrand (2008) 
used active shape approaches with 19 to 53% of occluded 
plants in 2008 for variant training images and variant levels 
of description. The author concluded that the accuracy of 
recognizing the occluded weeds was improved by 83% after 
using the proper training images.

Deep learning-based feature extraction approaches are 
considered self-extracting features, which are the most 
innovative methods that are employed in this manner. The 

Table 5  Summary of all leaf features in vegetation

Features categories Feature name Description

Spatial contexts feature 1. Position/location To detect weeds outside the inter-row while the weeds 
inside the inter-row are considered crop plants2. Number of leaves (Woebbecke et al. 1995)

3. Shape or aspect of the single leaf (Woebbecke et al. 
1995)

Biological morphology 
features /geometric 
properties

1 Shape/form and curvature have been used as one of the 
major tools to identify plant leaves (Lee et al. 1999; 
Slaughter et al. 2008)

– Shape is used to detect Sugar beet (Lottes et al. 2016)

2. Structure (some plants have veins) (Slaughter et al. 
2008)

– Size object is used to detect the occlusion part (Tian 
1995)

3. Size
4. Pattern

Spectral feature Color Color is used to normalize the image in its green channel
Visual textures feature Texture is like bold, or smooth or rough, soft or hard, 

coarse or fine, matt or glossy (for humans) pixels are 
more homogeneous in intensity (for computers)

– To detect occlusion (Bakhshipour et al. 2017)
– To detect Rumex (Van Evert et al. 2009)
– Not effective with overlapping (Wang et al. 2019a)
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significant advantage of deep learning is that it incorporates 
self-learning characteristics without the need to extract 
these characteristics manually as in conventional machine 
learning methods. Table 5 depicts the features categories 
in vegetation.

Deep learning (DL) uses multiple convolutions to 
create various hierarchical representations of the input. 
This provides significant learning abilities as well as 
increases performance and precision. It is considered a 
multi-neural network architecture, including three models: 
CNN, Artificial Neural Network (ANN), and Recurrent 
Neural Network (RNN). Recently, CNN methods have 
gained popularity as an effective extractor and recognition 
method (Oquab et al. 2014). These features incorporate 
a fundamental process for the classification phase to 
obtain effective features using specific algorithms for 
the extraction process. Concretely, the main drives of 
these algorithms are to dispel unnecessary features and 
concentrate on valuable properties (Toğaçar et al. 2020). 
The classification stage is one of the crucial sections 
in any computer vision application related to images. 
Initially, the performance of classification depends on 
the features that were extracted from the previous stage. 
These features contain useful information, playing a 
crucial role in grading and determining the predicted 
image types.

The following section examines the most relevant works 
for classifying various weed species. There are two types 
of classification methods. The first one works under the 
concept of machine learning, while the second one uses 

deep learning convolutional architecture to classify the more 
convoluted issues.

Machine learning‑based weed classification methods

According to the traditional methods of machine learning, 
the features depend on humans to extract them manually. 
This process is time-consuming and requires changes 
whenever the dataset changes (Kamilaris and Prenafeta-
Boldú 2018). As a result, these characteristics are deemed 
highly effort-demanding, requiring well-known well-
knowledge with limited generalization (Amara et al. 2017). 
The classification accuracy (CA) technique is used to define 
the relationship between the number of correctly classified 
patterns and the total number of patterns. It can be defined as 
the ratio of the sum of true positives (TP) and true negatives 
(TN) to the total number of trials, which is the sum of TP, 
false positives (FP), false negatives (FN), and TN.

Some conventional machine learning performance 
evaluation tools, such as SVM and Random Forest (RF), 
tackle the shortcomings of conventional methods. Such 
methods have succeeded in resolving several pixel-based 
classification problems (Lardeux et al. 2009). Espejo-Garcia 
et al. (2020) focused on two species of crops, including 
tomato and cotton, and two species of weeds, including 
velvetleaf and black nightshade, to differentiate between 
these two categories, which were generated manually. 
The outcome of this approach showed a high accuracy of 
the classified crop/weed plants when combined with one 

Table 6  Summary of the common weed plants’ classification approaches

Study Objective Method Evaluation Dataset

McCool et al. (2017) Weed detection Adapted inception-v3 
(adapted-IV3)

Achieved 93.9% accuracy 1 million image

Tang et al. (2017) Crop identifying K-means + CNN Achieved 92.89% accuracy 
for identifying the 
soybean seeding, and its 
three species of weeds

Soybean seeding, and their 
three species of weeds

Hall (2018) Extract several features 
from leaves and classify 
them

Alex DCNN Random 
Forest

Achieved 97.3% Flavia dataset

Espejo-Garcia et al. (2020) Classify high-resolution 
imagery

UNet Achieved 90% accuracy Woody vegetation in 
Queensland

Yu et al. (2019) Detect + classify a single 
plant species

VGG-16 Achieved 99% on Recall 15,486 images of non-weed 
plants and 17,000 images 
of three weed types, 
including E. maculata, 
G. hederacea, and T. 
officinale weeds

Kounalakis et al. (2019) Classify Rumex weeds ResNet-50 Achieved 95% accuracy Broad-leaved docks (i.e., 
Rumex)

Rangarajan and 
Purushothaman (2020)

Classify five diseases for 
eggplant

ResNet-101 Achieved 94% on accuracy 
metric

Laboratory eggplant 
diseases
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of the deep learning models named Densenet with one of 
the traditional machine learning approaches represented 
by support vector machine (SVM) to extract features 
and classify these species, respectively. Even though this 
approach achieved high results in classification, the occluded 
leaf issue was not presented fairly. There are two groups of 
classification methods; the first one is supervised learning, 
such as SVM, RF, and ANN. Table 6 summarized some 
related methods for plants classification.

The second group is unsupervised learning, such as 
K-means clustering (Kumar and Prema 2016), and practical 
swarm optimization (PSO) based upon K-means clustering 
(Bai et al. 2014). In classical CNN, a random initial value 
is set to pre-train the model, which has great effects on 
increasing the error rate from one layer to another (Wang 
et al. 2019a). Tang et al. (2017) used a combination of 
the K-means algorithm and the CNN model to identify 
soybeans from three species of weeds. This method handles 
the shortcoming in traditional machine learning by fine-
tuning the weights of the initial value rather than using 
random weights. This method achieved 92.8% accuracy, 
exceedingly 1.8% higher than using the randomizing 
weights method, and 6% higher than the traditional CNN 
of two layers without fine-tuning parameters. The drawback 
of such a method is that it cannot be employed in real-time 
applications due to the time-consuming computation of a 
vast number of parameters. Generally, the most popular 
classification methods in vegetation based upon machine 
learning are SVM, RF, and CNN (Di Cicco et al. 2017).

Weed Detection Phase

Dyrmann et  al. (2017) and Yu et  al. (2019) exploited 
DetectNet to differentiate between crop and weed plants 
like wheat in real farm conditions. DetectNet is a Deep 
Convolutional Neural Network (DCNN) model based upon 
the GoogLeNet structure. It demonstrated promising results 
for detecting well-occluded leaves by dividing the data 
into two sets of training and validation with about 17,000 
labeled weeds. The approach faced difficulties in locating 
the tiny weeds, overlapped leaves, and crops. In addition, 
it cannot generate a precise bounding box that fits plants 
in their late growth stage. The performance’s accuracy 
was reported at 46.3% and 86.6% on recall and precision 
measures, respectively. Hall (2018) applied five different 
approaches. The first one was a hyper-method of traditional 
hand-crafted features (HCF) with a deep convolutional 
neural network (DCNN). The other methods include DCNN, 
HCF, HCF-ScaleRobust, and histogram of curvature over 
scale (HoCS). Their results were 96.6, 95.4, 90.5, 89.3, and 
72.0%, respectively. However, the hyper-method reported 
higher accuracy than other methods, except that it provided 
a consistent performance of about (± 1.3%), which was less 

than the (± 1%) of the DCNN approach. Otherwise, it is 
considered a superior consistent performance compared with 
the reset methods. The experimental results investigated that 
the accuracy of all his implementation works demonstrated 
low performance after adding a few extra occluded images. 
The disadvantages of their method are the limited training 
dataset and generalization (Wang et al. 2019b). VGGNet 
(Yu et al. 2019) outperformed GoogLeNet for detecting 
narrow and broadleaf weed plants in grassland. It exhibited 
high performance with various levels of mowing and 
various circumstances. Jiang et al. (2020) proposed the 
Graph Convolutional Network (GCN)-ResNet-101 method 
to recognize 6000 images of weeds and mixed crops such 
as lettuce, corn, and radish. The authors implemented 
ResNet-101 for feature extraction and then incorporated it 
with semi-supervised GCN for weed and crop recognition. 
The GCN builds the graph depending on the extracted 
features and establishes their Euclidean distances. The key 
idea in their proposed method is to find the relationships 
between limited labeled features from the CNN model and 
then measure the distance between each entity (i.e., feature) 
using Euclidean distances. After which, a propagation 
process is performed over the graph to test the samples for 
attaining useful features of unlabeled information from the 
extracted labeled features. Their GCN-ResNet-101 proposed 
method outperformed the compared CNN models, including 
AlexNet, VGG-16, and ResNet-101. It scored various 
accuracy levels, ranging from 96 to 99%, in recognizing 
four weed species.

Overfitting and underfitting are the two common causes 
of poor performance in convolutional networks using CNN, 
or RNN during training data. Overfitting means that the 
model starts to learn useless features (Espejo-Garcia et al. 
2020), especially when the model tries to predict a trend in 
noisy data, caused by the vast number of parameters that 
can affect the performance’s accuracy. Another reason was 
monitored by (Kounalakis et al. 2019) related to using the 
data without any constraint in the training time considering 
that the background dominates the plant. Furthermore, the 
author observed that when the amount of training data is 
small compared to a high training rate, overfitting might 
occur (Kounalakis et al. 2019; Lin et al. 2020; Rangarajan 
and Purushothaman 2020). The model must predict any 
future data that was unseen before by the model to achieve 
the machine learning goal. Overfitting is observed when 
the model has well-performance in the trained data and 
low performance in the tested data. To avoid overfitting, 
there are several techniques such as dropout, augmentation, 
fine-tuning of the transferred learning, and background 
removal. Espejo-Garcia et al. (2020) showed that overfitting 
is a sophisticated case impacted by many factors. These 
factors cannot be measured using a single metric. Dropout 
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is a robust regularization method for convolutional neural 
network models employed in Python with Keras.

Dropout is utilized to avoid overfitting by adding dropout 
layers in the backward pass training. In most cases, dropout 
using ignore technique of some nodes and learning the reset 
nodes all the possible features to enhance the learning (You 
et al. 2020) to generate more robust features by reducing 
the dependency between neurons (Dyrmann et al. 2016). 
Krizhevsky et  al. (2012) used the dropout technique to 
avoid overfitting. They set zero for every single hidden 
node with a probability equal to 0.5. In this case, all these 
nodes with zero values are dropout from the participation 
in both foreground and backward propagation. The benefit 
of this technique is that it mitigates the complexity of the 
architecture by eliminating these nodes every time while the 
weights remain fixed. Furthermore, this technique assists 
the network in learning robust features as the nodes change 
their connections during the pass. The last technique in DL 
is image augmentation, which was applied to enhance the 
performance and mitigate overfitting (Lin et al. 2020) by 
increasing the training samples. Different transformation 
ways of single processing or combination of multiple 
processing for augmentation, include scaling (Li et al. 2018), 
changing the pixel intensities (Lin et al. 2020), random 
rotation, flips horizontally, or vertically (Noori et al. 2019), 
shifts, shear (Rangarajan and Purushothaman 2020), salt-
pepper noise, blurring, and Gaussian noise (Espejo-Garcia 
et al. 2020). Furthermore, data augmentation was used to 
improve generalization (Espejo-Garcia et al. 2020).

To enhance the classification accuracy for a large-
scale image, as with ImageNet, Simonyan and Zisserman 
(2014) proposed a convolutional network (ConvNet) model 
with more convolutional layers than the 19 weighted 
layers. McCool et al. (2017) presented an adapted deep 
convolutional neural network (DNN) called Adapted-IV3 
to detect weeds in a crop field. This approach used two 
features: pixel statistics and shape features. Despite the 
ability of this method to segment the partially occluded 
leaves accurately, it has high computations, time-consuming 
for processing, and requires memory space due to the 
enormous numbers of parameters. These limitations restrict 
this method from being applied in the real-time system. 
Deep learning models performed with higher accuracy in 
classification than machine learning methods. Kamilaris 
and Prenafeta-Boldú (2018) showed that CNN achieved 
1–8% higher CA in comparison to SVM. In addition, CNN 
performed more accurately than unsupervised learning, with 
more than 10% using the same measurement (i.e., CA) (Luus 
et al. 2015). Flood et al. (2019) employed U-Net to classify 
and map the presence and non-presence of woody trees 
using a very high resolution of RGB imagery. The UNet 
network was affected by the texture and shape of the small 
areas consisting of various scales. The median accuracy of 

this method is 90% for classifying three woody and non-
woody classes. The limitation of this model is the per-pixel 
classification, which is quite a restricted implementation 
to work only with satellite imagery. Residual nets such as 
ResNet-50 and ResNet-101 extractors are employed by He 
et al. (2016) on the ImageNet dataset. They used the faster 
RCNN as a detector model. Both extractors have similar 
performance. Olsen et al. (2019) adapted the faster RCNN 
to handle the time-consuming issue of small objects remote 
sensing. They adapted the network architecture of RPN, top-
down, and skip connection. A simple sampling strategy is 
used to accelerate the unbalanced number of classes. Their 
results showed an improvement in the average precision for 
detecting small objects in remote sensing images.

Olsen et al. (2019) implemented two CNN-based models, 
including Inception-v3 and ResNet-50, on multi-species 
of weeds from eight various regions. The total number of 
images in the dataset is 17509 images, which are freely 
available in DeepWeeds datasets. ResNet-50 showed slightly 
higher performance in accuracy than Inception-v3 overall. 
This high performance of ResNet-50 is due to the complexity 
of its architecture, which has a vast number of parameters 
compared with Inception-V3. Both of these models 
require a powerful GPU card for processing the complex 
architecture in a real-time application. Rangarajan and 
Purushothaman (2020) tested the most popular classifiers of 
deep learning networks, including ResNet-101, GoogLeNet 
(22 layers), AlexNet, and DensNet-201. The results of the 
tested networks showed that ResNet-101 gained higher 
accuracy than other networks. For broad-leafed Docks (i.e., 
Rumex), Kounalakis et al. (2019) approved that ResNet-50 
outperformed ResNet-101 in weed recognition.

Gao et al. (2020) employed a combination of artificial 
and real data to detect the weed in the sugar beet field. Their 
proposed method developed a CNN-based tiny YOLO-v3 
(You Only Look Once) model to detect sepium weed on a 
sugar beet farm. The number of generated training datasets 
for the artificial data was 2271, and the number for the 
real data was 452. K-means clustering was employed to 
calculate the size of the anchor box. The results of their 
method revealed that combining synthetic data with real 
data improved performance by 7% when compared to using 
only real data. Unfortunately, because their real-world data 
did not include an overlapping case, their method cannot 
be generalized to real-time conditions. Nevertheless, their 
proposed method reported high performance in terms 
of accuracy and speed compared with YOLO-v3 and 
tiny YOLO. Mask R-CNN (Region-based Convolutional 
Neural Network) is a robust model to obtain individual 
segmentation, which is known as instance segmentation. 
Osorio et al. (2020) employed this model to extract multi-
objects from an image. Mask R-CNN provides a wealth 
of information regarding each detected object. The main 
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issue with most object detection techniques is that they are 
concerned with locating objects using only the bounding 
box. The good idea with Mask R-CNN is not only to detect 
the location of each object but also to mask the outline of 

the object boundary. The cons of this model are the loss 
of its consistency and insufficient morphological features 
such as shape, structure, pattern, and size. In addition, Ren 
et al. (2016) claimed that Mask R-CNN is computationally 

Table 7  The most common CNN approaches for plant detection in the agriculture field

Study Objective Method Evaluation Dataset

He et al. (2016) paddy and wild millet 
Detection

Faster RCNN RCNNA improved mean 
intersection over union 
(mIoU) detection for paddy 
and wild millet by 6.29% 
and 6.14%, respectively

760 total images, 660 for 
training and 100 for testing

McCool et al. (2017) Weed detection Adapted Inception-v3 
(Adapted-IV3)

Achieved 93.9% 1 million multi-spectral 
images

Dyrmann et al. (2017) Detect heavy occluded leaves DetectNet Achieved 86.6% in precision 
measure

17,000 annotated images of a 
wheat plant

Junfeng Gao et al. (2020) Crop + weed detection CNN-based YOLO-v3 Achieved around 90% 
accuracy

A combination of 2271 
artificial and 452 real sugar 
beet crop and C. sepium 
weed data

Osorio et al. (2020) Weed detection NDVI + Mask R-CNN Achieved 94% accuracy on 
F1-measure

Multispectral imaging

Fig. 5  Multi-weed detection issues
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intensive. Table 7 summarizes the most recent cutting-edge 
work on vegetation categorization.

Weed detection challenges

All the discussed methods that are aforementioned above 
for weed detecting and classifying, encounter difficulties. 
As illustrated in Fig. 5, these problems are mostly relevant 
to lighting, overlapping, occlusion, development stage, 
inadequate data, time-consuming, and low precision. To 
some extent, the approaches mentioned in the previous 
section all encounter and overcome these problems. Various 
kinds of difficulties are stated as follows:

• Uncontrolled lighting conditions increase the amount 
of noise in an image by affecting contrast, brightness, 
saturation, reflections, and shadows. Thus, it minimizes 
the image quality and necessitates robust processing 
to avoid it. The normalization algorithm was used 
to eliminate the effects of the various illumination 
conditions, such as light and shadow of the color 
channels. However, this review shows that color 
transformation and threshold approaches produce 
low performance in the presence of high/over or low/
insufficient illumination variations. Deep learning-based, 
on the other hand, provides the promise of outcomes 
in dealing with illumination difficulties. As a result, 
illumination causes low accuracy in the segmentation 
and classification results.

• Leaves overlapping, caused by leaves stacking on top of 
each other to form an indistinguishable object that can be 
segmented as one object, is considered another serious 
issue. It affects vegetation processing. It decreases 
the performance of the weed detection approaches for 
crop plants and weeds. Observably, numerous studies 
showed that the most overlapped cases occurred in the 
late growth period rather than in the early stage of plant 
growth (Bakhshipour et al. 2017).

• The influence of occlusion in leaves is one of the most 
challenging for weed detection. Some researchers depend 
on plant height as a solution for occlusion to recognize 
the weed from the crop, as the weed grows more rapidly 
than the crop. The spectral feature is robust enough to 
detect the partial occlusion issue.

• The impact of various growth stage development 
plays a crucial role in changing the spectral, texture, 
and morphological features such as shape, leaf size, 
and structure. The growth stage affects classification 
accuracy and detection performance. In agriculture, 
each plant has multiple growth stages. In RGB images, 
the early growth stage is an arduous task for detection 
approaches to recognize crops from weeds due to the 

similarity of features at this period. Thus, to solve the 
growth stage issues, a sufficient number of samples is 
required to model the learning features of each growth 
stage.

Discussion and future trends

Several agricultural studies have been conducted and 
published, concentrating on weed plant detection. There 
are still some open research areas where a few have been 
conducted. As shown in Fig. 5, these open research areas 
have distinctive challenges that can be addressed in future 
work. One of these issues is the lack of standardized 
benchmarks and assessment metrics in this field. Some 
of these challenges, such as illumination and various 
growth stages, have been solved using deep learning, but 
it requires numerous labeled images, an accurate model 
with reasonable structure, and powerful GPU hardware. 
The majority of these researches were conducted under 
synthetic conditions in terms of lighting and grass density. 
Many methods have so far been proposed for vegetation 
analysis. One of these methods used an automatic model 
to generate the artificial dataset via a robot recognizing 
the crop and weed on a virtual farm. This method reduces 
the time-consuming annotation by the human expert (Di 
Cicco et al. 2017).

However, it is designed to work under unreal 
circumstances that have separated plants without any 
occlusion, as illustrated in Fig. 6. The problem with this 
method is that it cannot be generalized to work in real-world 
conditions (Ahmed et al. 2012).

McCool et  al. (2017) proposed an adapted deep 
convolutional neural network (DNN) for weed detection. 
Despite the high-performance accuracy of this approach, it 
is still not feasible to utilize in real-time applications due 
to its complexity in terms of speed and memory space. 
Gao et al. (2020) used a combination of synthetic and real 
data. According to their real dataset section, there was 
no overlapping issue, while the artificial data contained 
only two simple overlapped areas. These areas are not 
considered complicated enough to be detected. This 
method achieved high performance in terms of efficiency 
and accuracy. Dyrmann et al. (2017) used a fully connected 
network of the CNN-based DetectNet model to detect 
well-occluded weed leaves on a wheat farm during the 
winter season. This method works under real conditions, 
except that it suffers from generalization. The accuracy 
of this method can be enhanced using segmentation 
methods. Due to the complexities in the rangeland area, 
spectral-based approaches are considered challenging 
to apply in this environment. On the other hand, image-
based approaches are utilized to address the real-time 
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images captured under various illumination conditions 
collected using UAVs. This challenge can be solved in 
computer vision by identifying the plant species through 
its leaves (Olsen et al. 2019). However, in occlusion, the 
leaf shape is not displayed accurately, and the variance in 
the appearance is increased. For these reasons, there is 
insufficient information to learn the detector and classifier 
how to extract useful features (Zhou and Yuan 2019). 
Despite advanced weed detection approaches based on 
machine learning in the last decades, several challenges 
are faced with the real applications in the pasture including 
leaves occlusion, varying illuminations, and various 
growth stages (Wang et al. 2019b). Thus, these limitations 
motivate most machine learning techniques to work less 
sensibly (Slaughter et al. 2008). In this regard, further 
investigation researches were conducted in computer 
vision applications to handle these shortcomings (Lee 
et  al. 1999). Self-learning approaches, such as CNN 
models, represent the most state-of-the-art approaches 

compared with hand-crafted methods like SVM, since they 
have less effect on these shortages (Espejo-Garcia et al. 
2020). In addition, CNN has more accurate results than 
the support vector machine (SVM) and artificial neural 
network (ANN), and it reduces the problem of feature 
extraction selection (Osorio et al. 2020).

Additionally, this review highlighted the four common 
procedures for processing weed detection in agriculture. 
Some approaches have been tested and evaluated using 
images that were taken under controlled conditions (Di 
Cicco et al. 2017; Haug et al. 2014; Montalvo et al. 2012). 
Other works implemented their approaches using images 
that were taken in real-world conditions (Koščević et al. 
2020; Kounalakis et al. 2019; Kumar and Prema 2016; 
Liu et al. 2016) while others used mixed of artificial and 
real data (Gao et al. 2020). From literature analysis, weed 
detection has various tasks. Several factors that affect 
detection performance are shown in Fig. 5.

Fig. 6  Individual plant species

Table 8  Summary of critical 
real-world problems with 
vegetation images and the 
state-of-the-art methods to solve 
them

Problem Objective name Author Method

Illumination Avoid illumination You et al. (2020) ExG color space
Milioto et al. (2018) Semantic segmentation

Overlapping and 
occlusion

Detect, segment, and 
extract features

Mortensen et al. (2016) VGGNet
Lottes et al. (2016) FCN



764 Journal of Plant Diseases and Protection (2022) 129:745–768

1 3

• Some weed species share similarities in their features 
with crops. This will increase the challenge of the 
detection scenario.

• Most challenging part of weed detection is the 
classification of two green plants, represented by weed 
and grass, using real-world applications. The illumination 
issue affects the image contrast, while occlusion and 
overlapping issues impact the extracted features and then 
result in low classification accuracy.

• ML-based methods are not suitable to solve sophisticated 
problems like occlusion (Adhikari et al. 2019; Slaughter 
et al. 2008), which are overlapped due to their shallow 
layer to extract sufficient information. In the last decades, 
the trends to employ DL architecture networks relying 
upon CNN models (Dyrmann et al. 2017; Espejo-Garcia 
et al. 2020; Gao et al. 2020; Osorio et al. 2020) are 
dramatically increased by the researchers to overcome 
the knotted issue of ML methods as depicted in Table 8.

• A combination of hand-crafted and deep learning 
models introduces the opportunity for a more robust 
model that is able to detect the partially occluded leaves 
so that the classification accuracy is enhanced. This 
combination overcomes the limitation of manually-
designed extracting features in the shallow layer 
and overcomes the overfitting case in deep learning 
architecture.

Many works on detecting various species of weed plants 
in agriculture using machine learning and deep learning 
were discussed. In traditional machine learning, various 
color space transformations and segmentation approaches 
were utilized to separate the foreground from the background 
(Chen et al. 2017; Milioto et al. 2018). The obtained results 
are satisfactory in terms of efficiency. For more complicated 
issues such as real-world data, deep learning-based models 
produce promising performance in terms of accuracy (Di 
Cicco et al. 2017; Tang et al. 2017). In vegetation, the weed 
and crop leaves share similar features, especially in color 
and shape, which raises the difficulty of recognizing them.

In general, this study summarizes the features of leaves 
into four categories: biological morphology features, visual 
texture features, spectral features, and spatial contextual 
features. In deep learning, a tremendous number of 
possible features can be extracted to boost the performance 
of prediction results. For classification, single or multi-
approaches can be performed by hybrid machine learning 
methods with deep learning to produce one robust detection 
model. This model can be utilized in a robotic weeding 
system to perform precision farming or automated precision 
weeding. Various growth stages, diseases, illumination, 
overlapping, and occlusion are the most sophisticated issues 
of real-world data that face computer vision techniques in 

nature. The dedicated methods to overcome these issues 
need to be enhanced in terms of efficiency and effectiveness. 
A vast amount of data is considered a further issue facing 
researchers when they apply deep learning models to avoid 
overfitting and to generalize the model in reality.

Several future suggestions have been proposed. Firstly, 
the selected dataset should be sufficient and comprehensive 
to cover various real-world conditions for a robust model. 
Secondly, the intensive problem requires a more convoluted 
model to address it. For this reason, each scenario must be 
analyzed and studied thoroughly to trade-off the complexity 
and efficiency. Therefore, developing an automated weed 
detection application to detect multi-species of weeds 
under real-world conditions remains an open challenge in 
agriculture. To our best knowledge, one key point to be taken 
into account is utilizing the high dimensional resolution 
of multispectral images with CNN models to tackle the 
detection of weeds under real-world conditions. In the 
future, thorough investigations into new robotic machines 
that improve weed detection by reducing the effects of real-
world data in terms of efficiency and complexity are being 
considered.
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