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Abstract
Global production of tomato has been hampered by the increased incidences of tomato viral disease. The high genetic het-
erogeneity of tomato plant viruses, because of their high mutation rates, has lead to ineffective control strategies and the fast 
spread of the viruses. Viruses utilize the resources in host plants for their replication. Therefore, identification and removal 
of the non-redundant proteins in the tomato plant based on the biological properties of the virus combined with an RNAi 
strategy may be a future control strategy. In this review, fourteen tomato viral diseases and their causal agents are reviewed 
and the control strategies for tomato viral diseases are discussed.
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Introduction

Tomato, Solanum lycopersicum L., is a major cultivated 
agriculture crop all around the globe, which garnered a 
worldwide production of over 180 million tonnes in 2017 
(FAOSTAT 2019). Based on the data from FAOSTAT 
(2019), China has the highest tomato production with over 
59 million tonnes in 2017 followed by Turkey, USA, Egypt, 
Italy, Spain, Mexico, Nigeria, Brazil and the Russian fed-
eration. Tomato can be consumed fresh or sold as soups, 
sauces and ketchup (Harvey et al. 2002). Besides being an 
edible food, several secondary metabolites found in tomato 
can be used as anti-oxidant and may also have anti-cancer 
functions (Raiola et al. 2014). However, as a crop, the high 
susceptibility of tomato to virus disease causes yield decline 
of between 70 and 95% and could affect supply (Rashid 
et al. 2016). Plant viruses consist of both DNA and RNA 
viruses where they can be in the form of a single- or double-
stranded DNA or RNA (Wang et al. 2012). The difference 

between DNA and RNA viruses is their mode of replication 
where DNA viruses rely on the DNA replication machin-
ery of the host and RNA viruses do not rely on the cellular 
DNA machinery of the host (Wang et al. 2012). Control of 
plant viruses remains an important agriculture issue due to 
its high mutation rate that promotes divergence of genetic 
strains (Garcia-Arenal et al. 2001). This leads to the need to 
study the host–virus interactions and viral gene expression 
to develop sustainable and efficient viral control strategies. 
This review targets to collate the current information on the 
viral genome, transmission methods, viral vectors and host 
plants as well as disease symptoms of virus diseases infect-
ing tomato to provide a better understanding of each virus. 
Additionally, current and potential control strategies will be 
discussed.

Types of tomato plant viruses

Tomato DNA virus

The genomes of tomato plant viruses are either DNA or RNA 
(Table 1). Among all the major tomato viral diseases, only 
viruses from the family Geminiviridae are DNA viruses. 
In this family, the genus begomovirus plays a crucial role 
as a pathogen that causes serious impact on economically 
important crops globally (Zubair et al. 2017). Geminiviruses 
are ranked second for the number of viruses in its family 
that affects both monocot and dicot plants (Rojas 2004). 
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However, according to Cantu-Iris et al. (2019), begomovi-
ruses infect dicot plants solely. According to Zhou (2013), 
begomovirus affects a wide range of dicot host species 
including Carica papaya, Capsicum annuum and another 
40 hosts that are listed in his review. Begomoviruses which 
replicate in the nucleus of the host have a twinned capsid 
morphology, with either a monopartite or bipartite circular 
single-stranded DNA (ssDNA) (Hosseini et al. 2010). Satel-
lite DNAs such as alpha satellites and beta satellites (Fig. 1) 
can be associated with the monopartite begomoviruses 
(Zhou 2013). There are also delta satellites which are non-
coding satellites associated with the begomovirus (Hassan 
et al. 2016). According to Rojas et al. (2005), these viruses 
replicate through double-stranded DNA (dsDNA) by a roll-
ing circle replication (RCR) mechanism. First, a dsDNA 
intermediate will be formed from the ssDNA genome and 
the viral ssDNA begins to amplify through the starting posi-
tion of RCR which is found within the conserved sequence 
TAA TAT TAC. Finally, the newly formed ssDNA will be 

encapsidated and then moved to the adjacent cells (Gutier-
rez 2002). Among begomoviruses, the Tomato yellow leaf 
curl (TYLC) has the most significant impact over tomato 
production by causing disease in subtropical and tropical 
regions worldwide (Moriones et al. 2011). A review of the 
“top 10 plant virus list” by Scholthof et al. (2011) showed 
that TYLC ranked third based on its scientific and economic 
importance while Suresh et al. (2017) listed a total of 96 
other species of begomovirus across the world that are 
infecting tomato.

There are six proteins (two ORFs in the virion sense and 
four ORFs in the complementary sense in DNA A; Fig. 1) 
encoded by monopartite begomoviruses, which are the genes 
that encode for the coat protein (V1), pre-coat protein (V2), 
replication-associated protein (C1), transcriptional activator 
protein (C2), the replication enhancer protein (C3) and the 
protein involved in movement and symptom development (C4, 
Ammara et al. 2015). V1 and V2 are in virion sense strand, 
whereas C1, C2, C3 and C4 in complementary sense strand 

Table 1  Tomato plant viruses and their corresponding GenBank accession number and genome size

Genus Species Genome size 
(bp)

GenBank accession no References

DNA virus
 Curtovirus Beet curly top virus (BCTV) 2930 KU892789 Rondon et al. (2016)
 Begomovirus Ageratum yellow vein virus (AYVV) 2750 KM051527 Mahmoudieh et al. (2016)

1342 KM051528
RNA virus
 Potexvirus Pepino mosaic virus (PepMV) 6450 AF484251 Aguilar et al. (2002)
 Tobamovirus Tomato mottle mosaic virus (ToMMV) 6398 KF477193 Li et al. (2014)
 Potyvirus Tobacco etch virus (TEV) 9539 DQ986288 Martinez et al. (2016
 Tombusvirus Tomato bushy stunt virus (TBSV) 4776 NC_001554 Hearne et al. (1990)
 Crinivirus Tomato chlorosis virus (ToCV) 8595 AY903447.1 Lee et al. (2018)

8249 KJ815045.1
 Torradovirus Tomato torrado virus (ToTV) 7808 NC_009013.1 Verbeek et al. (2007)

5403 NC_009032.1
 Alfamovirus Alfalfa mosaic virus (AMV) 3644 NC_001495 Cornelissen et al. (1983a)

2593 NC_002024 Cornelissen et al. (1983b)
2037 NC_002025 Barker et al. (1983)

 Cucumovirus Cucumber mosaic virus (CMV) 3382 MG182148 Moyle et al. (2018)
3050 MG182149
2218 MG182150

 Anulavirus Pelargonium zonate spot virus (PZSV) 3383 JQ350736 Giolitti et al. (2014)
2433 JQ350739
2655 JQ350737

 Ilarvirus Tobacco streak virus (TSV) 3523 FJ561302 Usha Rani et al. (2009)
2903 FJ561303
2213 FJ561301

 Orthotospovirus Tomato spotted wilt virus (TSWV) 8897 NC_002052 De Haan et al. (1991)
4821 NC_002050 Kormelink et al. (1992)
1404 NC_002051 De Haan et al. (1990)
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(Srivastava et al. 2015). Each protein holds a different func-
tion; for instance, the coat and pre-coat protein is responsible 
for virus movement in the plant, but the coat protein is also 
responsible for the movement between plants through insect 
vectors (Diaz-Pendon et al. 2019). While C1 and C3 ORFs 
are involved in replication, C2 is involved in transactivation 
expression of the virion sense genes and C4 determines (or is 
related to) pathogenicity (Zerbini et al. 2017).

Beet curly top virus (BCTV; Table 1; Fig. 1) is the causal 
agent of the curtovirus disease from the family Geminiviridae 
that is classified in the genus curtovirus (Jeger et al. 2017). 
This species was first discovered infecting sugar beet in 1967 
in Iran (Gibson 1967). The susceptible hosts comprise of 
cucurbit, bean, pepper, beet, tomato, potato and weed species 
(Lam et al. 2009). These viruses have circular ssDNA genome 
and encapsidated within twinned icosahedral particles (Lam 
et al. 2009). The genome of this genus possesses one intergenic 
region (IR), three virion sense and four complementary sense 
ORFs (Varma and Malathis 2003; Fig. 1). The complementary 
sense gene products are replication and transcription regulator 
proteins such as C2, C4, replication protein (Rep) and replica-
tion enhancer proteins (REn/C3) (Bolok Yazdi et al. 2008). 
Three other proteins are coded by the virion sense strand, 
including a V2 protein, movement protein (MP) and coat pro-
tein (CP) (Gutierrez 2002; Hosseini et al. 2010).

Tomato RNA virus

Tomato Monopartite RNA virus

The RNA viruses that affect tomato are all single-stranded 
viruses, but the genomes are either monopartite, bipar-
tite or tripartite. Potexvirus (family: Alphaflexiviridae; 
King et  al. 2012), Tobamovirus (family: Virgaviridae; 
King et al. 2012), Potyvirus (family: Potyviridae; Gibbs 
and Ohshima 2010) and Tombusvirus (family: Tombus-
viradae; Nasir et al. 2016) are made up of monopartite 
positive single-stranded RNA (ssRNA) genome (Table 1; 
Chung et al. 2008; Jeger et al. 2017; Luria et al. 2017; 
Verchot-Lubicz et al. 2007). Pepino mosaic virus (PepMV; 
Fig. 2) from genus Potexvirus is a flexuous, rod-shaped 
particle (Hanssen et al. 2010). The Potexvirus spp. consists 
of a ssRNA of positive polarity and contains five ORFs 
(Verchot-Lubicz et al. 2007; Fig. 2). The ORFs include 
replicase gene, triple gene block (TGB) encoding TGB1, 
TGB2 and TB3 for viral movement and suppress silencing 
and lastly coat protein (Agirrezabalaet al. 2015). Accord-
ing to Moreno-Perez et al. (2014), molecular and biologi-
cal characteristics of PepMV categorize it into six strains, 
including the North American strain (US1/CH1), the 

Fig. 1  Genome structure of circular single-stranded DNA viruses 
from genus Begomovirus and Curtovirus. Betasatellite is associated 
with some begomoviruses. There are six ORFs shown in DNA A 
of Ageratum yellow vein virus and seven ORFs shown in Beet curly 

top virus. Both have coding regions in both the virion and comple-
mentary sense strands. Sequence extracted from GenBank accession 
number of KM051527 and KM051528 for Begomovirus spp. and 
KU892789 for Curtovirus spp
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recombinant strain (US2), European strain (EU), Chilean 
strain (CH2), the original Peruvian strain (LP) and the new 
Peruvian strain (PES). PepMV was found to infect solana-
ceous crops as well as test plants such as S. tuberosum, S. 
melongena, Physalis florida, Nicotiana benthamiana and 
Datura stramoniu, with most of the host species in the 
Solanaceae family (Blystad et al. 2015).

For the tobamoviruses genus, viruses that have been 
found in tomato are Tobacco mosaic virus (TMV), Tomato 
mottle mosaic virus (ToMMV; Table 1; Fig. 2),  Tomato 
mosaic virus (ToMV), Tobacco mild green mosaic virus 
(TMGMV) and Tomato brown rugose fruit virus (ToBRFV) 
(Dombrovsky and Smith 2017). TMV, TMGMV and ToMV 
affect tomato production worldwide (Suresh et al. 2017). 
Tobamoviruses have rod-shaped particles (Luria et al. 2017). 
The susceptible crops of the tobamovirus include the Cucur-
bitaceae and Solanaceae families (Dombrovsky and Smith 
2017). Their genome possesses four ORFs (Li et al. 2017). 
The first two ORFs encode the replication protein while 
ORF-3 and ORF-4 encode MP and CP, respectively (Ishiba-
shi and Ishikawa 2016; Fig. 2).

Species of Potyvirus genus include Potato virus Y (PVY) 
and Tobacco etch virus (TEV) (Table 1; Fig. 2). The genome 
of potyviruses consists of a short ORF placed in the long 
ORF (Chung et al. 2008). Potyviruses have a positive-sense 
RNA genome with flexuous filament particles (Kenyon et al. 
2014). This RNA can perform as a messenger RNA (mRNA) 
where the 5′ non-coding part can be used as a promoter 
for translation (Sharma et al. 2014). The long ORF in the 
genome will be translated into a polyprotein and further cut 
into 10 useful proteins by virus-encoded proteinase (Trigi-
ano et al. 2003; Fig. 2) including the CP, nuclear inclusion b 
protein (Nib), nuclear inclusion a protein (NIa-Pro), nuclear 
inclusion a linked VPg protein (NIa-VPg), 6K2 protein, C1 
protein, 6K1 protein, P3 protein, helper component protein 
(HC-Pro) and P1 protein (Trigiano et al. 2003). The most 
distinctive characteristics of the potyviruses are the forma-
tion of the inclusion bodies in the affected cells (Edwardson 

1974). Based on the supplementary data of Gibbs and 
Ohshima (2010), host plants of PVY are not only tomato 
but Capsicum and Solanaceous species as well. Tsedaley 
(2015) has also compiled the natural and experimental host 
range of PVY in his review which includes Capsicum and 
Solanaceous species as well as ornamental plants and weeds.

Similar to Potyvirus, Tomato bushy stunt virus (TBSV; 
Table 1; Fig. 2) which is a part of Tombusvirus genus has a 
tiny unenclosed virus with isometric particles of diameter 
approximately 30 nm (Nawazet al. 2014). This monopar-
tite positive-sense ssRNA virus possesses five ORFs in its 
genome (Nawazet al. 2014; Fig. 2). Proteins coded by the 
first and second ORF are needed for replication of the virus 
(Scholthof et al. 1995). ORF-3 coded for coat protein, while 
the viral movement protein codes for cell-to-cell movement 
of the virus and in some plants for symptom determination 
is encoded by ORF-4 (Scholthof et al. 1993). ORF-5 plays a 
part in causing the necrotic symptoms as well as virus long-
distance transmission (Hafez et al. 2010). TBSV affected 
areas are Tunisia, USA, Portugal, Morocco, Germany, 
Canada, France, Italy, Great Britain, Spain and Argentina 
(Suresh et al. 2017). The hosts of this virus are lettuce, spin-
ach, apple, pear, tobacco, tomato, eggplant, tulip and pepper 
(Artelli et al. 2001).

Tomato bipartite RNA virus

The genus Crinivirus belongs to the family of Closteroviri-
dae and consists of positive-sense bipartite ssRNA genome 
(Wintermantel 2004). The member of this family all consists 
long and flexuous rod-shaped virions (Kiss et al. 2013). The 
first RNA encodes four ORFs for replication-associated pro-
teins (ORF1a, ORF1b, ORF2 and P5; Fig. 3). RNA-2 on 
the other hand codes for putative MP, CP, CPm (minor coat 
protein) and HSP70 homolog (Wintermantel et al. 2005). 
According to Wisler et al. (1998), this tomato virus was 
first assigned to the genus Closterovirus, but later it was 
attributed to the genus Crinivirus (Fauquet and Mayo 1999). 

Fig. 2  Genome structure of positive-strand monopartite RNA viruses from genus Potexvirus, Tobamovirus, Potyvirus and Tombusvirus. 
Sequences extracted from GenBank accession number AF484251, KF477193, DQ986288 and NC_001554, respectively
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Members of this genus are Tomato chlorosis virus (ToCV; 
Table  1; Fig.  3) and Tomato infectious chlorosis virus 
(TICV) (Hanssen et al. 2010). ToCV was named after TICV 
from the differences in RNA sequence, vector specificity 
and host range. Other than L. esculentum (tomato), hosts of 
ToCV include Zinnia elegans (zinnia, Tsai et al. 2004), C. 
annuum (sweet pepper; Lozano et al. 2004) and S. tuberosum 
(potato; Lee et al. 2018). Infected areas of TICV are North 
America, Europe, Turnisia, Asia and Middle East, whereas 
ToCV has been found across the globe (Suresh et al. 2017). 

Torradovirus genus is a bipartite virus with a positive 
ssRNA genome encapsidated into nonenveloped icosahedral 
particles, consisting of three open reading frames (ORF), 
RNA-1 encodes one ORF and RNA-2 encodes two ORFs 
(Sanfacon et al. 2009; Verbeek et al. 2013). The ORF in 
RNA-1 codes for the protease cofactor (Pro-Co), helicase 
(Hel), protease (Pro) and RNA-dependent RNA polymer-
ase (RdRp) (NC_009013.1). Two ORFs in RNA-2 include 
ORF1 encoding a polyprotein which includes the movement 
protein (MP), coat protein Vp35, Vp26 and Vp23 (Fig. 3; 
NC_009032.1). These viruses were placed in the new fam-
ily Secoviridae that comprises all plant viruses in the order 
Picornavirales and comprises of genus such as Torradovirus 
(Sanfacon et al. 2009). There are three new species belong-
ing to the Torradovirus novel genus, which are Tomato 
marchitez virus (ToMarV), Tomato torrado virus (ToTV; 
Table 1; Fig. 3) and tomato apex necrosis virus (ToANV; 
Verbeek et al. 2008). The discovery of these viruses was in 
2001 where symptoms such as necrotic or burn-like were 
seen in tomato crops in the southeast of Spain (Alfaro-Fer-
nandez et al. 2007). The early diagnosis initially showed 
the presence of PepMV, but after further studies, it showed 
different symptoms and ToTV was proposed (Verbeek et al. 
2007). After 2003, the same disease symptoms were seen in 
Mexican tomato crops where the tomato spotted wilt virus 
(TSWV) was first suspected to be the causal agent of this 
disease (Turina et al. 2007). However, the presence of the 
isometric viral particles as well as the characterization and 

the partial sequencing showed differences; thus, the ToANV 
was proposed (Turina et al. 2007). Even though it is highly 
similar to ToTV, the subsequent nucleotide sequence of the 
three ORFs was distinctive and so the virus ToMarV was 
suggested (Verbeek et al. 2008). The hosts of the ToTV were 
experimentally tested by Amari et al. (2008) and showed that 
this virus systematically infects S. melongena, S. lycopersi-
cum, C. annuum, Physalis floridana, N. tabacum, N. rustica, 
N. glutinosa and N. benthamiana.

Tomato Tripartite RNA virus

Among the five genera with tripartite genomes, four out of 
five are from the family Bromoviridae, for instance, Cucu-
movirus, Alfamovirus, Anulavirus and Ilarvirus. Viruses 
from Cucumovirus and Alfamovirus have icosahedral cap-
sids (Al-Saleh and Amer 2013; Krenz et al. 2015), whereas 
Anulavirus and Ilarvirus have quasi-spherical particles 
(Bratsch et al. 2019; Lapidot et al. 2010).

Alfalfa mosaic virus (AMV; Table 1; Fig. 4) is a member 
of the genus Alfamovirus and in the family Bromoviridae 
which possesses three plus-sense polarity single-stranded 
RNA (ssRNA) molecules (Al-Abrahim 2014; Fig. 4). The 
RNA is classified as RNA 1 to RNA 3 in descending order 
of molecular size, and each is enclosed into B, M and Tb 
components (Abdalla et al. 2015). AMV also affected some 
other vegetable crops such as eggplant (S. melongena L.), 
lettuce (Lactuca sativa L.), pea (Pisum sativum L.), bean 
(Phaseolus vulgaris L.), celery (Apium graveolens L.), 
pepper (C. annuum L.), alfalfa (Medicago sativa L.), bor-
age (Borago officinalis L.), tuberous comfrey (Symphytum 
tuberosum L.), cowpea (Vigna unquiculata (L.) Walp), mung 
bean (V. mungo (L.) Hepper), chickpea (Cicer arietinum L.) 
and tumble pigweed (Amaranthus albus L.) (Malor et al. 
2002; Bellardi and Benni 2005; Zitikaite and Samuitiene 
2008; Fidan et al. 2012; Al-albrahim 2014).

For the Cucumber mosaic virus (CMV; Table 1; Fig. 4) 
that belongs to the genus Cucumovirus, it encodes five 

Fig. 3  Genome structure of positive-strand bipartite RNA viruses from genus Crinivirus and Torradovirus. Sequences extracted from GenBank 
accession number AY903447.1 (RNA-1), KJ815045.1 (RNA-2) and NC_009013.1 (RNA-1), NC_009032.1 (RNA-2), respectively
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proteins (Palukaitis and Garcia-Arenal 2003). RNA 1 and 2 
are for viral replication and encode the 1a and 2a proteins, 
respectively (Pumplin and Voinnet 2013), while RNA 4A 
(subgeneomic RNA from RNA 2) encodes 2b protein that 
suppresses RNA silencing (Wang et al. 2012). RNA 3 that 
is translated from subgenomic RNA 4 encodes the move-
ment protein (MP) and the coat protein (CP) (Jacquemond 
2012). There are three subgroups of CMV strains (IA, II 
and IB) that have been categorized in which IA and II have 
spread globally, whereas IB is focused in Asia (Hasiów-Jaro-
szewska et al. 2018). According to Geetanjali et al. (2011), 
CMV causes damage to species under family Solanaceae 
and Cucurbitaceae, whereas Mochizuki and Ohki (2012) 
stated that CMV also caused diseases in the families Legu-
minosae, Brassicaceae, Gramineae other than Solanaceae 
and Cucurbitaceae.

Pelargonium zonate spot virus (PZSV; Table 1; Fig. 4) 
is the type member of the genus Anulavirus (Gioliti et al. 
2014). The genome is made up of three linear positive-
sense ssRNAs (RNA-1, RNA-2 and RNAp-3; Fig. 4) that 
encode four proteins (Codoner and Elena 2006). RNA-1 
encodes protein 1a, RNA-2 encodes protein 2a which con-
sists of RNA-dependent RNA polymerase (RdRP), and 
RNA-3 encodes movement and coat protein (Finetti-Sialer 
and Gallitelli 2003). PZSV was first identified from Pelar-
gonium zonale (Quacquarelli and Gallitelli 1979). Later, it 
was reported as causal agent of tomato diseases in Southern 
Italy by Gallitelli (1982) followed by identification in tomato 
in other countries. The distribution includes Spain, USA, 
Israel, Italy and France (Suresh et al. 2017). The hosts of 
this virus include plants from the Solanaceae, Actinidiaceae, 
Brassicaceae and Asteraceae (Li et al., 2014).

Ilarviruses (family Bromoviridae) have a genome consist-
ing of three positive ssRNAs enclosed in quasi-spherical 
particles (Bratsch et al. 2019; Fig. 4). RNA-1 codes for 
replicase protein, and RNA-2 and RNA-3 encode replicase 
protein, RNA-dependent RNA polymerase, MP and CP pro-
teins, respectively (Pallas et al. 2013). Additional tomato 
disease causal agents from the ilarvirus are Tobacco streak 
virus (TSV; Table 1; Fig. 4) discovered in USA in 1982 
where the report showed global distribution (Zitter 2014). 
Other examples are tomato necrotic spot virus (ToNSV) and 
Tomato necrotic streak virus (TomNSV) which were discov-
ered in California and Florida, respectively (Badillo-Vargas 
et al. 2016;; Batuman et al. 2009). PMoV also infects plants 
such as Mirabilis jalapa and Capsicum annuum (Janssen 
et al. 2005; Parrella 2002). The expanding host range of this 
virus is due to the ability of it to transmit with sap extracts 
through physical inoculation (Aparicio et al. 2018). Thus, 
it can transmitted to different families such as Solanaceae, 
Cucurbitaceae, Fabaceae, Brassicaceae, Chenopodiaceae 
Aizoaceae, Lamiaceae, Asteraceae, Malvaceae, Portu-
lacaceae and Ranunculaceae as compiled by Aparicio et al. 
(2018) in their review.

According to Abudurexiti et al. (2019), Orthotospovi-
rus spp. (family Tospoviridae) which includes type virus 
tomato spotted wilt virus (TSWV; Table 1; Fig. 4), and 
capsicum chlorosis virus (CaCV), groundnut ringspot virus 
(GRSV), tomato chlorotic spot virus (TCSV) are classi-
fied based on the International Committee of Taxonomy of 
Viruses (ICTV) (Fig. 5). Other than these, the EFSA Panel 
on Plant Health (PLH 2012) also listed other orthotospovi-
ruses that have infected tomato naturally and experimentally, 
for instance, tomato yellow ring virus (TYRV), groundnut 

Fig. 4  Genome structure of tripartite RNA viruses from genus Alfa-
movirus (NC_001495 RNA-1; NC_002024 RNA-2; NC_002025 
RNA-3), Cucumovirus (MG182148 RNA-1; MG182149 RNA-2; 

MG182150 RNA-3), Anulavirus (JQ350736 RNA-1; JQ350739 
RNA-2; JQ350737 RNA-3), Ilarvirus (FJ561302 RNA-1; FJ561303 
RNA-2; FJ561301 RNA-3)
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bud necrosis virus (GBNV), tomato necrotic ringspot virus 
(TNRV), tomato necrotic spot virus (TNSV), tomato zon-
ate spot virus (TZSV), alstroemeria necrotic streak virus 
(ANSV), chrysanthenum stem necrosis virus (CSNV), 
polygonum ringspot virus (PolRSV), watermelon bud 
necrosis virus (WBNV) and watermelon silver mottle virus 
(WSMoV).

TSWV is generally spherical in shape and consists of 
three ssRNA genomes such as small (S), medium (M) and 
large (L) that share the genomic features of orthotospovi-
ruses (Turina et al. 2016; Gupta et al. 2018). The RNA-
dependent RNA polymerase that is involved in RNA replica-
tion is coded by negative L RNA (Kim et al. 2013), while M 
RNA codes a guide for  GN/GC glycoprotein (Whitfield et al. 
2008). S RNA encodes nucleocapsid protein (Gupta et al. 
2018). Furthermore, there are other proteins such as non-
structural protein (NS) in the viral sense of M RNA and non-
structural protein (NSs) in the viral sense of sRNA through 
an ambisense coding strategy (Guo et al. 2017). According 
to Gupta et al. (2018), one of the most detrimental viruses 
among the orthotospoviruses is TSWV with a host range of 
more than 85 families. The success of the TSWV infection in 
the host is achieved through the highly coordinated expres-
sion of these proteins within the hosts of tospoviruses that 
include tobacco, potato, pepper, groundnut, lettuce and bean 
other than tomato (Gupta et al. 2018).

Vector and transmission methods of plant viruses 
in commercial cropping system

Most plant viruses rely on insect vectors to spread to the 
next host (Gadhave et al. 2019). So control measures can 
be developed by studying the transmission vector of the 
viruses in order to increase the understanding of their epi-
demiology. Plant viruses that are spread persistently have a 
strong relationship with their insect vectors (Gadhave et al. 
2019). Bermisia tabaci is the vector for both DNA and RNA 
viruses infecting Begomovirus spp., Crinivirus spp. and Tor-
radovirus spp. Jiao et al. (2013) reported that B. tabaci is 
a natural vector that transmits viruses in a persistent and 
circulative manner. Chiemsombat et al. (2018) reaffirmed 

that begomoviruses are spread through whiteflies B. tabaci 
in a persistent manner. In addition to B. tabaci, both Crini-
virus spp. and Torradovirus spp. can also be transmited by 
Trialeurodes whiteflies as their vector (Verbeek et al. 2013; 
Wintermantel 2004). TICV is disseminated by T. vaporari-
orum, and ToCV is disseminated by whitefly T. abutilonea 
and also B. tabaci (Middle East-Asia Minor 1 (MEAM1), 
Mediterranean (MED) and New World Group; Navas-Cas-
tillo et al. 2000; Wintermantal and Wisler 2006; de Moraes 
et al. 2018).  Torradovirus spp. are transmitted by T. Tri-
aleurodes and B. tabaci in a semi-persistent and stylet-borne 
manner (Verbeek et al. 2013).

For the transmission by aphids in Cucumovirus, Alfamo-
virus and Potyvirus, the transmissions of potyviruses are 
either through aphids, seed or contaminated living plant 
materials (Gibbs and Ohshima 2010). Tsedaley (2015) has 
also reported that PVY can be spread through mechanical 
means or through wounds of infected plant sap. PVY is 
transmitted by aphid in a non-persistent manner (Gadhave 
et al. 2019). A compilation has been published by Sigvald 
(1985) and Tsedaley (2015) on the few aphid species that 
have transmitted PVY, for instance, Myzus persicae, Rho-
palosiphum padi, Acryrthosiphon pisum, Metopolophium 
dirhodum, Cavariella aegopodi, Aphis species and others.

According to Zitikaite and Samuitiene (2008), AMV is 
spread to the surrounding crops via at least 15 aphid species 
either in a stylet-borne or in a non-persistent manner. Other 
than that, the AMV can also be transmitted by mechanical 
or grafting methods (Fidan et al. 2012). In addition, CMV 
can also be either spread mechanically through plant saps, 
seeds or by aphids in a non-persistent manner (Palukaitis 
and Garcia-Arenal 2003). Aphids that have transmitted the 
CMV have been reported by Palukaitis et al. (1992) in his 
review where the A.gossypii and M. persicae are the most 
commonly associated with CMV transmission.

Other than whiteflies and aphids as vectors, thrips are also 
the vector for some tomato viruses. Anulavirus, Ilarvirus 
and orthotospovirus are transmitted by thrips species (Gil-
bertson et al. 2015; Gupta et al. 2018; Vovlas et al. 1989). 
According to Vovlas et al. (1989), transmission of PZSV is 
through seed of Diplotaxis erucoides and not through tomato 

Fig. 5  Orthotospovirus (NC_002052 L segment; NC_002050 M segment; NC_002051 S segment)
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seed. Preliminary study also showed that thrips species carry 
the pollen grain of D. erucoides on its body in an unusual 
manner and transfers the virus while they feed on the flowers 
of tomato (Vovlas et al. 1989). Transmissions of the ilarvi-
ruses are through either seed or thrips-mediated pollen (Gil-
bertson et al. 2015). Orthotospoviruses can be disseminated 
and replicated in their thrips, tiny insects vectors, such as 
Frankliniella occidentalis (Gupta et al. 2018).

Although Potexvirus mainly spread from plant to plant 
without a vector (King et al. 2012), evidences have shown 
that bumblebees; fungus; and whitefly can act as the vec-
tor for PepMV (Alfaro-Fernándezet al. 2009; Noëlet al. 
2014; Shipp et al. 2008).  Potexvirus spp. can be transmitted 
mechanically as well (Hanssen et al. 2010). The transmission 
method of Tombusvirus is not through an insect vector but 
through mechanical methods, propagation material or seed 
and pollen (Hafez et al. 2010). Same goes to Tobamovirus, 
even though there is no vector for virus transmission, they 
can spread mechanically through farming process by persist-
ing long time in contaminated soil (Candemir et al. 2012). 
These viruses are very stable and remain infectious for many 
years (Dombrovsky and Smith 2017). In damaged roots, 
these viruses will infect the plants (Almeida et al. 2018). 
In addition, they can also spread through infected seed coat 
which further infects the damaged roots during transplanta-
tion (Liu et al. 2014). Tobamoviruses are the seed-borne 
viruses (Luria et al., 2017). Moreover, these viruses can also 
be spreading through greenhouse design, equipments, work-
ers’ hands and ropes as well as the transportation in field 
(Reingold et al. 2016).

Beet leafhopper is a vector for Curtovirus spp. Accord-
ing to Jeger et al. (2017), BCTV is only transmitted through 
beet leafhoppers such as Circular tenellus. This insect can 
transport the virus for around 30 days but without involving 
virus replication (Soto and Gilbertson 2003). The Curtovirus 
spread by C. tenellus is in a circulative and non-propagative 
manner (Nusayr and Creamer 2017).

Disease spectrum of tomato viruses

The disease spectrum caused by different viruses infecting 
tomato as listed above consists of a wide range of symptoms 
and pathology. TMV the type species of tobamoviruses in 
family Virgaviridae (King et al. 2012; Scholthof et al. 2011) 
causes mild to severe mosaic symptoms in tomato and was 
also the first ever plant virus described (Mayer 1886). The 
viruses from the Tobamovirus genus not only spread globally 
but also adapt to different environments and cause a range 
of symptoms (Almeida et al. 2018). Symptoms on tomato 
caused by the tobamovirus ToMV include curling and defor-
mation of leaves with inner browning, mosaic and irregular 
ripening (Fahim and Din 2017).

Pratapet al. (2008) described CMV as one of the most 
detrimental viruses infecting tomato. They are a species of 
the genus Cucumovirus whose members have a host range 
of more than 1200 distinct plant species within 500 genera 
from more than 100 families (Jacquemond 2012). Cucumber 
mosaic disease on tomato shows symptoms such as mosaic, 
necrosis, mottling, narrowing or shoes-string of leaves and 
stunting. Other than cucumovirus, the pepino mosaic disease 
caused by PepMV is a widespread pathogen that infects most 
of the tomato crops around the world (Hanssen and Thomma 
2010). It was first described in 1980 when it infected pepino 
(Solanum muricatum) in Peru (Jones et al. 1980). In 1999, 
the PepMV was found infecting tomato crops in Europe (van 
der Vlugt et al. 2000). The significant fruit marbling symp-
toms make it an important and recognizable symptom of 
PepMV (Hanssen et al. 2008). Other symptoms are irregu-
lar or blotchy ripening of the tomato fruit, distorted young 
leaves, yellow angular spots on the leaves, leaf scorching, 
leaf mosaics and leaf blistering (Hanssen et al. 2009).

Tomato bushy stunt disease is caused by TBSV and was 
discovered by Smith in England in 1935 (Smith 1935). 
According to Martelliet al. (1988), TBSV is a soil-borne 
virus that can be maintained in soil, and therefore, the plant 
is infected in the roots locally. The infected plants will show 
symptoms on the fruit such as rings and lines as well as a 
reduction in size (Gerik et al. 1990). Other than that, dis-
tortion of leaves and fruit, necrosis, slow and thick growth 
pattern, chlorotic spot and wrinkling of leaf can be observed 
as well (Luis-Arteaga et al. 1996).

PVY potyvirus disease was placed in the top five most 
important viruses causing global loss in tomato plants by 
Scholthof et al. (2011). The genus Potyvirus from the fam-
ily Potyviridae found worldwide and infect both monocot 
and dicot plants (Gibbs and Ohshima 2010) and was first 
described in the 1920s by Kenneth Smith in the UK (Smith 
1931). Another species of Potyvirus, TEV, was discovered 
by Valleau and Johnson (1928) in Kentucky. Symptoms such 
as necrosis, mottling on leaf, wrinkle and leaf distortion can 
be seen on potyvirus TEV-infected tomato plants. In addi-
tion, symptoms such as fruit mottling are also observed (Zit-
ter 1991). For the crinivirus infections, yellow interveinal 
and thick mature leaves are some of the symptoms seen. 
Fruits may show no specific symptom, although they can be 
smaller, lesser and earlier in ripening (Dalmon et al. 2009).

Based on Panagopoulos (2000), tomato double-streak dis-
ease is caused by the mixed infection of two types of virus 
which are the PVX and ToMV. Otsuki and Takebe (1976) 
observed that the two were able to interact and replicate in 
the same cell. Tomato crops grown in infected potato fields 
often have a high chance of being infected by PVX whose 
primary host is the potato crops (Cerkauskas 2005). Gener-
ally, tomato double-virus streak disease causes dwarf plant, 
curl leaves, long brown to dark streaks on the leafstalk, veins 
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and the stalk; on the other hand, the uneven brown gangrene 
spots of different sizes will be seen in infected fruits as well 
as irregular ripening (Zitter and Provvideti 1984). Both 
viruses are economically important on their own causing 
severe yield losses.

For the torrado virus disease, the initial symptoms of 
the infection are light green or yellowing below the leaf-
lets surrounding the necrotic spots. Later, severe necrosis 
will be seen in the leaves and fruit resulting in diminishing 
growth (Verbeek et al. 2007). Pelargonium zonate spot dis-
ease shows symptoms such as chlorotic and necrotic rings 
as well as line patterns on the leaves and fruit, which result 
in plant stunting, leaf malformation and fruit reduction, sub-
sequently causing death (Gallitelli 1982). Parietaria mot-
tle virus (PMoV), which causes ilarvirus disease, was first 
found infecting Parietaria officinalis L. in Italy (Caciagli 
et al. 1989). A few years later, PMoV infecting tomato was 
reported in Piedmont, Italy by Ramasso et al. (1997). The 
symptoms of PMoV can be observed in two stages, initial 
infection and later infection (Aparicioet al. 2018). During 
the early stage of the infection, symptoms such as necrosis 
of leaves, stem and apex can be seen, while in the later stage, 
plants will show necrotic mosaic symptoms on the newly 
emerging shoot, while corky rings and brown patches of 
scars will be formed on the fruit, followed by the distortion 
and color changes on the fruit (Aparicioet al. 2018).

For the disease caused by Orthotospovirus spp., the 
viruses have been found infecting tomato plants throughout 
Asia, Middle East and Australia (Dong et al. 2008). Despite 
this, Orthotospoviruses are also found in South Africa and 
South America (de Avila et al. 1993), USA (Webster et al. 
2011) as well. The incidence of infection by Orthotospovi-
rus spp. has risen with the increase in the population of 
the western flower thrips (Frankliniella occidentalis; Rojas 
and Gilbertson 2008). TSWV was first identified in 1915, 
but it was only in 1930 that it was recognized as the causal 
agent of this disease (Oliver and Whitfield 2016). The dis-
ease symptoms first appear in the foliage stage, where the 
leaflets show small and dark green chlorotic lesions, and 
later the chlorotic lesions will combine to and give a bronze 
necrotic appearance resulting in wilting necrosis spreads to 
the terminal shoots (Melzer et al. 2012). On the other hand, 
if the mature plants are infected, the distinguishable symp-
toms are discolored blotches or concentric rings on the fruits 
(Melzer et al. 2012).

Alfalfa mosaic disease caused by AMV is a global path-
ogen and causes infection in wide range of plant species 
(Loebenstein et al. 2001). According to Zitikaite and Sam-
uitiene (2008), alfalfa seems to be the overwintering host of 
AMV where the infected tomatoes farm is generally near 
alfalfa fields. Fruits and the interveinal region of the leaves 
on the infected tomato plants showed bright yellow mottle 
symptoms, and later, the leaf will turn yellowing followed 

by plant stunting and leaflet distortion (Zitikaite and Sam-
uitiene 2008).

Geminiviruses which include the Curtovirus and Bego-
movirus affect the photosynthetic process of infected plants 
by invading the phloem cells which subsequently causes 
starch declination and flower and fruit disruption (Rojas 
2004). The symptoms of begomoviruses include retarded 
growth, wrinkling, twisted leaf, mottle, thick and yellow 
vein and small leaves (Inoue-Nagata et al. 2016), whereas 
symptoms of curtovirus disease include retarded plant 
growth, wrinkling, yellowing and swelling vein, phloem 
hyperlasia and twisted leaf (Hosseini 2010).

Control strategies

Basic control strategy of plant virus diseases starts with 
conventional good farming practices. Islam (2017) has sug-
gested several methods to handle virus disease at the farmer 
stage which included crop rotation to prevent the planting of 
similar host, selection of healthy cuttings or seeds; removal 
of the disease infected plants from the farm; and removal of 
weeds or hosts that are potential reservoir of the virus or its 
vector. Additionally, the use of appropriate insecticides to 
eradicate the vector insects, soil fumigation, use of resistant 
variety and last but not least to provide education on good 
practices to the farmers is vital (Islam 2017). Rojas et al. 
(2018) reported that the use of resistant varieties was an 
effective strategy in controlling the tomato yellow leaf curl 
disease. Biswa et al. (2011) also suggested methods such as 
organic farming and cross-protection which have been used 
to control ToMV.

The rapid adaptive nature and ability to utilize resources 
in host plants for their replication make viruses a challenge 
to the crop industries. Additionally, plant viruses gener-
ally do not spread itself instead it relies on vectors such as 
insect, fungus, nematode or arthropod to reach their target 
plants (Dietzgen et al. 2016). Understanding that genome of 
viruses reveals the multifunctional features of their proteins 
(Sanfacon 2017). Generally, to express the functions of the 
proteins in virus, interplay of plant proteins with viral pro-
teins is needed (Nagy 2016). Thus, identifying the necessary 
factors that the hosts need for survival and the host factors 
that the virus needs for infection and their interactions is the 
key step in controlling virus disease (Garcia-Ruiz 2018).

During the replication cycle, translation of the viral pro-
teins is necessary for replication, assembly and lastly move-
ment of the virus to the adjacent cells (Garcia-Ruiz 2018). 
Movement of viruses necessitates plant cellular factors and 
virus proteins (Wan et al. 2015). For example, with the help 
of plant cellular factors, MP of plant viruses enables them to 
enlarge the plasmodesmata path and therefore able to move 
through cell to cell (Heinlein 2015). This understanding has 
led to multiple approaches in genetically engineering of 
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plants some of which are produced to remove or deactivate 
the factors that are necessary for virus infection, importantly 
without affecting the development of the plants (Pyott et al. 
2016).

Genetic plant defense mechanism through RNA inter-
ference (RNAi) appears to be an efficient mechanism for 
counteracting pathogens in many plants (Duan et al. 2012). 
RNAi is a mechanism where the dsRNA leads to the post-
transcriptional gene silencing (PTGS) to inhibit the gene 
expression (Kim and Rossi 2007). According to Almeida 
and Allshire (2005), transcription and translation were 
restrained by corresponding mRNAs which are initiated by 
dsRNA to silence the target genes. RNAi is also known for 
the ability to promote resistance towards diseases caused by 
viruses through virus-induced gene silencing (Ding 2010). 
Unlike bacteria and fungi, virus multiplies inside the host, 
which makes the role of RNAi important (Wang et al. 2012). 
There is direct silencing of the genome of the virus through 
siRNA that has been demonstrated (Ruize-Ferrer and Voin-
net 2009). Bioinformatic research also proposes that miR-
NAs have the capacity for antiviral mechanism by aiming 
genomes of virus (Perez-Quintero et al. 2010). Significant 
examples include the development of transgenic tomato lines 
constructed with hpRNAi by Mahmoudieh et al. (2019) to 
induce RNAi pathway and then activate gene silencing. 
Fuentes et al. (2016) on the other hand showed the resist-
ance of RNAi transgenic tomato plants towards TYLCV.

The precise and early detection of plant pathogens in-field 
is also critical in light of the rapid changes in the pathogen 
population due climate change, vector evolution and farm 
practice (Donoso and Valenzuela 2018). Early detection not 
only lowers the disease outbreak but also enables farmers 
to take appropriate control methods rapidly (Pallas et al. 
2018). To date, many reviews of available technologies or 
techniques have been published. Other than the conventional 
immunological (Martinelli et al. 2014) and morphological 
techniques (Capote et al. 2012), molecular approaches have 
been widely utilized, including the use of polymerase chain 
reaction (PCR)-based techniques such as RT-PCR, real-time 
PCR, isothermal PCR, ELISA PCR, multiplex PCR and 
nested PCR (Capote et al. 2012). According to Martinelli 
et al. (2014), PCR-based techniques provide more advan-
tages than immunoassays based on cost, time and efficiency. 
PCR-based methods not only faster and cheaper but also 
manage to detect single target in multiple targets, as well as 
detect the pathogens that are not able to culture such as bac-
teria, phytoplasma and viruses (Martinelli et al. 2014). Other 
technologies include loop-mediated isothermal amplification 
(LAMP) assay, recombinase polymerase amplification, mul-
tiplex immunodetection, microsphere immunoassays (MIA), 
aptamer-based diagnosis or portable nanopore sequencing; 
detailed reviews of these can be retrieved from Donoso and 
Valenzuela (2018). Moreover, Pallas et al. (2018) have also 

written a review on next-generation sequencing (NGS), 
multiplex and hybridization technologies for virus detec-
tion. Constantly checking for pathogen at its early phase is 
important as some of the plants will not show symptoms 
in the early phase; therefore, high-throughput, accurate and 
highly sensitive technologies are needed (Donoso and Valen-
zuela 2018).

Conclusion and future perspective

The review of viral diseases in tomato has shown the wide-
spread effects of the diverse pathogens on tomato production 
in different parts of the world. One reason why viral diseases 
are of great concern to farmers is because of its diversity 
and range, fast replication and ease of spread through vec-
tors which enhances its evolution and adaptation towards 
natural selection pressure (Hanssen et al. 2010). According 
to Hanssen et al. (2010), the rapid appearance of new viruses 
could be related to climate change, introduction of new host 
plants, vectors evolution and cultural practices. The simplic-
ity of its genome is one of the reasons why viruses adapt to 
the varying environments easily (Jones 2016). The change 
in climate is thought to be a major causal reason for dete-
riorating economic production when associated with virus 
diseases (Pallas et al. 2018). Eastburn et al. (2011) have also 
reported that the environment plays crucial roles on virus 
spread and behavior as well as susceptibility of the host. 
Moreover, climate change also results in alteration of phe-
nology, physiology and morphology of the vectors in addi-
tion to affecting host plants (Jones 2016), thus increasing the 
knowledge on interplays and interactions between pathogen 
and its antagonist; physiology and ecology of plants and the 
intermediate vectors are critical for developing strategies 
for plant protection (Tsitsigiannis et al. 2008). Undeniably, 
being familiar with the biochemical and molecular structures 
that consolidate these interplays and interactions is impor-
tant to unearth effective control methods. On the other hand, 
the development of simplified and cost-efficient technology 
has actually facilitated the identification and discovery of the 
biological properties of the virus and subsequently results 
in understanding their structure and mechanisms. However, 
there are still substantive gaps in knowledge as not all of the 
viruses have been adequately studied due to their large popu-
lation and high variation among each group, especially under 
different environmental conditions, stresses, climate and 
cultural conditions. Studies have shown that through better 
understanding of these interactions, resistant plant cultivars 
have been successfully developed in tomato that is resistant 
to TYLCV, ToTV and ToMarV (Hanssen et al. 2010). For 
example, introduction of genes controlling resistance to the 
Begomovirus spp. (Ty genes) from the wild Solanum species 
(Hanssen et al. 2010). Vidavski et al. (2008) have shown 
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that the Ty resistance genes may interact with each other 
and results in hybrid plants that have higher resistance than 
their parental line. The host–virus relationship is governed 
by a complicated network of interactions. With the increas-
ing availability of genome wide data and big omics data for 
many of the hosts, pathogens and vectors, the opportunity for 
elucidating new information on these interactions is growing 
exponentially. Ultimately the combination of the laboratory 
research to the application in the field is an approach that 
should be driven by both researchers and farmers in order to 
develop sustainable and holistic strategies to limit the spread 
of virus diseases in this crop.
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