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Abstract Nowadays, there are increasing concerns about

the bioavailability of neonicotinoids in the environment

and possible exposure of nontarget organisms to these

insecticides, their residues having been detected at differ-

ent concentrations in many matrices, i.e., pollen, nectar,

soil, water. Regarding the risk assessment process, there

are still some information gaps about the exposure path-

ways and the possibility of various sublethal effects on

insect pollinators. Recently, a clear rapprochement

between the sublethal effects of different endpoints under

laboratory conditions and field-realistic exposure level has

been demonstrated. Here, we attempt to draw general

portrayal about the current debate of the exposure to

neonicotinoids and their impacts on pollinators. Depending

on our extracted data from the published literature, we

show that the lowest observed effect concentration under

realistic field conditions in the most cases is higher than

under laboratory conditions, which indicate that further

long-term field research is required with consideration that

our good understanding of the pollinators’ responses to

sublethal exposure should be taken into account in the

future experimental design in order to establish vigorous

conclusions. We review currently available information in

the published literature, presenting the reports about

detected residues in relation to multiple ways of exposure

and their potential consequences on insect pollinators and

community dynamics. Nevertheless, we attempt to classify

the sublethal effects depending on the different biological

levels from genes to population. Moreover, we consider the

field-realistic exposure level and critically analyze the

laboratory as well as field studies to specify their physio-

logical and behavioral effects. Additionally, synergistic

effects of different factors, including exposure to neoni-

cotinoids and their hazards on bees, will find special

attention.

Keywords Neonicotinoids � Bees � Risk assessment �
Sublethal effects

Introduction

Since the introduction of the neonicotinoids as a new

class of insecticide, there has been a huge body of lit-

erature assessing their effects on bees. This increasing

interest indicates that there are many gaps in our

knowledge about the potential effects of these insecti-

cides on nontarget beneficial insects, especially pollina-

tors. This resulting, hugely varying information comes

from laboratory as well as field studies, which in turn led

to some difficulties in analyzing their impacts. The

concerns about pollinators’ exposure to neonicotinoids

depend on their high toxicity, persistence in soil and

water, and wide application. Also, their systemic prop-

erties lead in turn to their diffusion through the xylem in

growing plants, thus contaminating nectar, pollen

[26, 74, 110, 118], and guttation water [55, 69], which

were collected by bee foragers and transported to the

nest. As a result, neonicotinoids are considered as

insecticides bioavailable to insect pollinators at sublethal

concentrations through the potential uptake from crops

and wild plants.
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Recently, these concerns about negative effects of

neonicotinoids on bees have led to 2-year restrictions on

the use of three neonicotinoids (clothianidin, imidacloprid,

and thiamethoxam) as seed treatment in bee-attractive

crops in the European Union to evaluate their potential

environmental impacts [46]. However, this process will

also play an important role in evaluating the present and

future of the pest control strategies.

Therefore, the potential exposures and effects on polli-

nators have been the subject of numerous studies. Nowa-

days, there is increasing attention being paid to sublethal

effects due to their subsequent impacts on the development

of the insect pollinators. Among them, Apis and non-Apis

bees are considered as the most important pollinators

worldwide, playing an important role in the maintenance of

biodiversity and food production [73, 137].

Neonicotinoids have been classified depending on the

pharmacophore into three main groups, which are N-ni-

troguanidines (imidacloprid, thiamethoxam, clothianidin,

and dinotefuran), nitromethylenes (nitenpyram), and

N-cyano-amidines (thiacloprid and acetamiprid) [44].

According to their different ways of application,

including soil treatment, seed treatment, and spray, they

have since become the most used class of insecticides

(26 % of the insecticide market in 2010) [18] and are

licensed in more than 120 countries for more than 1000

uses in treating a wide range of plants [41].

The neonicotinoids’ mode of action is known as acetyl-

choline mimics, and they act as agonists of nicotinic

acetylcholine receptors (nAChR), which in turn activate

persistently the cholinergic receptors, leading to hyper-ex-

citation and death in the end [68]. Sublethal effects are

defined as physiological and/or behavioral effects on indi-

viduals who survive after exposure to a pesticide at a dose

with no apparent mortality in the experimental population.

The risk assessment of nontarget organisms, especially

bees, to pesticide exposure had been developed in many

countries to take into account the sublethal effects on the

different levels of the organism’s development.

We focus on sublethal impacts of neonicotinoids and

review currently available information in the published

literature. We attempt to classify these effects depending

on the different biological levels. So, in this review we

present the reports about detected residues in relation to

multiple ways of exposure and their potential consequences

on insect pollinators and community dynamics. Moreover,

we take into account the field-realistic exposure and criti-

cally analyze the laboratory as well as field studies to

specify their physiological and behavioral effects. In

addition, the synergization of different factors, including

exposure to neonicotinoids and their hazards for bees, will

be given special attention.

The exposure routes related to ways of application

The bioavailability of neonicotinoids is considered to be at

a high level throughout the year depending on the respec-

tive pest control profiles in a wide range of agricultural and

horticultural plants, where they exhibit long persistency in

soil and a high ability to diffuse throughout the plants (e.g.,

the half-life of clothianidin in soil is between 148 and

6900 days [107] and imidacloprid 40–997 days). In turn,

there is a potential accumulation in the soil after repeated

applications and contamination of other growing plants

[62]. On the other hand, Van Dijk et al. [138] reported that

imidacloprid could travel far beyond the fields via surface

and ground water. Therefore, the exposure of insect polli-

nators at very low doses to various sources of different

neonicotinoids is very likely. The potential exposure

pathways of insect pollinators are shown in Fig. 1.

According to these pathways, we summarize the range of

detected concentrations under field conditions based on the

latest published studies (Table 1). Several studies were

performed worldwide to determine exposure levels to

neonicotinoid residues, where either large surveys in dif-

ferent sites [21, 113], sampling from different crops (i.e.,

maize and oilseed rape) over many years [101], or only

from one crop in one season [26, 102] were conducted.

Under realistic conditions in the field, only a little

information is known about the level of oral or contact

exposure either through contaminated food (nectar, pollen,

and water) or other treated surfaces. It is assumed that

different exposure levels occur in the bee’s colony

(honeybees or bumblebees) among different castes. On the

other hand, there are information gaps about the amount

consumed by wild bees.

Regarding oral exposure, as given in Table 1, the

neonicotinoid residues in positive samples depended on the

way of application. For imidacloprid, the highest residues

6.0–28.0 and 5.0–14.0 lg/kg were detected after soil

treatment in the pollen and nectar of squash, respectively

[126], whereas the lowest residues 0.6–2.0 lg/kg were

found in the nectar of seed-treated oil seed rape and not

detected in pollen [102]. Similarly, for thiamethoxam, the

highest detected concentrations 5.0–35.0 and 5.0–20.0 lg/
kg were found after soil treatment in the pollen and nectar

of squash, respectively [126], whereas the lowest residues

were found in seed-treated crops, i.e., 1.0–7.0 lg/kg in

maize pollen and 0.7–2.4 lg/kg in oilseed rape [101]. On

the other hand, relatively high concentrations of clothian-

idin were detected in seed-treated crops, where the residues

in maize pollen ranged between 0.3 and 11.4 lg/kg [91]

and 0.5–10.1 lg/kg in canola nectar [102], with an

exception in the Krupke et al. [74] study, who reported

detecting residues in pollen ranging between 1.1 and
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88.0 lg/kg. Generally, the frequencies of positive samples

in most studies were relatively low to medium in the col-

lected samples, ranging from not detected to 60 %. How-

ever, the spray application of both low toxic neonicotinoids

(i.e., thiacloprid and acetamiprid) leads to relatively higher

residues in both nectar and pollen but remain at much

lower than lethal concentration.

Water as another suggested potential oral exposure

includes surface and guttation water. Currently, high levels

of residues in puddles of water as a possible source for

drinking water from seed-treated corn fields were detected

[111]. They found that clothianidin and thiamethoxam

residues ranged from 0.1 to 55.7 and 0.1 to 63.4 lg/L,
respectively. Also, very low concentrations were found in

different rivers in Australia [113] compared to very high

levels of neonicotinoids in guttation water [7, 55, 69].

Reetz et al. [104] demonstrated that the residual concen-

trations in guttation water from seed-coated winter oilseed

rape decreased throughout the plant development (up to

130 lg/L clothianidin during autumn, prewinter\30 lg/L,
spring\15 lg/L). They also evaluated the water-foraging

activity of honeybees on guttation fluid from seed-coated

canola, where the thiamethoxam residues in honey-sac

contents at concentrations ranging from 0.3 to 0.95 lg/L
were detected.

However, this study confirms that bees could use gut-

tation water as a source of water. Thus, the exposure levels

in different crops should be evaluated.

For wild bees nesting in soil, direct or indirect contact

exposure to contaminated soil is an additional pathway of

concern. Stewart et al. [125] reported that the detected

concentration in soil was between 1.0 and 29.0 lg/kg of

imidacloprid and clothianidin and 1.0–39.0 lg/kg of thi-

amethoxam. Currently, assessments of clothianidin accu-

mulation in soil and bee-relevant matrices showed no

increase over time in fields receiving multiple applications

of clothianidin. Relatively low residues in soil of

5.7–7.0 lg/kg, corn pollen 1.8 lg/kg, and canola nectar

0.6 lg/kg were detected [146].

Moreover, the dust drift has been taken into account as

an exposure way, where the level of dust decreases relative

to the distance. APENET project 2010 reported that the

dust amount ranged between 2.0 and 16.0 lg/m2 for imi-

dacloprid at a distance of 5–20 m.

Few studies analyze the residues in nesting materials,

where some residues of neonicotinoids were detected in

bee wax [90]. Pareja et al. [95] reported that high residue

levels of imidacloprid were detected in the honeycombs

(240.0–450.0 lg/kg) and propolis (20.0–100.0 lg/kg) of

depopulated beehives located near treated sunflower crops

in Uruguay. These indicate the possibility of accumulation

in these materials.

However, until now, the field-relevant concentrations

and/or doses are still not completely resolved due to a

limited investigation of few pollinator-relevant plants. So,

it is unexpected that residue concentrations are in a wide

range over different spaces, and in turn it is difficult to

conclude whether such residues exist rarely or commonly

at the field level [137]. Nevertheless, there is a possibility

of accumulative poisoning through the repetitive con-

sumption of food containing low residues of

neonicotinoids.

Fig. 1 Potential pathways of

exposure of bees to

neonicotinoids
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Comparison of evidences in published laboratory
and field studies

During the last years (between 2014 and 2016), new evi-

dences about the sublethal effects of exposure to neoni-

cotinoids have been published, which lead to advance our

knowledge and understanding about the potential exposure

of different insect pollinators to these pesticides and their

responses under realistic conditions. In the most studies, it

has been considered that the exposure of pollinators to

seed-treated crops occur at sublethal levels. Since the

impacts of neonicotinoids depending on various factors,

e.g., active ingredient (imidacloprid, clothianidin and thi-

amethoxam), bee species (honeybees, bumblebees and

solitary bees), type of exposure (acute vs. chronic and/or

oral vs. contact), and study type (laboratory or field), the

generalization of the effects is very difficult. However, we

take all of these factors into account to provide a com-

prehensive insight into the current state of this issue. Thus,

we consider some criteria to compare the effects of pesti-

cides ingestion at sublethal concentrations, which are

active ingredients of neonicotinoids (Imi, clo, and thia),

bee species (honeybees and bumblebees), and study type

(laboratory or field). The available data about NOEC and

LOEC form published laboratory and field studies are

extracted wherever possible and transferred to concentra-

tion unit lg/kg of diet. However, we could not give any

information about the sensitivity of different bee species to

different active ingredients, since there are not enough

studies on all three substances and the most studies used

imidacloprid as a representative member of neonicotinoids.

According to our previous criteria, we show that there

are differences between NOEC of the active ingredient on

both bee species under field conditions and laboratory

conditions, where the laboratory NOEC is relatively higher

than field NOEC in the most cases. An explanation for this

difference is that the detected residues in the most con-

ducted field studies to investigate the effects of exposure to

neonicotinoid seed-treated crops on bees are found to be

trace in pollen and/or nectar. Depending on the detected

residues in pollen and nectar in the seed-treated crops, the

field-realistic concentrations of these pesticides were

assumed to be 1–10 lg/kg (see [24]). Nevertheless, the

extracted data from the published laboratory studies indi-

cate that there are not significant differences between

NOEC and LOEC under laboratory conditions, since

numerous sublethal endpoints have been developed to

evaluate the exposure effects. The most of these studies are

carried out at the individual level, and the effects have been

reported also at the field-realistic concentrations, especially

the effects related sub- and cellular functions and learning

performance, etc. On the other hand, as shown in Fig. 2,

the LOEC under realistic field conditions is higher than

under laboratory conditions, which in turn indicate that the

consequences of adverse effects in the complex context

like free-flying individual and/or at colony levels related to

other environmental factors are not clear. However, we

cannot compare the sensitivity of solitary bees with

honeybees and bumblebees, since few researches are car-

ried out to investigate their responses to the sublethal

exposure through different pathways, which mean that

more studies are needed. Furthermore, the different sce-

narios of realistic exposure depending on the good under-

standing of the pollinators’ responses to sublethal exposure

should be taken into account in the future experimental

design in order to establish vigorous conclusions.

Side effects of neonicotinoid exposure

As we interpret the different potential exposure pathways

and detected concentrations under field conditions, sub-

lethal effects might occur at low concentrations of neoni-

cotinoids. These sublethal impacts could involve several

successive modifications at different biological levels from

genes to population (Fig. 3). Nowadays, at subcellular

levels, there are various new approaches using new tech-

niques, including transcriptomics, proteomics, and meta-

bolomics. These rapid developments of new technologies

are involved in ecotoxicology during the risk assessments.

They play an important role in explaining the complex

interactions between responses from cellular mechanisms

to the whole organism and then to the population level. So,

determining any alterations could be used to evaluate the

impacts of very low concentrations at the individual level.

Sub- and cellular functions

Although the investigation of biochemical changes at the

subcellular level might be valuable as an additional sub-

lethal toxicity endpoint, only some studies have been car-

ried out on the effects of neonicotinoids at the sublethal

level on gene expression and enzyme activities in insect

pollinators. These possible modifications in the biological

processes, i.e., gene pathways, after exposure to pesticides

could be associated with various impacts on the detoxifi-

cation capacity, immune function, and behavioral matura-

tion. Therefore, these studies could prove useful to evaluate

the detoxification capacity and/or sensitivity of exposed

bees to neonicotinoids under both field and laboratory

conditions (Table 2).

Derecka et al. [35] reported several changes in the

metabolic networks of honeybee larvae taken from treated

colonies with imidacloprid, e.g., an overrepresentation of
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E-box elements in the promoter regions of genes, increased

RNA levels for a cluster of genes encoding detoxifying

P450 enzymes, and a reduction in the expression of the

environmentally responsive Hsp90 gene, which could

affect the developmental process. Furthermore, sublethal

chronic exposure of honeybees to imidacloprid or Nosema

ceranae imidacloprid decreases the expression of some

genes relative to controls, where a significant down-regu-

lation of immunity-related genes was observed [8]. Cur-

rently, Brandt et al. [15] reported that oral exposure to

neonicotinoids for 24 h influenced the individual

immunocompetence of honeybees, where a reduction in

hemocyte density, the encapsulation response, and

antimicrobial activity was observed. Additionally,

immunohistochemical data of honeybees exposed to sub-

lethal doses of thiamethoxam and/or to N. ceranae showed

that thiamethoxam exposure only had a minor synergistic

toxic effect on midgut tissue when applied as a low dose

simultaneously with N. ceranae, in comparison with the

effect caused by both stressors separately [59].

Mainly measurements of the enzymes’ activity after or

during exposure were used to investigate any changes

related to the treatment. Usually at the individual level, a

large set of metabolic enzymes will be inducted into the

detoxification process to protect the insect against the

harmful effects of pesticides. For instance, [67] suggested

that a reduced toxicity of acetamiprid and its metabolites

was related to increased metabolism by cytochrome P450

monooxygenases, but no quantitative measures were taken.

Alptekin et al. [6] reported a significant increase in the

expression of genes encoding detoxification enzymes

[P450s and carboxyl/cholinesterase (CCE)] of thiacloprid-

treated bees compared with untreated bees.

On the other hand, the regulatory role of various

enzymes in the honeybee workers after being exposed to

sublethal doses of thiamethoxam [11] or acetamiprid and

dinotefuran [10] was investigated. Different changes were

observed, where the low doses induced nearly the strongest

effect on some tested enzymes activities. Another study

showed an increase in acetylcholinesterase AChE activity

in honeybee under both field and laboratory conditions

after chronic exposure to relatively low doses of neoni-

cotinoids [13]. It is assumed that these increases in AChE

activity are attributed to a typical substrate-enzyme cellular

response resulting in occupying the binding site of

acetylcholine and in turn an accumulation in the synapses.

Most recently, a study suggested that vitellogenin (Vg)

could be used as a biomarker to determine the energy stress

and sublethal effects of pesticides on honeybees, where

bees exposed to imidacloprid exhibited a significant

decrease in the titer of Vg which could correlate with the

increased energy usage [1].

Peng and Yang [96] found that imidacloprid-treated

bees during their larval stage exhibited a reduction in the

density of their synaptic units in the region of the calyces,

which are responsible for olfactory and visual functions.

Thus, this finding confirmed that the development of the

nervous system in regions responsible for both olfaction

and vision is affected by exposure to imidacloprid during

the larval stage.
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In bumblebees (Bombus impatiens), Samson-Robert

et al. [112] reported that at the beginning of the planting,

AChE mRNA expression was increased in the samples

collected from the neonicotinoid seed coating corn field

and then decreased throughout the planting season to reach

a similar level to that of bumblebees from control sites.

It should be considered that although these changes in

the enzymes’ activity play an important role in the detox-

ification process to protect the insect against the harmful

effects of pesticides, these enzymes are also very important

in the metabolism of endogenous compounds such as

hormones and pheromones [22]. Thus, any changes in the

activity of this system might have various subsequent

effects on honeybee sensitivity to pesticides, physiological

homeostasis, natural behavior, and in turn weakness of

individual immune systems.

Organ and system functions

The neurophysiological basis of exposure to low concen-

trations of neonicotinoids as cholinergic pesticides has

been recently investigated using cultures of Kenyon cells

(KCs) from dissociated bees’ mushroom bodies. KCs are

the major neuronal component of the mushroom bodies, a

higher order of a bee’s brain, and comprise over 40 % of

neurons in the honeybee brain [109].

To assess age-related neuronal sensitivity to imidaclo-

prid, cultured KCs of 1- and 13-day-old bumblebee

workers (B. impatiens) were exposed to imidacloprid for

24 h. The results showed that 13-day-old nurses and for-

agers were more sensitive toward imidacloprid than 1-day-

old workers [144].

Furthermore, whole-cell voltage-clamp and current-

clamp recordings were obtained from mushroom body KCs

in an acutely isolated honeybee brain to investigate the

effects of different concentrations of bath-applied imida-

cloprid and clothianidin via an extracellular solution [94].

Both tested neonicotinoids cause a depolarization block of

neuronal firing and inhibit nicotinic responses at low con-

centrations. The depolarization effect of clothianidin was

larger than imidacloprid depending on their respective

actions as full and partial nAChR agonists [16]. Recently,
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Moffat et al. [87] showed rapid mitochondrial depolariza-

tion of nicotinic acetylcholine receptor dependent in cul-

tured neurons of bumblebees (Bombus terrestris audax)

after acute exposure to clothianidin and after chronic

exposure to imidacloprid.

However, the direct exposure of individual cells to the

full dose of the pesticides makes it difficult to interpret the

previously observed effects in relation to behavioral

effects, because there are many metabolic and biological

barriers that could modulate the achieved concentration of

pesticides in the brain neurons [144]. On the other hand,

these results could be useful in understanding the sensi-

tivity of different insect pollinators when exposed to sub-

lethal concentrations under realistic conditions.

Although neonicotinoids are considered primarily as

neurotoxins, they could have impacts on secondary targets

during their diffusion in the organism. Some studies

investigated the cytotoxicity of these insecticides in dif-

ferent organs of the treated honeybees. Oliveira et al. [92]

reported that newly emerged workers of Africanized

honeybees orally exposed to sublethal doses of thi-

amethoxam exhibit morphological and histochemical

alterations in the brain as well as in the midgut depending

on the exposure period. They found that low doses required

less time to induce morphological alterations, including the

presence of condensed cells in the mushroom bodies and

optical lobes compared with the higher doses. Additionally,

the cellular Xylidine-Ponceau staining was intense in

mushroom bodies as well as optical lobes at the beginning

of the treatment and decreased over time suggesting an

expression of heat shock protein to protect cells against

adverse effects. In the midgut, the digestive and regener-

ative cells from treated bees also showed various alter-

ations, like cytoplasm vacuolization, increased apocrine

secretion, and increased cell elimination. Cytotoxic

impacts were also observed in midgut and Malpighian

tubules of Africanized honeybees orally exposed to sub-

lethal doses of thiamethoxam [19]. At a relatively high

applied dose of imidacloprid 8.09 ng/bee (LD50/10), various

cytotoxic effects were observed in mushroom bodies,

whereas in optic lobes these effects were found at lower

doses indicating a higher sensitivity of optic lobes to low

doses of imidacloprid [28]. In another study, numerous

cytotoxic activities of imidacloprid in Malpighian tubules

were observed [29]. However, none of those studies pro-

vided any information about the frequency of observed

alterations in the tested bees (i.e., in all five or six tested

bees per group or only in some of them).

Furthermore, other researchers have looked at the effect

of imidacloprid on hypopharyngeal gland (HPG) develop-

ment either in nurse bees [66] or bees of different ages

[122]. Significantly smaller HPG acini were observed in

treated bees compared with untreated bees. However, the

authors did not determine the consumed doses of imida-

cloprid during the exposure period. Similar effects were

found in the newly emerged caged bees chronically

exposed to imidacloprid, where the HPG acini were 14.5

and 16.3 % less in 9- and 14-day-old honeybees, respec-

tively, compared with same-aged untreated bees [64]. This

modification could induce earlier field activities.

All of the previously observed changes at the cellular

level due to exposing bees to sublethal doses indicate that

many physiological processes could be impaired and sub-

sequently lead to abnormal of different functions in the

organism (Table 2).

Whole organism

The sensitivity of an individual after being exposed to a

pesticide correlates with its ability to sequester or eliminate

the metabolites from its body. Therefore, the detection of

any adverse effect of pesticide exposure before populations

are negatively affected plays an important role in the risk

assessment process. Subsequently, various bioassays used

development in vitro or in vivo to investigate the sublethal

effects at the individual level. Most recently, there has been

a debate about the volubility of such bioassays and

attempts to standardize them. Here, we interpret the

potential endpoints at the individual level that could be

considered in the risk assessment (Table 3).

Cognitive performance

Cognition is very complex and covers essential functions,

including the interaction processes of an individual with

various environmental cues and responding to life

requirements. For instance, forager bees visiting a flower

show the proboscis reflex as a result of different receptors’

stimulation from the reward (nectar and/or pollen) as well

as the odors and color cues. This process then induces

memorization that in turn facilitates flower recognition

during the next trips [86].

Regarding cognition’s involvement in various behav-

ioral types, investigating and assessing the sublethal effects

of the neurotoxins ‘neonicotinoids’ on bees are considered

an attractive topic. As we describe above, the exposure to

sublethal doses could cause alterations in the neural pro-

cesses which in turn affect the bees’ response and behavior.

To investigate the sublethal effects on bees, many in vivo

and in vitro approaches were developed. We will outline

the related effects of bee exposure to these pesticides.

Associative and non-associative learning and memory To

investigate the associative learning and memory of bees,

there are several well-established approaches under labo-

ratory as well as field conditions honing in on conditioning
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cues. The widely used method depends on the proboscis

extension reflex behavior of honeybees.

An impairment in olfactory associative learning per-

formances and memory formulation of honeybees exposed

to neonicotinoid insecticides was observed

[4, 31–34, 43, 63, 128, 143, 147]. These effects depended

on the dose, administration way, exposure duration, and

season (see Table 3). Given the different effects of dif-

ferent substances, it should be considered that they are not

always the same for all the insecticide family. An acute

oral sublethal dose of imidacloprid had no adverse effect

on the learning and memory of honeybees [141]. Never-

theless, oral subchronic doses of imidacloprid impaired

various aspects of olfactory learning and memory forma-

tion of honeybees [143]. Oral subchronic doses of thi-

amethoxam induced a slight and nonsignificant reduction

in learning and memory performance, whereas topical

application decreased the learning performance and eLTM

of tested bees. No adverse effects of applied doses of

acetamiprid on learning and memory were observed [4].

Another study failed to observe any effects on tested bees

after acute exposure to thiamethoxam, while oral sublethal

doses of acetamiprid impaired the long-term retention of

olfactory learning in contrast to topical application that had

no effects on learning and memory performance [43].

Decourtye et al. [34] demonstrated that a lower concen-

tration of imidacloprid was required to elicit adverse

behavioral effects on summer bees compared to winter

bees.

Moreover, consistent results were observed under both

semi-field and laboratory conditions, where a reduction in

the foraging bees’ activity and at the hive entrance was

associated with a decrease in olfactory performance [32].

On the other hand, Han et al. [63] supplied a new approach

relying on the T-maze test to assess the sublethal effects of

pesticides on the visual associative learning of honeybees.

They found that oral chronic exposure to imidacloprid

induced a reduction in visual learning capacities in a

T-tube maze and olfactory learning performances mea-

sured with PER. Recently, Alkassab and Kirchner [5]

reported that chronic oral exposure of winter honeybees to

clothianidin had no effects on their learning performance,

whereas specificity of early long-term memory (24 h) at

15 lg/kg was affected.

Furthermore, exposing bees during the larval stage to a

sublethal dose of imidacloprid showed a decrease in their

associative learning ability. These results suggested that

subsequent effects are not excluded [147].

Most recently, Tan et al. [128] found that exposing

Asian honeybees (Apis cerana) as larvae or as adults to

actual sublethal doses of imidacloprid showed an impair-

ment in olfactory learning. Through different exposure

stages, the adults of imidacloprid-exposed larvae exhibited

poorer short-term memory compared with the control,

whereas the adults exposed to imidacloprid showed poorer

long-term memory.

Effects on non-associative learning are not well docu-

mented. An example for such behavior is PER habituation,

which is induced by stimulation of one antenna using a

sucrose solution. This learning behavior indicates the bee’s

ability to avoid the energy-dispersive resulting from a

wrong response.

Topical acute sublethal exposure of honeybees to imi-

dacloprid caused a reduction in the needed trials to observe

habituation [75]. Another study demonstrated that topical

application of imidacloprid at different ages showed con-

trasting effects, where in B7-day-old bees the number of

trials for habituation increased, and in C8-day-old bees, the

effect was a reduction in the needed trials 15–60 min post-

treatment, with an increase 4 h post-treatment [61]. These

contrasting effects may refer to the existence of different

subtypes of nAChR with different affinities to imidacloprid

(e.g., [12, 40, 132]) or its metabolites [60].

On bumblebees, Stanley et al. [124] reported memory

impairment following exposure to 2.4–10 ppb thi-

amethoxam for 24 days. Nevertheless, they could not

observe any effects on memory performance after acute

exposure. Another study showed that chronic exposure to

1 ppb clothianidin had no significant effects on the asso-

ciative learning and memory of bumblebees [100].

Chemical senses (olfaction and gustation) For insect

pollinators, these chemical senses play a very important

role, since they are involved in various behavioral func-

tions and tasks, e.g., the detection of food sources,

recruitment of foragers (e.g., [52, 56, 82].

Applied pesticides could be attractive, repellent, or

neutral for a pollinator, directly affecting their behavior

before being exposed. Indirect effects could also occur

after exposure as effects on the neural processes.

Neonicotinoids’ direct effects (pre-exposure) on bees

have not been well investigated. Bortolotti et al. [14]

reported that imidacloprid showed no repelling effect at

field-relevant concentrations and had repelling effects at

500 lg/L.
Consistently, other studies demonstrated that both

honeybees and bumblebees cannot distinguish between

solutions uncontaminated and contaminated with imida-

cloprid, thiamethoxam, and clothianidin. Moreover, bees

consumed more sucrose solutions when these contained

imidacloprid, thiamethoxam but not clothianidin [71].

Post-exposure effects of neonicotinoids on bees’ chem-

ical senses could trigger different alterations in their

behavioral responses. Using the PER assay, bees exposed

to neonicotinoids showed alterations in their gustatory

threshold to sucrose [4, 42, 43, 75]. Imidacloprid led to an
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increase in the gustatory threshold to sucrose after oral or

topical exposure [42, 75], while acetamiprid and thi-

amethoxam reduced the threshold after oral exposure but

not by contact [4, 43].

Navigation and homing flight Bees’ ability to search, find

food and return to the nest requires integrating multiple

cognitive skills, especially different forms of memory [85].

Regarding their impacts on memory formation, exposure

to neonicotinoids could cause homing failure and/or longer

foraging flight. These behavioral functions are essential for

the bee’s life as well as nest development; therefore, there

is a debate on taking this endpoint into account during the

pesticides’ risk assessment. Recently, it has been attempted

to standardize the methods employing a catch-and-release

paradigm that proves the bee’s navigation ability after

being exposed to pesticides.

Honeybees orally treated with imidacloprid-contami-

nated sugar solution after being trained on an artificial

feeder showed a delay in their homing behavior depending

on the concentration [14, 148].

Matsumoto [83] observed a reduction in successful

homing flights of clothianidin-treated bees, but no effects

on the homing time of the returning bees compared to

control bees.

To supply more accurate details about sublethal

impacts in comparison with the traditional observation of

marked bees, new approaches were developed to auto-

matically register the bees’ activity, including harmonic

radar and radiofrequency identification (RFID). Henry

et al. [65] reported that fewer bees returned to the colony

after being treated with thiamethoxam than untreated

bees. Another study demonstrated that both imidacloprid

and clothianidin reduced the foraging activity and

increased the foraging flights [119]. Most recently, a field

study was conducted to assess the homing behavior of

honeybees during their foraging on seed-treated canola

using RFID. Under the experimental conditions, the

authors found no effect on the flight activity or the

homing ability of the exposed bees compared to control

groups [134].

On the other hand, various parameters of the navi-

gation process of honeybees could be investigated using

the harmonic radar technique. Regardless of applied

doses, the analysis of the navigation of bees treated

with neonicotinoids (imidacloprid, clothianidin, or thi-

acloprid) showed modifications in the length and

directional components of vector flight and homing

flight. These alterations indicated that sublethal doses of

the tested neonicotinoids either block the retrieval of a

remote memory or alter this form of navigation memory

[50].

Motor functions

Various motion activities of Apis and non-Apis bees

achieved by muscular constriction are involved in different

behavioral (e.g., foraging and communication) as well as

physiological (e.g., digestion and respiration) aspects. The

impacts of pesticides on bees’ mobility were studied by

investigation of the locomotion modifications and foraging

activity.

At high doses, the neonicotinoids cause numerous

symptoms, which are easy to recognize by visual obser-

vation, e.g., trembling, uncoordinated movements, hyper-

activity [75, 84, 127].

At low sublethal doses, alterations in the motor func-

tions might occur to different degrees, which require effi-

cient tests to determine and quantify them.

Grooming Grooming behavior is an essential hygiene

behavior, especially against parasites, at the individual

level and in the nest. The observation of this behavior is

very difficult within a teeming honeybee colony [9]. In

observation hives, it is time-consuming to observe both

grooming and allogrooming behaviors [97, 131]. There-

fore, few in vitro studies have been conducted to point out

the effects of sublethal doses on grooming behavior. Wil-

liamson et al. [142] reported that bees exposed to thi-

amethoxam spend more time grooming, had more bouts of

grooming, and had a longer duration of grooming bouts,

while imidacloprid impaired the grooming behavior in the

tested bees at a higher exposure dose. An explanation for

these differences may lie in the presence of different

receptor subtypes in the nervous system affected by dif-

ferent substances.

Locomotor activity Preliminary visual observation was

performed by Lambin et al. [75], showing that contact-

treating bees with imidacloprid increased the motor activity

at a low applied dose (1.25 ng/bee) even after 15 min of

the treatment in the tested arena, whereas an impairment of

the movement was observed at higher doses.

Acute contact administration of acetamiprid at sublethal

doses increased locomotor activity, whereas thiamethoxam

had no effect on the treated bees [4, 43].

On the other hand, bees orally treated with sublethal

doses of neonicotinoids (imidacloprid, thiamethoxam, and

clothianidin) exhibited no significant changes in their

motor functions, including walking, sitting, and flying.

Nevertheless, exposed bees spend more time laying on

their backs and had difficulties in righting themselves, due

to a loss of postural control [142].

Moreover, a video-tracking experiment was used as an

efficient tool to investigate the sublethal effects of pesticides
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on bees. Honeybees orally treated with imidacloprid showed

a reduction in the distance moved [130]. Additionally,

ingestion of high doses of imidacloprid during the larval

stage of stingless bee (M. quadrifasciata anthidioides)

affected the walking behavior, including distance walked,

walking velocity, and number of stops of adults after 4 and

8 days of emergence, but not after 1 day [136].

Foraging behavior

The link between the cognitive performance and motor

functions of individual bees leads to an effective foraging

trips, considered as an essential behavioral function that

enables optimal development of the bee populations by

supplementing the necessary food.

Since the exposure to pesticides could cause several

alterations in both cognitive and motor functions, investi-

gating the foraging capacity of bees exposed to pesticides

should also be carried out under semi- and field conditions

to relate them to the laboratory tests.

The used protocols include the observation of the

activity either on an artificial feeder or a directory on the

plants, where the frequency of visits, number of active

bees, intervals between visits, and the amount of food taken

up are considered.

For honeybees, a tunnel experiment using small

honeybee colonies (nucleus) showed that sublethal con-

centrations of imidacloprid reduced the proportion of

active bees 4 days post-exposure [23]. Also observed was a

decrease in the foraging activity in a flight cage during the

exposure period with a recovery of the foraging activity

after the treatment [103]. Moreover, bees orally treated

with imidacloprid exhibited delays in their return visits to

the feeder [119, 148].

On the other hand, various studies investigating the

foraging activity on neonicotinoid seed-treated crops, e.g.,

maize, canola, and sunflowers, under semi- and field con-

ditions showed no effects on the foraging activity

[26, 27, 118].

On bumblebees, Gill et al. [54] found that chronic

exposure to imidacloprid at field-realistic levels reduced

the foraging success, particularly the pollen collecting

efficiency, of worker bumblebees. Another study demon-

strated no effects on the nectar foraging efficiency of bees

treated with imidacloprid, whereas treated bees brought

significantly less pollen back than control bees [49].

Fauser-Misslin et al. [48] observed a significant reduc-

tion in sugar water collection by neonicotinoid-treated bees

in addition to a decline of pollen collection per bee over

time relative to untreated bees. To the contrary, Stanley

and Raine [123] observed that thiamethoxam-treated

colonies collected pollen more often than controls.

Reproductive performance

Regarding long-term exposure to neonicotinoids, hazard

evaluations of the side effects on the reproductive perfor-

mance of different insect pollinators have received some

attention recently. Such information would be very helpful

to determine the long-term impacts of dietary sublethal

doses. Actually, many quantification parameters related to

reproductive success are more determinable for insect

pollinators with annual and/or less complex life cycles like

bumblebees and solitary bees compared to the complex

perennial life cycle like honeybees.

Brood amount and fecundity For honeybees, some studies

investigated the reproductive performance of honeybees

after being exposed to neonicotinoids, where feeding

honeybee colonies with sublethal concentrations of imi-

dacloprid in sugar syrup during the summer led to changes

in the capped brood area in the treated colonies [47].

Otherwise, no negative effects of different neonicotinoids

on the brood development of healthy bee colonies were

found after exposure to seed-treated canola with different

neonicotinoids [26, 102]. Moreover, a 4-year field program

investigating the long-term effects of repeated exposure of

honeybee colonies to thiamethoxam-treated maize and

canola had no effects on the brood amounts [101]. Another

study showed that honeybee colonies chronically exposed

to thiamethoxam and clothianidin through feeding con-

taminated pollen over two brood cycles exhibited a

decreased brood amount (-13 %), but colonies recovered

in the medium term and overwintered successfully [116].

Chaimanee et al. [20] topically treated honeybee queens

with sublethal doses of imidacloprid and assessed the

effects on the viability of sperm stored in spermatheca.

They found a significant reduction (50 %) in the sperm

viability 7 days post-treatment first at 20 ppb.

For bumblebees, several reports showed adverse effects

on fecundity, indicating that bumblebees could be more

sensitive to neonicotinoids than honeybees. Under labora-

tory conditions, queenless B. terrestris micro-colonies were

exposed to thiamethoxam in both pollen and honey water.

Significantly fewer eggs were laid and no larvae produced

at 10 lg/kg over the 28-day experimental period [45].

Another study demonstrated that exposing queenless

microcolonies of bumblebee workers for 12 days to a range

of imidacloprid concentrations can reduce worker fecun-

dity by at least one-third. In contrast, ovary development

was unimpaired by dietary imidacloprid except at 125 ppb.

However, the workers in microcolonies exposed to

63.5 ppb imidacloprid developed their ovaries but did not

lay eggs [80]. On the other hand, long-term exposure

(80 days) of bumblebees (B. impatiens) to clothianidin in
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the pollen/sugar water mixtures showed no effects on the

amount of brood or the number of workers, males, and

queens at each dose [51]. Another experiment was con-

ducted using queenright colonies of B. impatiens consisting

of a queen and 30–50 workers placed in greenhouses; the

results showed significantly less living brood after

11 weeks of oral exposure to imidacloprid or clothianidin

depending on the dose [120]. Furthermore, Tasei et al.

[129] chronically (up to 10 weeks) exposed bumblebees

(B. terrestris) in micro-colonies (three workers) to imida-

cloprid-contaminated sugar water and pollen. Both treat-

ments significantly affected the brood production and

number of larvae ejected by workers. Queenless micro-

colonies of worker bumblebees exposed to thiamethoxam

for 17 days showed no detectable effect on the brood

production at low applied concentrations and a reduction in

brood production after being exposed to high concentra-

tions [78].

Laycock and Cresswell [79] investigated the effects of

pulsed exposure (14 days ‘on dose’ followed by 14 days

‘off dose’) of bumblebees (B. terrestris) in small, stan-

dardized experimental colonies (a queen and four adult

workers) to imidacloprid-contaminated pollen syrup. They

estimated that 14-day exposures to dietary imidacloprid

between 0.3 and 10 ppb may reduce brood production in B.

terrestris colonies by between 18 and 84 %, and after

14 days without exposure, the drop in brood is ameliorated

to between 2 and 19 %.

One study conducted on red mason bees (Osmia bicor-

nis) showed that chronic and dietary exposure to thi-

amethoxam and clothianidin had severe detrimental effects

on solitary bee reproductive output, including a reduction

in total offspring production and a significantly male-bi-

ased offspring sex ratio [115].

Ontogenetic development Special attention has recently

been paid to evaluating the risk of chronic neonicotinoid

exposure in the ontogenetic phases, including larval and

pupal development. Some studies have been performed to

investigate sublethal impacts of neonicotinoids on larval

development in insect pollinators. From those, we have

excluded studies using high concentrations compared with

field-relevant concentrations (e.g., [57, 58], where con-

centrations of imidacloprid were used at 200 and 400 ppm,

respectively).

For honeybees, Yang et al. [147] investigated the capped

brood, pupation, and eclosion rates of the honeybee larvae

after treating them directly in the hive with different

dosages of imidacloprid over 4 days. No significant effects

were found on the capped brood, pupation, and eclosion

rates after treating larvae at low exposure doses, but at

higher doses, such effects occurred. Furthermore, worker

honeybee larvae reared in a brood comb containing 17

different pesticides (including residues of several neoni-

cotinoids) expressed delayed development at day 4 and day

8 [145]. When the larvae of stingless bees (M. quadrifas-

ciata anthidioides) were exposed to imidacloprid, a lower

survival rate was found. However, no significant impacts

on developmental time or on fresh body mass were

observed at the white-eyed pupa stage [136].

For bumblebees, Tasei et al. [129] found no effect on the

required duration for the emergence of the first male of

bumblebees (B. terrestris) after being exposed chronically

to imidacloprid-contaminated sugar water and pollen in

micro-colonies (three workers).

For solitary bees, larvae of Osmia lignaria were exposed

to imidacloprid-contaminated pollen and left either under

field or laboratory conditions. Under field conditions, only

medium and high treatments showed various sublethal

effects including longer time needed to reach the last larval

stage, complete spinning a cocoon in males only, to fully

darkening of a cocoon, but no effects were found on the

time until emergence and weight. No effects on the

investigated parameters were observed under laboratory

conditions. Moreover, exposure of alfalfa leafcutter bees

(Megachile rotundata) to clothianidin had no impacts

either on cocoon completion and darkening or on emer-

gence and weight [2]. Another study conducted on red

mason bees (O. bicornis) showed a lower proportion of

offspring that completed larval development and/or could

hatch after hibernation due to oral chronic exposure to

thiamethoxam and clothianidin [115]. Generally, more

quantitative and field studies at this endpoint are needed.

Adult longevity

Numerous studies have investigated the influence of pro-

longed exposure to neonicotinoid residues on the lifespan

of the bees. These studies include laboratory, semi-field,

and field experiments.

Laboratory experiments showed no significant effect on

the worker honeybee longevity during 11 days after oral or

contact exposure to acetamiprid and thiamethoxam [4].

Decourtye et al. [34] reported a difference between winter

bees and summer bees when reacting to chronic lethal

doses. Schmuck [117] did not observe an increased mor-

tality of worker honeybees from different ages exposed to

imidacloprid in contrary to Suchail et al. [127], due to

various differences in experimental methodology and/or

the physiological state of the tested bees. Moreover, long-

term oral exposure of caged bees (over 60 days) to imi-

dacloprid resulted in a higher mortality compared to a

control after 30 days [30].

In a tunnel-feeding experiment, exposing honeybee

colonies to contaminated sunflower honey with a range of

imidacloprid concentrations over 39 days had no effect on
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the daily mortality in the tested colonies [118]. Faucon

et al. [47] exposed the honeybee colonies to imidacloprid

throughout 33 days and reported no increase in mortality.

Moreover, under field conditions, no increased mortality

was observed in the colonies placed in clothianidin-treated

canola [26, 27], thiamethoxam-treated maize, and canola

[101].

Exposure of bumblebees over a relatively long period

(up to 10 weeks) can be performed using queenless

micro-colonies (3–5 workers). Tasei et al. [129] chron-

ically (up to 10 weeks) exposed bumblebees (B. ter-

restris) in micro-colonies (three workers) to

imidacloprid-contaminated sugar water and pollen but

did not find any effects on the longevity of the tested

bees. Another experiment was conducted using colonies

of B. impatiens consisting of a queen and 30–50 work-

ers. After 11 weeks of oral exposure to a range of imi-

dacloprid or clothianidin, the results showed a significant

change of the queens’ mortality by week 6 for both

imidacloprid and clothianidin at high concentrations but

not at low concentrations [120]. Nevertheless, during the

28 days of the thiamethoxam exposure period, the life

span of the tested bumblebees was not affected [45].

Laycock et al. [78] reported that bumblebee workers

survived fewer days in queenless micro-colonies when

exposed over 17 days to a high concentration (98 lg/kg)
of thiamethoxam.

For solitary bees, Sandrock et al. [115] demonstrated

that no effect on adult females’ longevity of the red mason

bee (O. bicornis) exposed to thiamethoxam and clothiani-

din for 35 days was observed.

Given the results of those studies, the period of exposure

played a key role in addition to different sensitivities of bee

species to the tested neonicotinoids. However, various

factors affect this sensitivity, including methodology and/

or the physiological state of the tested bees.

Population dynamic

Bee population development is a complex process, where

different strategies (i.e., increasing the brood amount,

shifting the foraging activity) could succeed in maintaining

the right functions of the population against external

stressors. On this point, the differences between the Apis

and non-Apis bees’ biology and behavior should be con-

sidered due to their different capacity to interact with the

stressors. Within a population, the rapid alterations in their

performance in response to stressors could enhance an

adaptive process to avoid the adverse effects. But the

chronic exposure to stressors could prove more problematic

for population fitness. Here, we attempt to highlight the

reports that investigated the related effects of

neonicotinoids on the whole bee population under field

conditions see (Table 4).

Intra-specific interactions within the population

Social interaction plays a critical role in social bees.

Nevertheless, colony fitness depends on the communi-

cation efficiency. Therefore, any disruption in these

processes could lead to a reduction in collected pollen

and/or nectar; accordingly, this could affect the colony’s

survival [121]. Over the period of exposure to pesticides,

various social interactions, including antennation,

trophallaxis, allogrooming, and nestmate recruitment by

dance language, could change. To date, little is known

about the effect of neonicotinoids on such interaction

processes, since only two studies have investigated the

effects of imidacloprid on honeybee communication.

Kirchner [72] found that bees treated with imidacloprid

showed trembling dancing at a concentration of 20 ppb,

which in turn may decrease the recruitment of foragers

and foraging activity. Another study showed a reduction

in the waggle dance performance of bees treated with

0.21 ng of imidacloprid [42]. To our knowledge, no

study has been carried out to investigate other social

interactions, i.e., antennation, trophallaxis, and

allogrooming, of bees treated with neonicotinoids com-

pared with untreated bees. Future studies are needed to

determine whether sublethal exposure to neonicotinoids

affects honeybee communication.

Population development

Current debates consider whether chronic sublethal stress

impairing individual bees could cause whole colonies’

failure. Further questions deal with how the cumulative

effect on colony fitness could be influenced. Therefore,

several studies have been conducted to investigate the

performance of bee colonies related to chronic exposure to

neonicotinoids. Dietary chronic exposure to pesticides

could be carried out experimentally by offering contami-

nated food or treating plants visited by bees.

The results of field studies were sometimes conflicting,

depending on the exposure period and/or the applied doses.

Some long-term studies showed no observable effects on

the fitness and development of the honeybee colonies after

being exposed to crops treated (canola, maize, etc.) with

neonicotinoids [26, 27, 101, 102]. Faucon et al. [47] did not

observe adverse effects on the treated colonies with repe-

ated sublethal doses of imidacloprid in sucrose syrup.

Recently, Sandrock et al. [116] found negative short-term

and long-term effects on colony performance exposed to

thiamethoxam and clothianidin at sublethal field-relevant
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concentrations. Other studies reported adverse impacts on

the treated colonies using imidacloprid-contaminated syrup

at relatively high applied concentrations (up to 20 lg/kg)
[38, 81].

In bumblebee colonies, individual performance is linked

strongly with overall colony fitness due to their smaller size

and annual colonies compared to large size and perennial

honeybee colonies. Thus, bumblebees could be more sen-

sitive to neonicotinoid exposure than honeybees [93].

Several semi-field and field experiments demonstrated that

field-realistic chronic exposure to neonicotinoids (imida-

cloprid and clothianidin) significantly decreased colony

growth rates by impairing the provisioning efficiency

[49, 54, 76, 120, 140]. Moreover, the results of laboratory

experiments using microcolonies were clearly comparable

with other semi-field studies, where adverse effects were

observed on several endpoints of colony performance

[45, 80, 88]. On the other hand, some studies suggested that

proper use of neonicotinoids will not influence the bum-

blebee colonies [25, 51, 89, 129].

However, different bee species exhibit differences in

their risk profile regarding neonicotinoids. The capacity of

a large colony of honeybees to buffer any reductions in

foraging performance is more properly compared to a small

colony of bumblebees or solitary bees, where only one

female is responsible for provisioning the offspring.

Thus, effects at the population level could conversely be

related to levels of sociality. Most recently, Rundlöf et al.

[110] found that clothianidin-treated canola caused a

reduction in the density of solitary bee (O. bicornis) and

bumblebee colony growth as well as decreasing repro-

duction under field conditions, but no adverse effects on

honeybee colonies were observed.

Generally, these findings about the side effects of sub-

lethal neonicotinoid exposure should be taken into account

to optimize the use of pesticides and avoid any possible

adverse effects on the pollinator’s population.

Overwintering success

Although the overwintering phase is considered as an

essential and sensitive period for successful development

of perennial honeybee colonies, the long-term effects of

neonicotinoids have received relatively little attention.

However, some field studies indicated that chronic expo-

sure to imidacloprid-contaminated sucrose syrup [47] or

seed-treated crops with clothianidin [26, 27] and thi-

amethoxam [101] did not affect the overwintering success.

Nonetheless, in some of these studies, relatively high losses

of winter colonies (more than 30 % of tested colonies)

indicated some weakness of methodological persuaders

(see [27, 101]). Dively et al. [38] reported that chronic

exposure to imidacloprid at the higher range of field doses

(up to 20 lg/kg) could cause negative impacts on honeybee

colony health and reduced overwintering success, but at

field-relevant concentrations for seed-treated crops (5 lg/
kg), negligible effects on colony health were observed.

Recently, Rondeau et al. [108] extrapolated a possible

delayed and time-cumulative toxicity of imidacloprid in

some arthropods using a toxicokinetic–toxicodynamic

model (TKTD). They suggested that prolonged exposure of

winter bees throughout their life span (150 days) to honey

contaminated with imidacloprid at 0.25 lg/kg would be

lethal to a large proportion of bees nearing the end of their

lives.

In conclusion, reassessment of the pesticide risk at this

endpoint in relation to other possible stressors should be

considered to achieve more realistic results.

No studies have been done on the overwintering success

of bumblebee queens.

Synergistic effects

Synergy of xenobiotics

Frequent exposure to various xenobiotics (i.e., agrochem-

ical and veterinary products) could occur more likely as a

consequence of the foraging activities of the bees. Thus,

the toxicity of specific pesticides should be tested in

combination with other pesticides that exist under realistic

conditions. In ecotoxicological studies, the complex inter-

actions of pesticides could lead in some cases to enhance

the toxicity of one when another is present.

Only two studies investigated the synergistic effects of

neonicotinoids with other pesticides on honeybees. Iwasa

et al. [67] reported synergistic effects between neonicoti-

noids and compounds, which inhibit the P450s involved in

their metabolism. The toxicity of thiacloprid and acet-

amiprid was found to increase several 100-fold synergis-

tically with triazole fungicide, but only a minimal

synergistic effect between them and imidacloprid was

found.

Other studies reported low levels of synergism (less than

threefold maximum) between ergosterol biosynthesis

inhibitor fungicides and the range of neonicotinoid insec-

ticides (thiamethoxam, clothianidin, imidacloprid, and

thiacloprid) [133].

However, understanding the synergistic mechanisms

between applied xenobiotics is very important for the

limitations of using some defined mixtures. Moreover,

there are no systematic monitoring studies on the effects of

mixture pesticide exposure on colony health and bees’

behavior; therefore, this specific issue should be given

special attention.
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Interaction with diseases and parasites

Generally, there are widely known diseases and parasites

on bees which could negatively affect the development and

health of the bees. Nowadays, increasing concerns about

potential effects of pesticides on the susceptibility of bees

to diseases is a vital issue [36, 114]. However, growing

evidence from several recent studies demonstrated that

interactive effects between various pathogens and pesti-

cides increase the adverse impacts on the bees’ health.

Most investigations were conducted between two patho-

genic infections (Nosema and viral infection) on honeybees

and one pathogen (Crithidia bombi) on bumblebees. Sev-

eral laboratory studies showed a relationship between

exposure to neonicotinoids and the Nosema load in the

treated bees. Exposure to imidacloprid or thiacloprid

affected the Nosema spore count and reduced honeybee

worker survival [3, 39, 99, 105, 139]. However, Pettis et al.

[99] reported a reduction in Nosema spore counts related to

imidacloprid exposure under field conditions. Another

study also suggested that neonicotinoids (acetamiprid,

imidacloprid, and thiacloprid) reduce the risk of Nosema

infection [98]. On the other hand, no impacts were found

on the levels of Nosema infection in honeybee colonies

placed close to neonicotinoid-treated canola compared to

colonies at other sites [102]. More recently, a field study

concluded that there are no interactions between thiaclo-

prid and a Nosema infection [106].

However, Nosema could also be present in healthy

colonies, but usually honeybees can resist it. Nevertheless,

the exposure to pesticides at certain levels could affect

their immune system, rendering it unable to contain the

infection (see review by Sánchez-Bayo et al. [114].

For bumblebees, only one available study reported sig-

nificant interaction between neonicotinoid exposure and

parasite infection (C. bombi) on mother queen survival, but

not in the worker bumblebees [48]. Furthermore, increased

viral loads in honeybees after being exposed to neonicoti-

noids were observed under laboratory conditions [37, 39].

Conclusion

In the past two decades, systemic insecticides, e.g., neon-

icotinoids, were widely applied to provide plants with

protection from root and foliar pests. On the other hand, the

growing evidences from various studies has shown that

sublethal effects on insect pollinators after prolonged

exposure are not excluded. Therefore, this tradeoff between

insecticides controlling the wide variety of agricultural

pests without any threat to forager bees and/or the whole

colony, which inadvertently come into contact with

pesticides, is currently a vital issue in the risk assessment

process.

As we reported here, sublethal impacts on bees could

occur at different biological levels, where innovative and

new methodologies like using molecular markers may help

to address the effect mechanisms of these insecticides.

Moreover, the exposure levels and detected concentrations

depend on the way of application. Furthermore, various

factors should be considered during the risk assessment

process such as exposure duration, the season, castes, age,

and developmental stage of the bees. Nevertheless, bum-

blebees and other bee species seem to have different

exposure profiles and sensitivities compared to honeybees.

Thus, the population size and its ability to regulate any

behavioral changes or errors of worker performances

should also be investigated in further studies under field

conditions.

Finally, our comparison of evidences in published lab-

oratory and field studies show that the lowest observed

effect concentration (LOEC) under realistic field condi-

tions in the most cases is higher than under laboratory

conditions, which indicate that further long-term field

research is required with consideration that our well

understanding of the pollinators’ responses to sublethal

exposure should be taken into account in the future

experimental design in order to establish vigorous

conclusions.
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