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Abstract
South American Tomato Pinworm (SATP), Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is one of the most dev-

astating pests in tomato greenhouses. Efficacy of some chemical and biorational insecticides, namely chlorfenapyr,

thiocyclam, azadirachtin and Bacillus thuringiensis (Bt), in controlling SATP and their compatibility with Elachertus

inunctus, a new SATP larval ectoparasitoid, were studied under greenhouse conditions. For this purpose, larval mortality,

leaf and fruit damage and parasitism following the different insecticide treatments and after various days from the

treatment (DAT) were recorded and compared to untreated control. Results showed that chlorfenapyr had suitable effects

on SATP larvae. Although the experiments indicated that the short-term effects of azadirachtin, thiocyclam and Bt were not

detrimental to SATP larvae, but their residual effects were significant in the long term. Among the tested insecticides, Bt

was more compatible with E. innunctus release. Overall, the results suggest that the integration application of Bt with early

inundate release of E. innunctus can be recommended for suitable and environmentally safe control of SATP in greenhouse

tomato.
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Introduction

The South American Tomato Pinworm (SATP), Tuta

absoluta Meyrick (Lepidoptera: Gelechiidae), is an inva-

sive pest native to South America, where it is considered

one of the most dangerous pests in tomato greenhouse

production and in the open field (Yankova 2012). In the last

10 years, SATP has spread and expanded to many regions

of the world including Europe, Africa and Asia, causing

extensive damage to international tomato trade (Biondi

et al. 2018; Campos et al. 2017; Sankarganesh et al. 2017;

Sylla et al. 2017; Xian et al. 2017). The presence of T.

absoluta was reported in Iran (Baniameri and Cheraghian

2012), in Sub-Saharan Africa (Sylla et al. 2017), recently in

northern India (Sankarganesh et al. 2017), and now

threatening China (Xian et al. 2017), i.e. the biggest tomato

world producer. The female usually lays eggs on leaves,

stems, and to a lesser extent on fruits. The young larvae

mine the leaves or stems producing large galleries and

burrow into the fruit. On leaves, the larvae feed only on

mesophyll cells, leave the epidermis intact and make

irregular leaf mines, which may later become necrotic and

affect photosynthesis in the plant (Desneux et al. 2010;

Biondi et al. 2018). Damage from this pest throughout the

entire growing cycle of tomatoes can significantly reduce

both yield and fruit quality by the direct feeding of T.

absoluta and secondary pathogens that may enter through

the wounds made by the insect. In the absence of control

strategies, larval feeding damage can reach up to 100%

(Desneux et al. 2011; Yankova 2012; Biondi et al. 2018).

Chemical control using synthetic insecticides is an effec-

tive management tactic for this pest (Guedes and Siqueira
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2012). Also, the general entophytic behaviour of the larval

instars makes it difficult to conduct effective control

practices against this pest (Lietti et al. 2005; Guedes and

Picanço 2012). Application of the chemicals causes many

problems including incensement in production costs, side

effects on natural enemy populations, harmful pesticide

residues in fruits (Braham and Hajji 2012) and pest resis-

tance to the chemicals (Desneux et al. 2007; Biondi et al.

2018).

Biopesticides in the plant protection systems have the

potential to aid the management of the pest (Copping and

Menn 2000). Some vegetal products were assessed for

potential use in the leaf miner control and can provide a

safe control method under organic agricultural conditions.

Products with active ingredient azadirachtin possess

specific antifeedant and deterrent activities, suppressing

and stopping the feeding, reduction of moulting and

deformations in pupae and imago, and decrease fecundity

in the females (Kleeberg 2001; Isman 2015). Chlorfenapyr

is applied against lepidopteran pests. The insecticides were

introduced during the 1990s as an alternative to synthetic

pyrethroids because of its low toxicity to mammalian and

aquatic organisms (Raghavendra et al. 2011). Thiocyclam

(Evisect�) is highly efficient in controlling the pest out-

breaks (Lietti et al. 2005).

The mixture of spores and protein crystals from patho-

gen Bacillus thuringiensis subsp. krustaki Berliner (Bt) is

the most widely used microbial insecticide against lepi-

dopteran pests (Wilcox et al. 1986; Peralta and Palma

2017). Bt is not toxic to humans, most beneficial insects,

and other nontarget organisms; therefore, it does not cause

the serious environmental and safety problems associated

with conventional synthetic insecticides (Peralta and Palma

2017).

Genus of Elachertus (Hymenoptera: Eulophidae) is

primary parasitoids of a variety of lepidopteran larvae.

Some species are polyphagous attacking hosts belonging to

several different families (Schauff 1985). The parasitoid

wasp of Elachertus inunctus Nees was originally collected

as larval ectoparasitoids of T. absoluta on greenhouse

tomato in Khouzestan province in the south-west of Iran

(Yarahmadi et al. 2016). This parasitoid wasp naturally

suppressed SATP larvae on tomato in greenhouse and field

conditions in Khuzestan province, south-west of Iran.

The first step in application of a control strategy

(chemical control, biological control, etc.) in integrated

pest management programme is evaluation of its effec-

tiveness (Pedigo 2002). Also in IPM programmes, biolog-

ical control agents and the applied pesticides must be

compatible with each other (Stark et al. 2007; Desneux

et al. 2007). The compatibility of natural enemies to bio-

rational or synthetic insecticides is obviously variable

according to the type of the insecticide and species of the

natural enemies. Biorational insecticides are efficient to

control varied greenhouse pests. Biorational insecticides

are also more likely compatible with natural enemies.

Compatibility of biorational pesticide with natural enemies

is necessary for developing IPM programme (Pedigo

2002).

There has not been any effort to determine efficacies of

the bio-insecticides chlorfenapyr, azadirachtin, Bt and E.

inunctus in control of T. absoluta for greenhouse crops.

Therefore, the objective of this study was to evaluate the

bio-insecticides and parasitoid efficacies against SATP and

their integration potential.

Materials and methods

Experimental design

The experiment was performed at a commercial green-

house, with 3000 m2 area, located in Kute Seied Soltan,

Ahvaz, Khouzestan province, south-west of Iran

(31�2702400N 48�4903400E). The greenhouse was cultivated

with greenhouse tomato seedlings, Cherry� variety. No

insecticide applications were carried out except in experi-

mental treatment. In addition, no herbicides or fungicides

were applied in the experimental greenhouse. All growers’

practices (growing, fertilizer application, weeding and

irrigation of tomato) were used in accordance with the

recommendations of the Khuzestan agricultural organiza-

tion. The experiment was arranged in a randomized com-

plete block design with four replications (125 m2) and

3-metre-wide ridges were made in each. Also, each repli-

cation was separated from others by Nylon insect screen

(mesh 50, Green-tek�, Canada). The active ingredients, the

trade name and doses of the experimental insecticides are

given in Table 1. Control was sprayed with water. Treat-

ments were applied using an electronic backpack sprayer

(Matabi�, Taizhou Kaide Machinery Co., Ltd.) using the

hollow cone, solid spray tip type of nozzle (TXVK-10).

Parasitoid wasp

The parasitized larvae of E. inunctus were collected from

infested tomato field of the Veis region, Ahwaz, Khuzestan

province (31�3002800N 48�5003700). The larvae were trans-

ferred to the laboratory and reared in an incubator at

temperature 25 ± 1 �C, RH 60% and photoperiod 16:8

(L:D). The parasitoid wasps—five female and five male

adults (2 days old) per block—were released 2 weeks after

the first observed SATP contamination.
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Sampling

The samplings were performed before treatment and 1, 6,

10 and 14 days after treatment (DAT). At each sampling

date, six randomly selected plants were checked by trav-

elling in a X-shaped pattern through each plot. Per sam-

pling, 10 leaves were randomly selected from the upper

one-third of the plant. The leaves were taken to the labo-

ratory, and alive, dead and parasitized numbers of larvae,

as well as the larval mines, were separately recorded under

a stereomicroscope. Also, three fruits were randomly

picked from each selected plant and numbers of damaged

fruits (with wounds made by SATP larvae) were separately

recorded in each treatment.

Data analysis

The mean number of live larvae, leaf mines or damaged

fruits per leaf was tested for normality assumption by

Kolmogorov–Smirnov test; the data were then arcsine-

transformed. The data were statistically analysed by

ANOVA. Duncan’s multiple range test was used for means

separation. All analyses were done using SPSS (Version

16) software (Chicago, IL, USA).

Results

The efficacy of azadirachtin, chlorfenapyr and thiocyclam

against T. absoluta in tomato plants under greenhouse

conditions with respect to larval mortality, numbers of leaf

mines and fruit wounds are presented in Tables 2, 3 and 4.

The highest larval mortality of SATP was recorded in

the chlorfenapyr treatment (52.8%) at 1 DAT, while in the

other treatments, no significant difference was recorded at

1 DAT (Table 2). Similar results were observed at 6 DAT.

However, the SATP larvae mortality in thiocyclam,

azadirachtin and Bt treatment was dramatically increased

and reached 60, 78.1 and 83.3% respectively, with all of

them being significantly higher than control. The data

implicated that the azadirachtin, thiocyclam and Bt do not

have any significant short-term effects against the pest, but

their slower (chronic) effects were sufficient as well as in

the case of chlorfenapyr.

The least protective effect against larval leaf damages

was observed in thiocyclam, azadirachtin and Bt treatments

(Table 3). The leaf mine numbers of the pest were higher

than thiocyclam and azadirachtin. These data implicated

that thiocyclam and azadirachtin treatments not only had

no preventive effect on leaf damages by the pest larvae, but

also had an adverse effect on the parasitism and natural

control of the pest by E. inunctus. Chlorfenapyr signifi-

cantly reduced the leaf mines at 10 and 15 DAT (34–76%).

All treatments cause significant reduction (83.5–100%)

in tomato fruit damages by the larvae (Table 4). However,

Bt and azadirachtin (no observed damage) had less damage

than chlorfenapyr and thiocyclam (0.2 larval wound per

fruit) at 15 DAT.

The larval parasitism of T. absoluta by E. inunctus

ranged between 0 and 19%. The parasitism of SATP larvae

was not significantly different at 1 and 6 DAT. But the

parasitism ratio was suddenly reduced and reached zero in

chlorfenapyr, thiocyclam and azadirachtin treatments at 10

and 14 DAT. The highest activity of the parasitoid wasp

was observed in control and Bt treatments (Table 5).

Discussion

Use of biocontrol agents against pest is an alternative pest

management tactic in IPM programmes. But some natural

enemies may not always provide economically accept-

able biological control for the pest in greenhouses.

Therefore, the concurrent use of natural enemies and

Table 1 Insecticides, mode of action, trade name and doses of application experimented under tomato greenhouse in 2015

No. Treatment Trade name Formulation Mode of action Applied rate per

hectare

1 Azadirachtina (Az) Neemarin 1500

PPM�
1% EC Insect growth regulators 1 lit

2 Chlorfenapyrb Crown� 24% EC Disrupting the production of adenosine

triphosphate

400 ml

3 Thiocyclamc Evisect� 50% SC Nicotinergic acetylcholine blocker 500 g

4 Bacillus ssp. thuringiensis

kurstakib (Bt)

Belthirul� 32,000 spore/gr

WP

Its delta- endotoxin act as digestive toxin 0.5 kg

aBiotech international Ltd
bShijiazhuang Awiner Biotech Co., Ltd, China
cBiotech international Ltd
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pesticides and their compatibility has studied (Pedigo

2002). A new crop/pest/parasitoid system, i.e. tomato/T.

absoluta/E. inunctus, was used to investigate how the four

insecticides (azadirachtin and Bt as biorational and chlor-

fenapyr and thiocyclam as synthetic insecticides) may

affect the pest population, the plant, leaf and fruit damages

and activity of the new reported larval parasitoid.

Our greenhouse study showed that chlorfenapyr had

suitable acute and chronic effects on SATP larvae.

Although it was indicated that acute effects of azadirachtin,

Table 2 Mortality percentages Tuta absoluta larvae in the different experimental treatments

Sampling date Mean ± SE P value F(df)

Chlorfenapyr Thiocyclam Azadirachtin Bt Control

1DAT 52.8 ± 7.1b* 10.7 ± 2.9a 3.5 ± 2.1a 0 ± 0a 4.3 ± 2.6a \0.001 33(4,25)

6DAT 62.8 ± 16.8b 14.3 ± 5.1a 20.7 ± 7.5a 25.8 ± 11.2a 10 ± 10a 0.02 3.729(4,25)

10DAT 70 ± 20b 60 ± 18.7b 78.1 ± 6.9b 83.3 ± 16.6b 15.2 ± 11.8a 0.05 2.797(4,25)

15DAT 0 ± 0a 27.3 ± 18.6a 13.3 ± 9.7a 0 ± 0a 0 ± 0a 0.194 1.68(4,25)

* Means followed by the same letter within a row are not significantly different (Duncan test; P\ 0.05)

Table 3 Number of leaf mines (per three leaves) in the different experimental treatments

Sampling date Mean ± SE P value F(df)

Chlorfenapyr Thiocyclam Azadirachtin Bt Control

1DAT 0.45 ± 5.4a*b 0.68 ± 6.1c 0.41 ± 2.3a 0.41 ± .3a 0.43 ± 4.3ab \0.001 10.3(4,20)

6DAT 0.5 ± 3.06ab 0.99 ± 4.2b 0.74 ± 3.4ab 0.74 ± 3.4ab 0.5 ± 2.9a 0.002 6.5(4,20)

10DAT 0.3 ± 2.7a 0.7 ± 3.9b 0.4 ± 1.2a 0. 4 ± 1.2a 0.4 ± 4.9a \0.001 8.2(4,20)

15DAT 0.26 ± 0.66a 0.4 ± 3.6ab 0.5 ± 2.2b 0.5 ± 2.2b 0.3 ± 3.3ab \0.001 13.5(4,20)

Means followed by the same letter within a row are not significantly different (Duncan test; P\ 0.05)

Table 4 Mean of larval wounds

(per fruit) in the different

experimental treatments

Sampling date Larval mortality ± SE P value F(df)

Chlorfenapyr Thiocyclam Azadirachtin Bt Control

1DAT 0.4 ± 6a* 0 ± 0a 0 ± 0a 0 ± 0a 0 ± 0a 0.19 1.7(4,20)

6DAT 0 ± 0b 0 ± 0b 0 ± 0b 0 ± 0b 0.4 ± 0.6a 0.002 6.5(4,20)

10DAT 0 ± 0a 0 ± 0a 0 ± 0a 0 ± 0a 0.4 ± 0.4a 0.43 1(4,20)

15DAT 0.2 ± 0.2b 0.2 ± 0.2b 0 ± 0b 0 ± 0b 0.8 ± 1.2a 0.003 5.2(4,20)

Means followed by the same letter within a row are not significantly different (Duncan test; P\ 0.05)

Table 5 Ratios of parazited larvae (per leaf) by E. inunctus in the different experimental treatments

Sampling date Larval mortality ± SE P Value F(df)

Chlorfenapyr Thiocyclam Azadirachtin Bt control

1DAT 0 ± 0a 0.04 ± 0.04a 0 ± 0a 0 ± 0a 0 ± 0a 0.431 1(4,20)

6DAT 0.07 ± 0.04a 0.08 ± 0.02a 0.07 ± 0.03a 0.1 ± 0.06a 0.13 ± 0.01a 0.766 0.458(4,20)

10DAT 0 ± 0a 0 ± 0a 0 ± 0a 0.09 ± 0.2b 0.19 ± 0.27b 0.163 1.82(4,20)

15DAT 0 ± 0a 0 ± 0a 0 ± 0a 0.03 ± 0.03ab 0.11 ± 0.27b 0.007 4.88(4,20)

Means followed by the same letter within a row are not significantly different (Duncan test; P\ 0.05)
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thiocyclam and Bt were not detrimental to SATP larvae,

but their residual effects were significant in the long term.

Although the product azadirachtin is of vegetable origin,

it shows specific effects on the pests. It causes disturbances

in basic processes—feeding, metamorphosis and fecundity,

followed by lethality (Yankova et al. 2014). Neem-ex-

tracted insecticides are known as slow-acting insecticides

which is one of the major limitations of these products. The

insecticides do not produce an immediate ‘knock-down’

effect (Isman 2015). Lowerey and Isman (1994) showed

that observation time is an important variable in toxicity

assessment of neem-extracted products because azadir-

achtin is a slow-acting insecticide and its antifeedant or

growth-inhibitory properties vary depending on the con-

centration and species of target pest. Similarly, the delayed

effect of azadirachtin on T. absoluta was previously

demonstrated (Braham et al. 2012; Nazarpour et al. 2016).

Toxicity of neem-based insecticides against some lepi-

dopteran larvae such as Cnaphalocrocis medinalis (Gue-

née) (Lepidoptera: Pyralidae), Plutella xylostella L.

(Lepidoptera: Plutellidae) (Liang et al. 2003), Helicoverpa

armigera Hübner (Lepidoptera: Noctuidae) (Singh et al.

2007), Lymantria dispar L. (Lepidoptera: Lymantriidae)

(Zabel et al. 2002), Spodoptera exigua Hübner (Lepi-

doptera: Noctuidae) (Greenberg et al. 2005; Yee and

Toscano 2014) and T. absoluta (Arnò and Gabarra 2011;

Braham et al. 2012; Nazarpour et al. 2016) were reported

by various researchers.

Bacillus thuringiensis has been used as an alternative to

synthetic insecticides for decades (Peralta and Palma

2017). The efficacy of the bacterium spores against T.

absoluta was evaluated in a few studies. For example, the

significant effect of B. thuringiensis subs. krustaki against

SATP larvae in tomato fields was previously documented

(Nazarpour et al. 2016). Moreover, the efficacy of Bt

against SATP larvae and its damage were documented by

Gozalez-Caberera et al. (2001), Sabbour and Soleiman

(2012), and Nazarpour et al. (2016). In all this research, a

lag time was observed between Bt spray and SATP pop-

ulation decrease.

The findings agree with the laboratory experiment

results of Silvério et al. (2009), who showed that chlorfe-

napyr is a good candidate for chemical control of SATP.

Also, their study demonstrated that thiocyclam at dosage

60 g L-1 showed intermediate efficacy (34% mortality) for

SATP control in laboratory condition (Braham et al. 2012).

In contrast to our findings, the result of LD50 values indi-

cated that chlorfenapyr (3.165%) was less toxic for SATP

larvae in comparison with emamectin benzoate (0.461%),

imidacloprid (0.621%), indoxacarb (0.753%), profenofos

(0.643%), pyridalyl (0.511), methomyl (0.468) and

teflubenzuron (1.054%) (Soleiman et al. 2013). This con-

flict in results may be related to different chemicals used in

laboratory experiments of Soleiman et al. (2013) and dif-

ferent methodology of these studies.

The parasitoid wasp, E. inunctus, could parasitize up to

19% of SATP larvae. Therefore, the parasitoid wasp alone

is not sufficient to control the SATP population in a

greenhouse. Possibly the greater release rate of the para-

sitoid wasp is required for more efficient biological control

of the pest in greenhouse tomato. Certainly, integrated

application of insecticide (biorational or chemical) with

inundate releases of E. inunctus is required for sufficient

SATP population suppression.

Several commercially available biorational insecticide

companies claim that their products are not disruptive to

beneficial arthropods. However, research conducted

worldwide has shown that biorational insecticides may, in

fact, be harmful to certain natural enemies (Biondi et al.

2012a, b, 2013). Although biorational insecticides may not

be directly toxic to a particular natural enemy, there may be

indirect effects such as delayed development of the host

and natural enemy inside, delayed adult emergence and/or

decreased natural enemy survivorship (Croft 1990). There

is variability apparent in the compatibility of natural ene-

mies to biorational insecticides based on the type of bio-

rational pesticide, whether the natural enemy is a parasitoid

or predator, and their developmental stage. Biorational

insecticides are effective to control many different types of

greenhouse pests (Glare et al. 2012). However, it is

important to know which biorational insecticide/miticide is

compatible or not compatible with natural enemies in order

to avoid disrupting successful biological control pro-

grammes (Biondi et al. 2012a, b).

Our results indicated that chlorfenapyr, thiocyclam and

azadirachtin have adverse effects on parasitism of SATP

larvae by E. inunctus. The larval parasitism significantly in

Bt treatment was more than other insecticide treatments.

Therefore, our finding showed that Bt is the best candidate

for integrated control of SATP infestation with E. inunctus

release. A few studies were conducted on the integrated use

of natural enemies and biorational or synthetic insecticides

against T. absoluta (Mollá et al. 2011; Arnò and Gabarra

2011; Zappalà et al. 2012; Biondi et al. 2013). Similarly,

high toxicity of chlorfenapyr on some parasitoid wasps was

previously reported (Pietrantonio and Benedict 1999, 1999;

Haseeb and Amano 2002; Kapuge et al. 2003; Haseeb et al.

2005; Wang et al. 2014). Also, it was demonstrated that

thiocyclam was highly toxic for parasitoids of citrus leaf

miner, Phyllocnistis citrella Stainton. In contrast to our

findings, Ibrahim and Kim (2008) prove that thiocyclam

had less toxicity for Diglyphus isaea (Walker) (Hy-

menoptera: Eulophidae). The different parasitic wasp may

be a major reason of the conflict in results. In the other

hand, D. isaea is a widely used biocontrol agent (Saad et al.

2007; Ibrahim and Kim 2008; Abou-Fakhr Hammad and
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Mc Auslane 2010) and it may have developed resistance to

some chemicals.

Effects of azadirachtin-based insecticides on eulophid

parasites were studied by some authors. For example,

azadirachtin considered as a harmless insecticide for Ta-

marixia triozae Burks (Hymenoptera: Eulophidae) (Luna-

Cruz et al. 2015), D. mollipla Holmgren (Akol et al. 2001),

Colpoclypeus florus Walker (Brunner et al. 2001), Digly-

phus isaea (Saad et al. 2007) and D. isaea (Abou-Fakhr

Hammad and Mc Auslane 2010). In agreement with our

results, a high toxic effect of azadirachtin on the other

species of the family, Tamarixia radiata Waterston, was

reported by Santos et al. (2015). Biondi et al. (2013)

showed that azadirachtin did not have a lethal impact on

females of Bracon nigricans Szépligeti. However, it causes

important delays in population growth.

Hamel (1977) showed that parasitism by Apanteles

fumiferanae Vier. (Hymenoptera: Braconidae) and Glypta

fumiferanae Vier. (Hymenoptera: Ichneumonidae), para-

sitoid wasps of first instar larvae of Choristoneura occi-

dentalis Freeman (Lepidoptera: Tortricidae), was

significantly higher in treatment blocks following Bt

application. But parasitism by Phaeogenes hariolus Cres-

son (Hymenoptera: Ichneumonidae) and Cermoasia auri-

caudata Tns. (Hymenoptera: Ichneumonidae)—parasitoids

of late instars and pupae of the pest—was significantly

lower following treatment (Hamel 1977). Chilcutt and

Tabashnik (1999) showed that there was no effect of Bt

treatment on oviposition by C. plutella. Similar to our

findings, Brunner et al. (2001) demonstrated that Bt prod-

ucts cause no toxicity to C. florus. Brunner et al. (2001)

suggested that Bt products cause no toxicity to C. florus.

Similarly, Haseeb et al. (2004) proved that field dosage of

Bt causes low adult mortality of C. plutella.

Several biocontrol agents and integrated pest manage-

ment programmes (IPMs) have been recently evaluated for

control of SATP (Zappalà et al. 2012). Biocontrol agents

(predators, parasitoids or pathogens) are considered one

possible solution to the T. absoluta crisis (Desneux et al.

2010). This strategy offers a more sustainable and less

expensive alternative to chemicals (Urbaneja et al. 2013).

In conclusion, chlorfenapyr was the best insecticide for

control of SATP larvae and its damage to tomato leaves

and fruits. But the insecticide was not compatible with

parasitoid wasp, E. inunctus. Among the insecticides tes-

ted, Bt was more compatible with E. innunctus release.

Also, Bt had no significant short-term effect on SATP

population. Therefore, integrated application of Bt with

early inundate release of E. innunctus was recommended

for suitable and environmentally safe control of SATP in

greenhouse tomato. The results of this study can be used in

the IPM programme of tomato greenhouses.
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