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Abstract
The response of climate change to the existing biotic stresses in legumes especially fungal diseases is a key global concern. 
The legumes are attacked by several yield-limiting fungal diseases, and dry root rot (DRR) or charcoal rot (CR) caused by 
Macrophomina phaseolina is an important disease in legumes. There have been noteworthy scientific reports on the issue 
of how climate change is expected to be accountable for the survival and spread of M. phaseolina in legumes and other 
crops. In particular, microsclerotia, which are the source of primary inoculum, play an important role in the life cycle of 
M. phaseolina, help in survival and spread as well as disease initiation and development. Adaptation strategies through 
crop management (rotating field and cropping practices, use of chemicals and bio-fungicides) and development of resistant 
varieties through breeding could be developed, evaluated and pooled to partially cope with the impact of M. phaseolina in 
legumes. The adaptation strategies can support to alleviate some of the climate change impacts in disease spread in legumes; 
however, eventually, there is a boundary as to how far leguminous crops can adapt to the changing climate and can combat 
with the DRR/CR, which is essential for durable food security. Understanding the current status of spread of M. phaseolina 
in legumes due to climate change and limitations of the existing mitigation strategies is important, and there are many breaks 
for the future study. This review discusses the current status of significance of M. phaseolina in legumes, impact of climatic 
factors on its life cycle, survival and spread in different leguminous crops, adaptation strategies and impact of climate change 
on it as well as highlights important knowledge gaps for potential future research.
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Introduction

Current studies have proved that agriculture is vulnerable to 
climate change. Higher temperatures due to global warm-
ing tend to reduce the yield of crops and favor the pest and 
disease emergence and proliferation (Ghini et al. 2012). Cli-
mate changes are likely to affect survival rates and spread 
of the pathogens in diverse patho-systems, modify host sus-
ceptibility, resulting in changes in the impact of diseases 
on crops (Sharma et al. 2019). Earlier reports showed that 

increase in temperature,  CO2 concentration and drought due 
to climate change resulted in increased incidence/severity 
of crown & root rot and spot blotch diseases of wheat in 
Australia and South Asia (Sharma et al. 2007; Melloy et al. 
2010).

The legumes, which are known for their best food supple-
ments for the vegetarian populace, due to their high content 
of quality dietary protein (~ 25–28%), and other essential 
nutrients, minerals and micronutrients (Veni et al. 2016) spe-
cially in the developing countries, are challenged by several 
biotic and abiotic stresses especially in the present era of cli-
mate change. Among the biotic stresses, fungal disease, dry 
root rot (DRR)/charcoal rot (CR) caused by Macrophomina 
phaseolina (Tassi) Goid is one of the important diseases of 
food legumes worldwide (Indira and Gayatri 2003; Zhang 
et al. 2011). The pathogen has a widespread host range, caus-
ing economically important diseases in cereals and pulses. 
The pathogen infects approximately all food legumes, and 
inflicts severe yield losses predominately in chickpea (Cicer 

 * Abhay K. Pandey 
 abhaykumarpandey.ku@gmail.com

1 Department of Mycology and Microbiology, North Bengal 
Regional R and D Center, TRA,   Nagrakata, Jalpaiguri, 
West Bengal 735225, India

2 Department of Plant Pathology, College of Agriculture, 
CSK Himachal Pradesh Agricultural University, Palampur, 
Himachal Pradesh 176062, India

http://orcid.org/0000-0002-1235-5648
http://crossmark.crossref.org/dialog/?doi=10.1007/s41348-020-00374-2&domain=pdf


10 Journal of Plant Diseases and Protection (2021) 128:9–18

1 3

arietinum L.), soybean (Glycine max L.), mungbean (Vigna 
radiata (L.) R. Wilczek), pigeon pea (Cajanus cajan L. 
(Mill sp.) and urdbean (Vigna mungo (L.) Hepper) (Iqbal 
and Mukhtar 2014).

The pathogen is favored by warm climate and low water 
stress. Earlier, it was restricted to few crops; however, due 
to climate change, i.e., water scarcity during cropping 
period due to reduced rainfall and global rise in tempera-
ture, several minor pathogens may attain the status of major 
pathogens, and DRR/CR is no exception. It has become a 
serious emerging problem in legumes throughout the world 
including India, Myanmar, Pakistan (Khan and Shuaib 2007; 
Lodha and Mawar 2020), Sub-Saharan Africa (Songa and 
Hillocks 1996) and USA (Wrather and Koenning 2006). 
The work done on various aspects of DRR/CR, including its 
management on legumes and other crops, has been already 
reviewed extensively (Gupta et al. 2012a; Lodha and Mawar 
2020). This review discusses the available literature on MP 
with reference to its significance in legumes, infection cycle 
and impact of higher temperature and water stress on it, and 
spread of MP in legumes and its adaptation to other crops, 
disease management and knowledge gaps.

The economic impact of MP in legumes

Macrophomina phaseolina is both seed and soil-borne 
pathogen, infects seeds of several pulses and causes sig-
nificant reduction of seed germination and viability (Bhat-
tacharya et al. 1994; Sarita et al. 2014). The pathogen also 
causes seed infection during storage and deteriorating the 
seeds which results in substantial losses. The pathogen was 
responsible for seed deterioration in some stored legumes 
such as mungbean, urdbean, chickpea, soybean, pigeon pea 
and caused ~ 40% seed loss in South Asian countries (Rah-
man et al. 1999; Kumar and Singh 2000; Singh and Kumar 
2002; Ali et al. 2010; Patil et al. 2012; Haider and Ahmed 
2014; Ashwini and Giri 2014). The pathogen has reduced 
the seed germination and protein content (12.3%) of mung-
bean seeds (Kaushik et al. 1987; Patil et al. 1990). Relative 
humidity coupled with atmospheric temperature has a major 
role in the seed deterioration of legumes by MP, and increase 
in both the factors resulted in more infection, as infection 
percentage of seeds varied across the countries (Mbofung 
et al. 2013).

The pathogen also caused both pre-emergence and poste-
mergence mortality in legumes. Foliar infection results in 
reduction in pod size, poor seed set which ultimately leads 
to the reduction in yield. Yield losses up to 30% in India 
(Kaushik et al. 1987; Raghuchander et al. 1993) and 44% 
in Pakistan (Bashir and Malik 1988) have been reported 
due to DRR in the mungbean. In urdbean and chickpea, it 
caused ~ 40% disease incidence in India (Indira and Gayatri 
2003; Lakhran et al. 2018). During 1994, the estimated yield 

loss due to CR in soybean was 1.2 million metric tons in the 
top 10 soybean-producing countries (Wrather et al. 2001). 
Afterward, during 2003, a severe epidemic of soybean’s CR 
was reported in Iowa, USA (Wrather and Koenning 2006).

In addition, the average annual yield loss of grain soybean 
was 30–50% from Missouri (USA) (Wyllie 1988), and up to 
80% from India (Gupta and Chauhan 2005). Under the hot 
and dry climatic conditions, many agricultural crops are pre-
disposed to the infection and colonization by MP, resulting 
in drastic yield losses in chickpea (Lakhran et al. 2018), soy-
bean (ElAraby et al. 2007) and sunflower (Khan 2007). The 
pathogen infected the common bean, pigeon pea, soybean 
and cowpea in Kenya (Songa and Hillocks 1996), but per-
cent disease incidence or economic yield loss has not been 
estimated. However, CR caused 10% yield loss of cowpea 
production in Niger and Senegal, West Africa, which esti-
mated value was about $US 146 million (Ndiaye et al. 2010). 
Besides, MP has also reduced the production of mungbean 
sprouts in the European countries (Fuhlbohm et al. 2013).

Disease cycle

Macrophomina phaseolina is a pathogen of warm climate, 
attacks hosts predominantly under low rains and with 
increased temperature up to 35–40 °C (Sarr et al. 2014). 
Pathogen completes disease cycle through four phases, i.e., 
germination, penetration, parasitic and saprophytic phase 
(Dhingra and Sinclair 1978, Fig. 1). The pathogen survives 
for maximum up to 3 years in the soil and in crop’s debris 
in the form of microsclerotia (Su et al. 2001), which act as 
the source of primary inoculum during favorable conditions 
(Tonin et al. 2013). Microsclerotia (aggregation of hyphal 
cells) are spherical to oblong, black to chocolate brown, 
which germinate to produce hyphae during favorable con-
ditions (28–35 °C).

When host is under water stress, these microsclerotia ger-
minate on the root surface, produce appressoria and pene-
trate epidermal cell walls of the host through natural opening 
(Olaya and Abawi 1996). However, sometime during seed 
emergence, MP also infects through cotyledons, small root-
lets or via root surface injuries. The hyphae infect the host-
plant’s roots which enter the cortical tissue and grow inter-
cellularly. Once the hyphae spread inside the root system, 
they infect vascular tissue, and produce mycelia and sclerotia 
(pathogenic phase of the fungus—Fig. 1) inside the vascular 
tissue, and plug the xylem vessels (Babu et al. 2007). This 
prevents water and nutrients from being transported from 
root to the upper part of the plants, resulting in wilting of the 
host, or dies permanently due to systemic infection.

During the infection process, several mechanical pres-
sures and enzymatic reactions occur which leads to the pro-
duction of toxins, viz., botryodiplodin/phaseolinone, which 
further leads to disease development (Bhatt and Vadhera 
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1997; Abbas et al. 2019). With the progression of disease, 
infected plants dry up, and root decay with shredded appear-
ance. Charcoal-brown lesions on the roots and stems with 
production of dark mycelia, and black microsclerotia are 
reported as the prominent disease symptoms. Mycelial colo-
nization followed by microsclerotia formation occurs in the 
host tissue, once the host’s tissue starts to decompose. These 
microsclerotia are released into the soil after decay of plant 
debris, and the infection cycle continues (Fig. 1). In the field, 
microsclerotia enable the MP to survive in the adverse cli-
matic conditions. Therefore, microsclerotia play an impor-
tant role in the life cycle and epidemiology of MP, and in 
disease initiation and development. Soil moisture, tempera-
ture and relative humidity are the main environmental fac-
tors that influence the survival and spread of this pathogen.

Role of the temperature in disease infection/
development caused by MP

Current estimates of climate change indicate future rise 
in the global temperatures of 1 °C by 2025 and 3 °C by 
2050 (Philipp and Edwards 2020), which will increase the 
survival and spread of thermophilic/drought pathogens. 

Drought and pathogenic fungi are important stress factors 
affecting the plant health. Drought is either no rain during 
the cropping period (Wilhite and Glantz 1985) or natural 
disaster of below-average rainfall in cropped areas, resulting 
in less atmospheric, surface water or groundwater supply for 
the longer period (Getis and Fellmann 2000). In develop-
ing countries, a prediction of future climate change led to 
drought to become more frequent and has become an impor-
tant factor affecting crops (Valdes-Pineda et al. 2014).

Macrophomina phaseolina is a high-temperature loving 
pathogen, and its microsclerotia survive for a longer period 
under the higher temperatures and water stress conditions 
(Chamorro et al. 2015). In the infection cycle of MP, ger-
mination, penetration and parasitic phases are affected by 
the temperature. In the tropical humid climates, DRR/CR 
is becoming more intense with increase in temperature 
and moisture stress (Lodha and Mawar 2020). It has been 
reported that an increase in temperature (35–40 °C) triggers 
the pathogenic nature of microsclerotia and makes hosts vul-
nerable for infection (Olaya and Abawi 1996). This is due to, 
at the higher temperatures coupled with drought conditions, 
MP produces large number of microsclerotia (Akhtar et al. 
2011), and also, increase in temperature causes increase in 

Fig. 1  The disease cycle of dry root rot/charcoal rot pathogen, Macrophomina phaseolina 
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hydrolytic enzymes inside the microsclerotia which makes 
sclerotia more conducive for the infection (Kaur et  al. 
2012b). This evidence was supported by the findings of Kaur 
et al. (2012a), who reported the higher incidence of CR in 
pigeon pea was due to such atmospheric conditions.

In soybean-growing areas in the Central India, epiphy-
totics of CR occurred at temperature of 35–40 °C (Agar-
wal and Goswami 1974), and infection rate of ashy stem 
blight/DRR caused by MP in cowpea (Ratnoo et al. 1997) 
and other legumes (Lalita and Ahir 2020) was also highly 
favored by the higher temperatures (28–40 °C). In addi-
tion, recent reports revealed that the incidence of DRR 
and CR respective in chickpea and soybean in the tropical 
regions has extended many folds in last 2–3 years due to the 
prevalence of higher temperatures (35–40 °C) (Keote and 
Reddy 2019; Ishikawa et al. 2019). Hence, due to increase 
in temperature, shift in the geographical distribution, viru-
lence pattern and emergence of MP in the new areas may be 
predicted in near future (Arias et al. 2011). Consequently, 
the adaptation of MP at larger numbers of crops may also 
increase in the future. Thus, alteration in temperature may 
affect susceptibility of the host-virulence mechanism of the 
pathogen (Ghini et al. 2012).

Role of other climatic factors in disease infection/
development caused by MP

Soil moisture: If global temperature continues to rise, it 
will affect the rainfall resulting in intense water shortage. 
The WHO has estimated that half of the world’s popula-
tion will be living in water-stressed areas by 2025. Due to 
reduced rainfall, under water stress (10–40% soil moisture), 
MP becomes more virulent for the infection of legumes, as 
has been studied in sunflower (Tossi and Zazzerini 1990) 
and in sorghum (Arora and Pareek 2013). Low soil mois-
ture promotes the survival of microsclerotia for the longer 
period of time, resulting in increased saprophytic activity 
(Dhingra and Sinclair 1978; Maheswari and Ramakrishnan 
1999); on the contrary, high soil moisture (< 80%) deters the 
microsclerotia survival (Arora and Pareek 2013). The high-
est survival of the microsclerotial population was recorded 
at 0–5 cm soil depth (Lodha 1993), and 25% soil moisture 
led to maximum infection in chickpea, and in soybean due 
to MP (Ratnoo et al. 1997; Wokocha 2000; Patel and Ana-
hosur 2001).

Edaphic factors: Edaphic factors have also been reported 
to influence the life cycle of MP which alter the disease 
incidence. Sandy soil supported more infection by MP to 
legumes than the clay soil, as 78.33 and 51.56% wilting of 
chickpea have been reported in sandy and clay soils, respec-
tively (Raj Krishan et al. 1999). The variable wilting per-
centage may be due to the physical and chemical properties 
of the soil, which alter the host–pathogen interaction, and 

such edaphic may be responsible for the occurrence of DRR/
CR (Bashir 2017).

Relative humidity: Little work has been done on the effect 
of relative humidity on infection cycle of MP in legumes, 
in terms of disease initiation and development. A labora-
tory investigation revealed that MP grew efficiently at RH 
of 80–100%, and it declined at the lower humidity level (Ali 
et al. 1998). However, the role of RH in disease infection and 
development is still unclear.

Carbon dioxide: In addition to the temperature and water 
stress,  CO2 is also an important factor affecting the growth 
and multiplication of the pathogens. Presently,  CO2 concen-
tration in the atmosphere is 410 ppm and it is the highest 
since the start of agriculture, and is increasing by 2.3 ppm 
annually (Dong et al. 2020). The increase in  CO2 level will 
encourage the production of plant bio-mass and promote the 
growth of pathogenic microbes (Chakraborty et al. 2000). 
Under controlled conditions, increase in  CO2 resulted in 
increased germination and production of microsclerotia 
of MP (Wyllie et al. 1984); however, elevated  CO2 had no 
significant role on DRR incidence in chickpea as has been 
reported by Sharma (2012). In Brazil, rice blast and downy 
mildew of soybean increased with increased  CO2 concen-
tration (Goria 2009; Lessin and Ghini 2009), while severity 
of soybean rust reduced with increasing  CO2 concentra-
tion (Lessin and Ghini 2011). Therefore, due to greenhouse 
gases,  CO2 is rising day by day, and rising  CO2 levels can 
affect DRR/CR spread and incidence in legumes at global 
level needs to be confirmed by conducting more experiments 
in the control conditions.

The spread of DRR/CR in legumes and climate 
change

The spread of pathogens is the result of dynamic processes 
involving host availability, susceptibility of host, pathogenic 
virulence and congenial climatic conditions over a long 
period of time. Influence in the climatic factors alters the 
diversity and distribution of the pathogens as well as disease 
spread in diverse eco-climatic regions. Climate has a major 
role in spread and infection of MP, which is a temperature 
loving pathogen and shows significant correlation with the 
soil moisture, relative humidity and temperature (Dhingra 
and Sinclair 1978).

Macrophomina phaseolina is a polyphagous pathogen, 
and has a wide range of geographical distribution. In leg-
umes, earlier DRR/CR was major disease of soybean in 
India (Gupta et al. 2012a), but due to increase in tempera-
ture it has become an emerging disease of chickpea, mung-
bean and urdbean in the tropical regions (Khan and Souaib 
2007; Su et al. 2001; Lalita and Ahir 2020). DRR/CR is also 
spreading in legumes in the South Asia, and Southeast Asia 
(Su et al. 2001; Gupta and Chauhan 2005), USA (Wrather 
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and Koenning 2006) and presently posing a major threat in 
the African (Ndiaye et al. 2010) and European countries 
(Fuhlbohm et al. 2013). In soybean, the disease has spread 
in several states of the USA (ElAraby et al. 2007) and in 
the African countries (Songa and Hillocks 1996). In India, 
DRR/CR in legumes is distributed in the tropical regions, 
i.e., central and southern part of the country, but due to the 
future prediction of rise in temperature, it may spread in the 
northern parts of the country including temperate regions.

Worldwide, MP infects more than 500 crop species (Su 
et al. 2001; Iqbal and Mukhtar 2014). In addition to the food 
legumes, other dry season crops infected by MP are alfalfa 
(Medicago sativa L.), moth bean (Vigna unguiculata L. 
Walp.), peanut (Arachis hypogaea L.), corn (Zea mays L.), 
pepper (Capsicum annuum L.), sorghum (Sorghum bicolor 
(L.) Moench) and cluster bean (Cyamopsis tetragonoloba L.) 
in areas where maximum temperature goes up to 35–40 °C 
(Diourte et  al. 1995; Lodha et  al. 2002). The pathogen 
also infects the cool season crops such as potato (Solanum 
tuberosum L.), cabbage (Brassica oleracea L., Beta vulgaris 
L.), sweet potato (Ipomoea batatas (L.) Lam.) and sunflower 
(Helianthus annuus L.) where maximum temperature goes 
up to 25 °C (Suriachandraselvan et al. 2005).

Indeed, drought and rain periods during the crop cycles 
are deeply changing across the traditional agricultural areas 
worldwide, as reported by "The Intergovernmental Panel on 
Climate Change" (IPCC) reports in the last 15 years (IPPC 
2007). One of the examples of that is the increase in rain 
periods during summer in some of the EU Mediterranean 
growing areas which were characterized by hot and dry sum-
mer up to 10 years ago. That has deeply changed the interac-
tion between crops and climate in the different continents 
and Macrophomina specialization toward the crops in the 
last 15 years reflects this climate trend (Manici et al. 2014).

In contrast to the other soil-borne fungal pathogens that 
survive and proliferate in moisture conditions, MP survives 
in regions where change in climate results in higher tempera-
tures and longer moisture stress (Saleh et al. 2010; Arora and 
Pareek 2013). Mediterranean countries are known for longer, 
dry, hot summers with no rain and relatively shorter, frosty 
rainy winters (Goldreich 2003). These types of climatic con-
ditions favor the growth and multiplication of MP, and as a 
result, several crops such as strawberry, melon and cotton 
are attacked by the pathogen, causing substantial economic 
losses (Zveibil and Freeman 2005).

In the past, the yield production of crops had been con-
siderably negligible due to MP attack in those provinces, 
where earlier it was isolated only occasionally (Yang and 
Navi 2005; Zhang et al. 2011). Besides, MP, in the 1980s 
and 1990s that impacted on several arable crops apart from 
legumes, includes sunflower, sorghum, cotton and soybean 
(Dhingra and Sinclair 1978; Wrather 1995) that has been 
reported to accountable for adaptation and losses in the last 

decade in several other horticultural crops, viz., vine, melon 
and strawberry (Aviles et al. 2008). In recent years, the adap-
tation of MP to horticultural crops such as strawberry (Koike 
2008; Sanchez et al. 2016; Baggio et al. 2019) and melon 
(Cohen et al. 2016) which is threatening the horticultural 
production in California, Florida and in many other spe-
cialized horticultural cropping areas such as Chile (Sanchez 
et al. 2013) or Israeli (Chamorro et al. 2015) or Australia 
(Gomez et al. 2020) has been reported.

In Israel, MP has developed into the main threat to 
strawberry cultivation, and has become a key pathogen of 
importance in the other strawberry growing countries in the 
Mediterranean region (Freeman and Gnayem 2005). There, 
farmers adapt strawberry crop as an annual crop, and grow 
year after year without rotation. The pathogen proliferates in 
the remaining plant materials, generates inoculums for the 
following season’s crops. This, mutually with elevated tem-
peratures of the soil, creates most favorable conditions for 
the proliferation and contagion of strawberry by MP (Cham-
orro et al. 2015). The pathogen threatening the sunflower 
production in Italy under water stressed conditions was also 
pathogenic on other crops like soybean, safflower, sorghum 
and melon (Manici et al. 1995). They also reported that at 
lower temperatures isolates of MP from north Italy (colder 
areas) grew superior to the other isolates, and also displayed 
excellent adaptability to 40 °C.

Climate change alters the  plant–pathogen–environment 
interactions in different eco-climatic zones, resulting in a 
new distribution pattern. For the determining worldwide 
geographical distribution of the diseases, lower temperatures 
are often more significant than the higher temperatures. Con-
sequently, for pathogens which are presently limited by low 
temperature, enhancement in the temperatures may cause a 
better ability to overwinter at high latitudes and also can be 
extended the range of pathogens (Hill and Dymock 1989). 
In this regard, no records are available for the impact of 
climate change on the spatial and temporal distribution of 
MP/DRR/CR in legumes and needs to be addressed. This 
will give knowledge on the distribution pattern of DRR/CR 
across the country and impact of climate change which will 
help in disease control strategies.

Role of pathogenic and genetic variability 
in adaptation of MP, and climate change

In the tropical and semiarid tropical areas, increase in tem-
perature and water stress are expected to degrade the soil 
conditions (Bullok 1999). Investigation on the genetic vari-
ability of MP populations in mid-latitude areas suggests 
that the spreading probability of this pathogen would rise 
in combining years (Csondes et al. 2012). Since the micro-
sclerotia can survive for a longer period of time and their 
germination and adaptation to specific crops may increase 
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over a period of time (Kaur et al. 2013). Hence, an increase 
in variability is expected due to climate change (Tok et al. 
2018).

Morphological variations among the isolates of MP have 
raised queries about possible alteration in pathogenic and 
genetic diversity in pathogen isolated/ associated with dif-
ferent cropping systems. Genetic variations in MP isolates 
isolated from different hosts such as cowpea (Muchero et al. 
2011), peanut (Okwulehie 2001), sunflower (Aboshosha 
et al. 2007), beans (Mayek-Perez et al. 2002), sorghum (Das 
et al. 2008), soybean (Jana et al. 2005) and chickpea have 
been studied. Su et al. (2001) found that MP isolates from a 
given host were genetically similar to each other but distinct 
from those obtained from other hosts.

Likewise, MP also showed pathogenic variability among 
isolates collected from various hosts including legumes 
from different locations in Pakistan (Iqbal and Mukhtar 
2014), India (Kumar et al. 2017) and Kansas, USA (Jime-
nez 2011). It was observed that the fungal population had 
the ability to change within 3 years from its original popula-
tion as reported for Mycosphaerella graminicola (Chen and 
McDonald 1996). This is because of the sexual nature of 
pathogens and also of the use of different hosts in the same 
field. Perhaps, the same assumption can be drawn here in 
the case of MP, replacing genotypes with plant species. The 
high rate of genetic variability in MP isolates in response to 
altered temperature allowing it to adopt the new environment 
(Reyes‐Franco et al. 2006; Almeida et al. 2008).

Adaptation strategies in legumes against MP 
and future outlook

Leguminous crops are vulnerable to a large number of foliar, 
root rot and wilt diseases; however, DRR/CR is the disease 
of utmost importance which may flourish enormously due to 
climate change in near future, and it requires more research 
efforts. Climate change is envisaged in the form of extremes 
variation in the weather, i.e., drier and hotter summers, and 
less irregular rainfall in different geographical regions which 
will provide more favorable conditions for MP to complete 
its life cycle on leguminous plants and other hosts.

The present review revealed that climate change espe-
cially will have an important role in MP spread and develop-
ment in legumes and other crops from one region to another 
region. High temperature and low soil moisture may increase 
disease incidence in the traditional areas and in new niches 
where the crops may be introduced, i.e., rice fallows in 
northeastern plain zones of India and Myanmar. The patho-
genic and genetic variability among MP isolates has been 
explained for different hosts and few showed genetic adapta-
tion due to alteration in temperature and crop rotation. How-
ever, more investigations are required on the genetic adapta-
tion of MP with reference to different hosts under changing 

climate. Thus, understanding defense gene response in the 
host population may be of great significance for determining 
plants’ potential for adapting to climate change (Garrett et al. 
2006). Studies have been conducted to identify the disease 
resistance genes sensitive to the higher temperatures  for 
wheat rust (Chakraborty et al. 2011), and some other viral 
and bacterial diseases; however, no reports are available 
for DRR/CR. Therefore, future investigation is required to 
search the defense genes in legumes sensitive to the higher 
temperatures against DRR/CR.

Since higher temperatures and low soil moistures make 
MP more favorable for disease development in legumes; 
therefore, disease mitigation strategies should require adjust-
ment under the increase in temperature and drought period. 
In particular, use of chemical fungicides (Pawar et al. 2015; 
Athira 2017) and bio-fungicides (Shahid and Khan 2016; 
Latha et al. 2017) has shown potential efficacy against DRR/
CR and can be used as seed treatment or soil application 
prior to the sowing. Conversely, as far as MP is concerned, 
other schools of thought mentioned that these mitigation 
strategies are not effective nor economically acceptable for 
mitigation, because they are not economically sustainable, 
except for horticultural crops in greenhouse or other niche 
crops with high economic value, certainly not for legumes 
or any other field crop, and overall poor.

Therefore, cultural practices such as crop rotation with 
non-host annual crops (wheat and rice) can be adopted as 
an economic method for DRR/CR management (Singh et al. 
1990). But, crop rotation may cause emergence of new races 
of the same pathogen by altering genetics of MP, and it may 
be able to become pathogenic to infect a number of addi-
tional hosts due to climate change adaptation (Almeida et al. 
2008). Therefore, along with the crop rotation, soil solariza-
tion and soil amendments with zinc sulfate or neem cake or 
residues of Brassica-mixed farmyard manure (Ansari 2010; 
Latha et al. 2017) can be recommended in order to eradicate 
microsclerotia/MP populations from the soil.

In addition, if fungicides are used, the climate change 
may influence their efficacy (Juroszek and von Tiedemann 
2011); hence, there is a need to investigate the effect of cli-
mate change on the efficacy of chemicals, their residue in the 
soil/plant and development of resistance in MP populations 
to the fungicides. Besides, in the changing climate scenario, 
pathogens are likely to produce more virulent strains, and 
management strategies should focus on this by identifying 
more aggressive antagonists.

As far as host-plant resistance is concerned, in the 
developing countries, the legume breeding programs do 
not have potential strategies and sufficient resources for the 
development and deployment of resistant varieties against 
DRR/CR associated with climate change. There are few 
resistant/tolerant sources against DRR/CR available for 
mungbean (Choudhary et al. 2011; Haseeb et al. 2013; 
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Khan et al. 2016), urdbean (Iqbal et al. 2003), soybean 
(Talukdar et al. 2009; Pawlowski et al. 2015) and chick-
pea (Gupta et al. 2012b; Khan et al. 2013) in South Asia, 
but these resistant sources were region specific; therefore 
multi-location trials, at hot spot locations, to evaluate and 
identify the resistant sources at larger scale are needed to 
cope against MP strains existing in diverse eco-climates 
and the potential strains likely to emerge with climate 
change. This will help breeders in improving breeding 
approaches that will enable durable resistance over broader 
agro-climatic areas. In addition, rising atmospheric tem-
perature and  CO2 also influences the resistance behavior of 
genotypes (Chakraborty and Datta 2003) by changing the 
pathogen behavior (Kimball 1985); therefore, the newly 
developed breeding lines of legumes against MP should 
be evaluated under conditions of elevated temperature and 
 CO2 and water stress in order to get durable resistant lines 
for their utilization/implication in climate change scenario.

In addition to the adoption of improved cultivars of leg-
umes against DRR/CR, weather-based disease forecasting 
models are needs to be developed. It will assist to identify 
the meteorological factors like temperature and rainfall 
which will be significantly correlated with the disease. 
It will also help in the prediction of future scenarios of 
disease epidemics. Based on the future scenarios of dis-
ease epidemics, disease control strategies can be recom-
mended and ⁄or improved so that suitable approaches may 
be developed prior to disease attack. Using these fore-
casting models and recent biotechnological approaches, 
regional impacts of climate change on disease manage-
ment strategies need a relook in understanding the emerg-
ing scenario of host pathogen interactions. Thus, for effec-
tive management of the pathogen, distribution period of 
pathogens should be carefully investigated so that sound 
approaches may be developed prior to disease outbreak. 
In addition, understanding of period of overwintering of 
MP and its attack to the crops will probably facilitate the 
legume growers to apply prophylactic control measures at 
the right time in order to reduce the crop losses.
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