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the frequency of summer droughts in Central Europe and 
the Carpathian Basin show an increasing trend [2–4].

The global frequency of natural disasters, particularly 
the occurrence of severe floods, has increased [5, 6]. Large-
scale inundations from river flooding have caused extensive 
damage and have had a global impact on economic activi-
ties, built environments, infrastructure, ecosystems, agricul-
ture, and the natural environment [5]. However, major river 
floods pose a threat and even smaller, rapidly occurring river 
floods can lead to considerable damage. This phenomenon 
has also been observed in Hungary [7, 8].

Early intervention, predictive systems, and hydrological 
models can significantly assist in the event of sudden floods. 
The current conventional tools present challenges in terms 
of timely forecasting, making it necessary to introduce new 
methods. Flood preparedness and innovative flood manage-
ment can help mitigate damage [6]. The use of numerical 
models has gained prominence in research [9, 10]. In hydro-
logical studies, modeling offers the opportunity for both 
permanent and non-permanent runs, enabling the examina-
tion of temporal and spatial variations in events and model-
ing of various flood discharges [11]. However, it is crucial to 
understand the applications and objectives of these models. 

1 Introduction

The impacts of climate change are becoming increasingly 
perceptible owing to shifting average temperature values, 
the emergence of anomalies, and the growing frequency 
of extreme weather events. Consequently, natural disas-
ters, societal changes, and economic shifts occurred. Stud-
ies indicate that Earth’s surface temperature exhibits an 
increasing trend [1]. Previous research has also confirmed 
that due to decreasing summer precipitation and increasing 
spring evaporation, the values of temperature anomalies and 
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Abstract
Flood risk modeling of small watercourses is challenging when only limited input data are available. Therefore, this study 
assessed the flood characteristics of a small river (Tarna River: entire watershed-C, upper-VS, middle-TMS, and lower 
section-TOS) from 1990 to 2019. The assessment focused on modeling, model calibration, and validation using feature 
event-based time-series data in data-scarce environments. We showed that since the 2000s, the number of high-water 
levels above 250 cm, and the frequency of three flood types had increased. Flood simulation results showed the largest 
flooded area in the TMS section, followed by the VS, and then the TOS. The outcomes from the VS, TMS, and TOS 
sections did not exhibit superior performance compared to the C area. Models performed well for larger flood events, 
with Kling Gupta Efficiency corresponding well to NRMSE and Nash-Sutcliffe efficiency metrics. Accordingly, flood 
events characterized by the longest duration and high-water levels yielded outstanding results across all areas, followed by 
moderate flood events with good accuracy. Normal water level events exhibited significant deviations from the reference 
across all sections. In summary, despite the event-based modeling challenges in data-limited environments, such models 
can still mitigate potential flood events and improve decision-making processes.
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Hydrodynamic models allow the tracking of flow, determi-
nation of water depths, simulation of flood wave propaga-
tion, and simulation of precipitation runoff at the watershed 
scale. The location and extent of the potential inundation 
areas can be defined. A comprehensive understanding of a 
flood event can only be achieved by analyzing and drawing 
conclusions after merging the information [11, 12].

For small watercourses, several factors complicate the 
construction of models, determination of their accuracy, 
and assessment of the relevance of the results. The first and 
most important factor is the resolution and accuracy of the 
available basic data because it is necessary to use a more 
detailed DTM base for a reconstructed flood wave during 
the recession of a small watercourse [13, 14]. When model-
ing small watercourses, it is essential to define the banks 
as accurately as possible and mark terrain features to deter-
mine sensitive bank sections and load levels as accurately as 
possible. Determining the load levels is a vital part of oper-
ational forecasting. One illustrative example is the spring 
flood on the Tisza River in 2000, where Highway 41 had to 
be cut during the flood because this road section functioned 
as a dam element. The bridges and culverts were unable to 
drain a large amount of water, resulting in flooding of seven 
settlements. The defenses had to face a flood of unprece-
dented magnitude on the Tisza River, and flood waves also 
formed on the tributaries due to the effects of the backwa-
ter, while the dyke breached in 2001 further supported the 
further development of localization plans [7, 15]. Another 
complicating factor is the absence of gauging stations dur-
ing a receding flood wave, resulting in significant informa-
tion gaps. As emphasized by Sziebert and Zellei [16], flood 
flow measurements aim to facilitate understanding through 
measurement series and analysis, which we deemed neces-
sary in this study.

Current studies suggest utilizing international databases 
and new remote sensing techniques when creating models 
and hydrological studies that ensure data reliability and uni-
formity, and consequently, the widespread acceptance and 
relevance of the results [17, 18]. Studies have been con-
ducted on the possibility of applying hydrological model-
ing at both national and international levels. However, there 
is still room for refining this information and expanding 
our experience [12, 19–22]. HEC-RAS (USACE-CEIWR-
HEC) is a freely accessible, internationally recognized, and 
widely used program for modeling hydrological processes. 
The model is applicable to both complex studies and small 
watercourses and is compatible with other geoinformation 
software. Previous research has demonstrated that HEC-
RAS is particularly suitable for river channel modeling, 
cross-sectional representation, and combined analysis of 
multiple parameters and is capable of simulating surface 
profiles during various flood events [11, 23, 24]. Field 

measurements and digital modeling can be effectively com-
bined for surface water flow modeling [20], and integrating 
HEC-RAS with other models has proven to be suitable for 
improving the accuracy of traditional forecasts and serves 
as a valuable tool for flood risk management [25]. However, 
the results of studies on data-scarce and large-scale water-
courses require further investigation [22, 23]. Flood model-
ing has already been conducted for Hungary’s large rivers, 
and in recent decades, the models have been improved with 
an increasing focus on detailed surveying and mapping. 
Special and important roles are given to understanding the 
formation and changes of flood waves in the Tisza and Dan-
ube Rivers [26, 27]. Kovács et al. [28] and colleagues dem-
onstrated the significance of floods using the example of the 
Tisza River. Nagy [29] stated that floodplains are one of the 
most important elements in the runoff of flood events, and 
that surveying and modeling these areas is an urgent task to 
ensure long-term flood safety. Gashi et al. [30] investigated 
the lower reaches of the Drava River, emphasizing how the 
runoff from flood events influenced channel evolution. How-
ever, smaller streams remain in the background and in many 
cases, understanding of flood situations is incomplete and 
the Tarna river is a representative example. The data-poor 
environment includes lack of high-resolution topographic 
data, few water gauge stations, few official cross-sections, 
accurate delineation of the riverbank, a database of tributary 
flow rates, and the extent of vegetation along the river.

We aimed to provide a flood inundation model for the 
most relevant flood events that occurred within the water-
shed of the Tarna River (Hungary) using a comprehensive 
approach that utilized integrated data sources, including sat-
ellite imagery, water gauge data, and land-use information. 
Although various attempts have been made to model larger 
rivers, modeling flood situations in smaller rivers with lim-
ited observed data remains a challenge, while the risk of 
sudden, large-scale floods in lowland and hilly regions in 
Hungary is high [9]. From this perspective, the Tarna Water-
shed is of particular importance. Although the watercourse is 
a relatively small river, floods and flash floods have already 
caused damage in this area. Flood surges rapidly inundate 
an area and their duration typically spans a few days. In 
extreme cases, the descending water volume can reach up 
to 50–70 million m3. Although flood modeling (especially 
HEC-RAS) is not a new topic, examining and integrating 
data-scarce segments is still a research field in which sub-
stantial knowledge is missing. The lack of observed data 
remains an issue for catchments of smaller rivers and poses 
a significant risk for inappropriate projection possibilities to 
plan prevention.

This research represents an innovative advancement at a 
region-specific level as our findings demonstrate that HEC-
RAS models are suitable for modeling small streams even 
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with varying terrain conditions. The research process can 
serve as a potential scenario for modeling and predicting 
flood disasters in similarly data-poor environments with 
similarly diverse terrain conditions. Accordingly, our main 
objective was to provide flood risk assessment of a small 
river by assessing the possibilities of modeling, model cali-
bration, and validation considering topographic features 
based on event-based time-series data in data-scarce envi-
ronments. Accordingly, our main objective was to provide 
flood risk assessment of a small river by assessing the pos-
sibilities of modeling, model calibration, and validation 
considering topographic features based on event-based time-
series data in data-scarce environments. We had the follow-
ing hypotheses: (i) number of flood events had increased in 
the recent decades, and (ii) the river section as well as (iii) 
the water level (i.e. flood intensity) have relevant effect on 
the accuracy of the models.

2 Materials and methods

2.1 Study area

The study area, which encompasses the watershed of the 
Tarna River, is located near the northern Slovakian border of 
Hungary. It includes streams and tributaries running through 
the eastern part of the Mátra Mountains and the western side 
of the Bükk Mountains (Fig. 1). The Tarna catchment area 
is part of the Tisza River system, covering an area of 2116 
km2.

The upper section of the Tarna River features hilly ter-
rain, transitioning into a lowland character as it flows 
towards its mouth. The northern part of the catchment area 
is primarily characterized by clayey forest soil, but it also 
contains significant portions of loose limestone-based soils, 
contributing a substantial part of the Tarna sediment yield 
[31]. Chernozem-brown forest soil and brown earth can be 
found in foothill areas. In the southern region, the cherno-
zem soils contain calcareous sediments.

The lowest point of the catchment was 91 m a.s.l., while 
the highest one was 1014 m (Kékestető), with an average 
elevation of 219 m across the area. The terrain of the catch-
ment area is diverse, featuring mountainous parts and val-
leys of streams, and hills and plains of foreland. Generally, 
the northern part has a larger relief with steeper slopes, and 
the southern part is rather lowland [31]. Accordingly, the 
flood characteristics are also different, with quick floods in 
the north and longer elongated flood curves in the south. 
The annual mean temperature is 9.5–10.5 °C, but higher 
regions are colder (7 °C). The annual mean precipitation is 
500–550 mm in the lowest areas but can reach 750–800 mm 
in the Mátra region, peaking in June. Over the past 25 years, 

significant daily precipitation data have been recorded at 
various stations, such as 140.6 mm at Kékestető, 135 mm in 
Verpelét, and 128.6 mm in Tarnaméra.

For a detailed analysis, we delineated three distinct sec-
tions along the river based on the characteristics of the river: 
the upper section (VS), middle section (TMS), and lower 
section (TOS) (Fig. 1). In VS, the elevation values ranged 
from 107 to 236 m, with a general downhill gradient from 
north to south. The area is characterized by narrow valleys 
and steeper slopes (up to 46°). Densely populated areas and 
villages are located near rivers, posing threats to human 
lives and property. The TMS also exhibited a decrease in 
elevation from north to south, with elevation values ranging 
from 92 to 120 m. Although the slope is rather gentle, the 
steepness can reach 40°. The land use is predominantly agri-
cultural; however, residential areas can also be found. The 
TOS features a river section with a wider channel and higher 
embankment for protection. The elevation mainly ranges 
from 90 m to 110 m with predominantly gentle slopes. Land 
use includes agricultural areas and grasslands with several 
settlements.

Streams originating from the Mátra Mountains can sig-
nificantly influence Tarna’s discharge. The Tarnóca, Bene, 
and Gyöngyös streams can transport 30–40 m3/s each. 
These streams flow into Tarna between Tarnaméra and Tar-
naörs, contributing to discharge levels of up to 70–80 m3/s 
for Tarnaméra and 180 m3/s for Tarnaörs.

2.2 Datasets

The analysis required detailed resolution of the spatial data 
to build the river hydrodynamic model. We utilized two 
digital elevation models (DEMs) to extract topographic fea-
tures: (i) the DDM5, developed by the Lechner Knowledge 
Center (Hungary), from contours 5 × 5 m using interpolation 
and updated with stereophotogrammetric evaluation, and 
(ii) the SRTM v4 (Shuttle Radar Topography Mission). Fur-
thermore, the model requires soil and land-use data. Accord-
ingly, we utilized the Corine Land Cover, AGROTOPO 
(1:100,000 scale), and the Hungary Ecosystem Basemap 
NÖSZTÉP [32]. Additional topographical and hydrologi-
cal datasets, including water level and discharge data for 
the model construction, were provided by ÉMVIZIG. The 
preparation of topographical data, determination of the ter-
rain’s topographical characteristics, delineation of the areal 
units, and creation of resulting maps were carried out in the 
QGIS 3.6 software environment [33]. Hydrological models 
for various events, as well as extracting data for inundation 
maps and flood events were performed in the HEC-RAS 
5.0.7 software environment [34].
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based on these data, flood events during the period from 
2010 to 2019 were significant. Due to the variable flow 
of the Tarna River, water levels in Verpelét can fluctu-
ate between 11 and 568 cm, with an average discharge of 
19.3 m³/s observed at a water level of 300 cm. In Tarnaméra, 
water levels have ranged from 16 to 500 cm in recent years, 
with an anticipated average discharge of 10 m³/s at a 300 cm 
water level. Similarly, water levels in Tarnaörs have histori-
cally varied from 65 to 564 cm, correlating to an average 
discharge of 17 m³/s at a 300 cm water level. These values 

2.3 Data processing and modeling

We compared the flood events of the period of 1990–2004 
and 2005–2019 based on the number of flood events, length 
of floods, and the average number flooding days. Criteria of 
a flood was the water level > 250 cm, as the water director-
ate characterizes the flood risks.

Model building is a multistep process, with an initial 
step involving the selection of events, timing, and discharge 
values. We analyzed data spanning from 1990 to 2019, and 

Fig. 1 Location of the study area: 
the watershed of the Tarna River 
in northern Hungary. Three dis-
tinct sections along the river were 
investigated: the upper section 
(VS), the middle section (TMS), 
and the lower section (TOS)
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description of the model runs and our experience so far, 
these intervals were found to be the most appropriate [34].

Water levels measured at the water gauges were used for 
validation. During the investigation, we used data from the 
official gauge stations of Verpelét, Tarnaméra, and Tarnaörs, 
progressing from north to south. We did not consider the 
Sirok gauge station because of its very low water levels. We 
aimed to mitigate uncertainties related to model parameters 
and input data by observing past events and considering the 
averaged data.

2.4 Model validation

During the model runs and the subsequent evaluation of 
results, we had to consider the stability and sensitivity of 
the model, as well as the factors influencing numerical accu-
racy. The input data and specified parameters significantly 
affect the model’s sensitivity. The accuracy of geometric 
data, the precision of boundary conditions, the flow rate and 
hydrodynamic data, as well as the solution of unsteady flow 
equations, are crucial during the runs.

We monitored the model’s stability primarily after initi-
ating the runs and throughout the process, focusing on the 
number of iterations and the extent of numerical errors. If 
the model detected a significant error, the calculation would 
stop, preventing further runs. In our case, model stability 
was influenced by parameters such as the geometric mesh, 
cross sectional geometry, computational time steps, low 
flow conditions, and missing or inaccurate channel data due 
to terrain issues. We identified these errors through multiple 
test runs, collected the data displayed in the computation 
window, and subsequently corrected them.

If the models did not exhibit instability or errors during 
the runs, we conducted further accuracy assessments on the 
results. We inserted multiple cross sections into the model, 
ensuring they were placed at representative and measur-
able locations to also verify the boundary conditions. The 
distance between the cross sections is crucial, as improper 
spacing can lead to numerical errors or result instability. 
Profile lines are suitable for calculating the flow rate through 
the cross sections.

We compared the cross sections generated in the model 
with officially measured ones, and if the margin of error was 
considered minimal, the model was deemed acceptable.

are influenced by various topographic and meteorological 
parameters. Each rainfall event is unique, yet similar values 
can be forecasted based on multi-year data. The selection of 
benchmarks was aligned with the official national flood pro-
tection levels. During the 2010–2019 period, the two largest 
floods (LF) of the Tarna River were chosen, where the water 
level reached or exceeded 350 cm. Two significant flood 
events (F) were selected in the second category, in which 
the lowest water level was 200 cm. Next, two average flow 
events (A) were selected. The time interval for the average 
water level data was set at 10 day for optimal runtime results 
and proper consideration of changes in water flow within 
the area. This category does not include outliers or high-
water levels (Table 1).

The catchment geometry of the watershed and sub-water-
sheds was delineated using the SRTM using the Triangular 
Irregular Network (TIN) method. This method facilitates 
precise definition of boundary conditions, sub-basin delin-
eation, and elevation attributes. Topographical data were 
processed in HEC-RAS 5.0.7, creating a geometric grid for 
the watershed with a 50 × 50 cell size. However, along riv-
ers and streams, we increased the spatial resolution using 
DDM5 to better represent the water level variations in the 
calculations. The roughness coefficient was determined 
based on the NÖSZTÉP. The geometric grid was completed 
for the entire watershed (C) as well as the delineated areas 
of the upper section (VS), middle section (TMS), and lower 
section (TOS).

The outputs of the simulations contained unsteady flow 
data for each event at 1-hour intervals. One of the most cru-
cial parameters that has a significant impact on the model 
simulations is the computation interval. The computation 
interval should be appropriately small to accurately capture 
and detect changes in water levels. To calculate the proper 
time step, it is essential to consider the distance between the 
cross sections and the flow velocity [34].

Considering the best numerical solution and optimal 
runtime for model simulations, we applied the following 
settings, which allowed the models to adequately consider 
changes. The computation interval was set to 1 min, the 
mapping output interval was 1 h (h), the hydrograph output 
interval was 1 h, and the detailed output interval was 1 h. 
The tolerance intervals were 0.003 m for the water surface 
and 0.03 m3/s for minimum flow tolerance. Based on the 

Table 1 The data of the examined events at the Verpelét water gauge
Event type Event Start Date Start Time End Date End Time Duration
Largest Flood (LF) a 20-02-2010 13:00 03-03-2010 23:00 12 days

b 10-02-2016 14:00 26-02-2016 11:00 17 days
Flood (F)
- >200 cm

c 30-03-2013 04:00 09-04-2013 08:00 11 days
d 04-05-2017 16:00 17-05-2017 07:00 14 days

Average (A) e 10-02-2011 00:00 19-02-2011 23:00 10 days
f 06-05-2015 00:00 15-05-2015 23:00 10 days
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‘Mi‘is the ithelement of the modelled data,
‘Oi‘ is the ithelement of the observed data,
‘N’ is the number of data points,
‘sd’ is the standard deviation, and.
‘maxmin’ is the difference between the maximum and 
minimum values.

NSE is a normalized measure of model performance, which 
is determined by dividing the summed residual squares by 
the sum of squares of the observed values and their mean 
(Eq. 4). Values between 0.75 and 1 indicate very good, 
0.65–0.75 good, 0.50–0.65 satisfactory, and < 0.50 unsatis-
factory model [35].

NSE = 1 −
∑ N

i=1(Mi − Oi)
2

∑ N
i=1(O − O)

2  (6)

Additionally, we assessed the efficiency of the hydrological 
models using the KGE, which calculates the correlation and 
normalized deviations between the predicted and measured 
data. A value closer to 1 indicates better model performance; 
generally, values between 0.8 and 1 are excellent, 0.6–0.8 
good, 0.4–0.6 satisfactory, and < 0.4 unsatisfactory models.

The obtained results were also summarized in Taylor 
diagrams illustrating the level of correlation between the 
observed and modelled values of the water level; a high 
correlation indicated a greater degree of agreement. The 
standard deviation (SD) was also visualized to indicate the 
residuals’ SDs, and the RMSE represented the average pre-
diction error. The Taylor diagram provided an overview of 
the models’ performance, and we compared the average pro-
gression of events for the entire study area (C), upper sec-
tion (VS), middle section (TMS), and lower section (TOS).

Statistical evaluations were conducted using the R 3.5.2 
software environment [36]. The spatial delineations rep-
resented in the diagrams include the entire study area (C), 
the upper section (VS), the middle section (TMS), and the 
lower section (TOS) (Fig. 1).

3 Results

3.1 Flood records in the catchment

The flood events of Tarna between 1990 and 2019 had 
changed. Between 1990 and 2004, the number of floods 
were lower, usually only the half of the period of 2005–
2019 (Table 2). Accordingly, the number of days when the 
water level was > 250 cm, also changed at all stations, but 
the largest difference were observed at Tarnaörs. However, 
the larger number of flood events not necessarily increased 

During the model runs, the Manning’s value was consid-
ered a fundamental input parameter, and we did not conduct 
further testing related to changes in it. Water level data from 
hydrological events were derived from the discharge data 
used in the HEC-RAS software modeling, and water level 
data from official hydraulic gauge stations were used. We 
compared the observed and modelled water levels in the 
watershed at different spatial scales for three flood types: 
large floods, floods, and average floods.

The models were evaluated with several accuracy met-
rics based on the difference between the observed and mod-
elled values (i.e., residuals): correlation, standard deviation, 
root mean square error (RMSE), normalized root mean 
square error (NRMSE), unbiased root mean square error 
(ubRMSE), Kling-Gupta Efficiency (KGE), and Nash-Sut-
cliffe Efficiency (NSE).

The RMSE measures the average magnitude of the differ-
ences between the modelled and observed values, and lower 
RMSEs indicate better model performance, with smaller 
average residuals (Eq. 1). The NRMSE is the normalized 
version of the RMSE indicating the relative magnitude of 
residuals, where a smaller value indicates better model per-
formance. The ubRMSE measures the square root of the 
mean squared difference (RMSE), considering the bias.

RMSE =

√∑ N
i=1(Mi − Oi)

2

N
 (1)

NRMSE =

√∑ N
i=1(Mi − Oi)

2

nval
 (2)

nval =
{

sd(O), norm = sd
omax − Omin , norm = maxmin

}
 (3)

bias =
∑ N

i=1(Mi − Oi)∑ N
i=1Oi

 (4)

ubRMSE =
√

RMSE2 − bias2  (5)

Where,

Table 2 Flood characteristics between the periods of 1990–2004 and 
2004–2019 at Tarnaörs, Tarnaméra and Verpelét, Hungary
Floods Period Tarnaörs Tarnaméra Verpelét
Number of flood 
events

1990–2004 23 31 6
2004–2019 53 46 12

Number of days 1990–2004 126 130 15
2004–2019 355 125 19

Average number 
of days of 
flooding

1990–2004 5.48 4.19 2.50
2004–2019 6.70 2.72 1.58
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3.3 Model assessment

For the entire section (C), similar trends were observed for 
both the modeled and observed water levels. The water level 
of A_e was constant, without any corresponding deviations. 
For A_f, the observed values were always higher than the 
model values. For F_c, the water levels differed at the peaks 
with underestimated modeled water levels. F_d model 
exhibited minimal differences from measured values. In the 
case of the L_a event, the increase in water levels began 
earlier in the observed data than in the model data. In the 
case of L_b, a slight increase in favor of the observed values 
at the peaks was observed. Across Area C, no significant 
deviation was observed for the three flood events.

Regarding the TOS section, for events A_e and A_f, only 
the initial point showed a distinct difference, whereas the 

the average length of the floods, it was true only in case of 
Tarnaörs.

3.2 Flood models

For flood simulations over section C, event L_b exhib-
ited the largest extent, followed by events L_a, F_c, F_d, 
A_e, and A_f, which showed considerably smaller values. 
Regarding the spatial distribution during the modeling of 
the VS, TMS, and TOS sections, the TMS section was the 
largest area affected by flooding, followed by VS with a 
smaller inundated area, and then the TOS had only a small 
flooded area (Fig. 2; Table 3).

Fig. 2 Spatial representation of the inundation models in the watershed of the Tarna River in northern Hungary: a, b = largest flood event, c, 
d = flood event, and e, f = average flood event
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followed the observations, even in the case of high-water 
levels; however, the decrease was slower in the model. TMS 
exhibited the most divergent results with respect to water 
level variations. F_c had a large bias at the peaks, and the 
model remained consistently below the observed values. 
Plot F_d did not show a prominent increase in the water 
levels for the model. Changes in L_a and L_b were tracked 
in parallel, yet the model results indicated lower water lev-
els. The events in the VS showed similar trends for A_e 
and A_f. In the case of F_c, the model underperformed the 
observed values at peaks. The modeled values of the event 
F_d exhibited an identical trend to the observed values. 
Regarding event L_a, there was underperformance in the 
modeled values at the peaks. In the case of L_b, a lower 
value was observed in the first two prominent peaks of the 
modeled results (Fig. 3).

Values of event ‘b’ yielded outstanding results for all 
areas, as expected, given that this event was characterized 
by the longest duration and high flow data within the time 
interval. Subsequently, events ‘d’, ‘a’, and ‘c’ produced 
similarly good results (Fig. 4). Events ‘e’ and ‘f’ exhibited 

relative differences were large. Thus, the NRMSE indicated 
a large bias. Event F_c yielded identical water levels at 
the peak points; however, the decrease in water levels was 
slower than the observed values. F_d also resulted in match-
ing peaks; however, the modeled values were consistently 
below the observations. The values of event L_a showed 
a similar trend, with minor variations, where the modeled 
values were consistently higher. The model of L_b closely 

Table 3 Extent of inundation and values for the three delineated areas 
(VS: upper section TMS: middle section, TOS: lower section) and total 
area (C) in the watershed of the Tarna River in northern Hungary. L-a 
and L-b: largest flood event; F-c and F-d: Flood event; A-e and A-f: 
average flood event
Event type Event VS

(km2)
TMS
(km2)

TOS
(km2)

C
(km2)

Largest L_a 8.26 37.74 0.88 46.89
L_b 9.09 39.86 1.41 50.36

Flood F_c 6.81 33.62 0.47 40.91
F_d 3.94 18 0.13 22.07

Average A_e 2.73 8.93 0.02 11.68
A_f 0.01 2.93 0.01 2.95

Fig. 3 Spatial and event-based distribution of observed (obs) and mod-
eled (mod) water levels during runs for the watershed of the Tarna 
River in northern Hungary. C: total area; TMS: middle section; TOS: 

lower section; VS: upper section; a, b, c, d, e, and f: largest flood event 
a,b, flood event c,d, and average flood event e and f, respectively
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of the Taylor diagram for water-level assessment, models 
closer to the centre of the diagram with lower standard devi-
ation values suggest that they are more reliable and can be 
applied with greater accuracy. Generally, correlation coef-
ficients indicated strong relationships between the modeled 
and observed values, but there were exceptions, usually in 
the case of ‘e’ and ‘f’ events where other accuracy metrics 
also showed low performance. Strong correlations were 
observed in areas C, TOS, and VS, whereas in TMS, there 
were two events where the correlation between the models 
and the measured values ranged between 0 and 0.2 (Fig. 4).

The accuracy of NRMSE ranged from 0 to 1305. Events 
classified as average consistently produced values that 
exceeded the average. In the case of A_VSf and A_Cf, the 

significant deviations from other events across all areas. As 
anticipated, these models performed the least favourably, 
owing to their short time intervals and limited variation in 
the input data. The average values and accuracy of these 
events differed from those of the higher and highest water 
levels.

In the case of the C area, events ‘b’ and ‘c’ yielded 
results with an RMSE value close to 0.2, while the values 
for events ‘a’ and ‘d’ fell within the 0.3 range. The values 
for events ‘e’ and ‘f’ appeared in the Taylor diagram with a 
large error margin (Fig. 4). An increase in the RMSE indi-
cates a decrease in the model performance. The TMS values 
showed the largest difference in RMSE in each case. Again, 
events ‘e’ and ‘f’ performed the poorest. In the application 

Fig. 4 Taylor diagram of hydrological models by area and event for the watershed of the Tarna River in northern Hungary. C, total area; TMS, 
middle section; TOS, lower section; VS, upper section. The event codes (versions) correspond to those in Fig. 2
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considered accurate, as 18 out of 24 models performed sat-
isfactorily. Based on the results of the NSE performance 
metric, in 11 cases, the models performed well in terms 
of fitting the predicted and observed values, because they 
were close to the threshold of 1. Generally, the average flow 
simulations performed the worst, and flood and large flood 
simulations were more accurate (Fig. 5).

models were less accurate, whereas the models for larger 
floods generally performed well based on the NRMSE 
(Fig. 5).

As ubRMSE only reflected the unbiased model error, 
it did not identify the model performances, but indicated 
that L_TMSa and L_TMSb, as well as F_TMSc and F_
TMSd, had accuracy issues, and we also experienced the 
same with the NSEs. However, NSE also indicated unsat-
isfactory results for almost all average (A) models, except 
for A_TOSe. KGEs usually corresponded to NRMSE and 
NSE. Based on this metric, the majority of models can be 

Fig. 5 Accuracy metrics of the model runs for the watershed of 
the Tarna River in northern Hungary (NRMSE = normalized root 
mean square error; ubRMSE = unbiased root mean square error; 
KGE = Kling-Gupta Efficiency; NSE = Nash-Sutcliffe Efficiency). VS, 

upper section; TMS, middle section; TOS, lower section; C, total area. 
L-a and L-b: Largest flood event, F-c and F-d: Flood event, A-e and 
A-f: Average flood event
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for this section. Furthermore, the water level gauge associ-
ated with the TMS section was located in the central part of 
the delineated area, resulting in larger differences between 
the modelled and measured data, meaning that water level 
gauges placed at greater distances provided less accurate 
model results. The more accurate the measurement results, 
water level gauges, and data are, the more accurate the 
model is. According to Tapley et al. [41], observations aid 
in the linking and understanding of global and regional 
processes. The interpretation of empirical knowledge and 
event-based models can help to understand future events 
and manage risks.

The modeling supported that the terrain data significantly 
influenced the results and accuracy of the models, as evi-
denced by inundation maps showing flooding during aver-
age events ‘e and ‘f’ (Fig. 2). During events ‘a’, ‘b’, ‘c’, 
and ‘d’, it was determined that the TMS section was the 
most sensitive area, although there were areas in every sec-
tion where the spatial prediction of inundation or its extent 
was not accurate, which was also observed in the results 
of the TMS water levels and the spatial extent of water, as 
the difference between measured and modelled results was 
the largest here (Fig. 2). Our results were influenced by the 
lack of available data and their resolution of the available 
data. Precise delineation of channel banks was not possible 
from the available data, and the models indicated inunda-
tion in places along the entire section where inundation can-
not occur in reality. To achieve better results, a much better 
digital terrain model is needed, including embankments and 
road embankments and ditches, beyond the general topo-
graphic features. However, this is not unique to small water-
sheds, but is a common problem with limited availability 
and usability of data, as pointed out by Brunner et al. [42]. 
Therefore, compromises must be made regarding the input 
data and resolution.

However, HEC-RAS modeling provided acceptable 
results for water level prediction, and the spatial output 
(predicted inundated areas), at least in the case of floods, 
proved to be useful. Although the inundations were inaccu-
rate, they showed a potential map if the dykes would breach 
and road embankments did not impede floods. This result 
is supported by the findings of Tamiru and Dinka [12], who 
demonstrated that hydrological models created in the HEC-
RAS software environment were suitable for identifying 
and examining flood inundation areas as part of a flood risk 
strategy. As expected, the spatial inundation values of the 
models corresponded with greater inundation occurring in 
areas with high-water flow and prolonged high-water lev-
els lasting several days. In a study by Ongdas et al. [43], 
acceptable results were obtained regarding the magnitude 
of the modelled floods and the extent of the hazard maps. 
In their study, Moya Quiroga et al. [11] provided evidence 

4 Discussion

The observed rise in the frequency of flood events after 
2005 for the Tarna River has been confirmed. This trend 
is underscored by the streamflow data spanning from 1990 
to 2019. Upper sections had shorter but larger number of 
floods, but the lowest section, Tarnaörs (TOS) had both 
more flood events, and longer flood lengths. These shifts are 
attributable to trends associated with climate change over 
recent years [37, 38].

A varying trend in the temporal changes in the measured 
and modelled water levels was observed. No significant 
changes were evident during the average events, but during 
large and major flood events, a discontinuity in the flood 
wave pattern was observed (Fig. 3). Illés and Konecsny [15] 
noted that during the 1998 Tisza River flood, discontinu-
ity of the peak flood wave may have occurred because of 
the gradual filling of the floodplain depressions, i.e., fill-
ing the swales, and lower parts of the floodplain behind the 
natural levees through crevasse channels. Tarna’s floodplain 
has a varying width, thus, the geomorphology also can be 
a main influencing factor of the changes in the water level 
during floods: inundations in the floodplain depressions and 
areas farther from the riverbed influenced the water levels 
in the riverbed and the peak water levels observed dur-
ing the recession of the flood wave. Through water level 
graphs, we demonstrated that the rate of water level change 
was rapid in VS section events (Fig. 3). In the VS_c and 
VS_d cases, a steep curve of the values was noted compared 
with the TMS_c, TMS_d, TOS_c, and TOS_d sections. The 
VS section represented the upper reach of the Tarna River 
basin where the steeper slopes of the sub-catchments result 
in faster flow to lower-lying areas, leading to higher peak 
values of greater intensity runoff. In the TMS section, char-
acterized by lower, flatter valley floors, the hydrographs 
increasingly flatten out, indicating prolonged (lasting sev-
eral days) floods. Similarly, a prolonged flood curve was 
observed in the TOS section, which was mainly attribut-
able to terrain characteristics. According to Szlávik [39] 
and Stoffel et al. [40], among the various factors influenc-
ing flood wave formation, the effect of topography is one 
of the most significant, as manifested by the hydrological 
responses of mountainous and highland areas.

We found that the TMS section had the largest errors in 
terms of accuracy metrics: according to the accuracy assess-
ment, the TMS section was the weakest, with the high-
est RMSE values, the ubRMSE and NSE values (Fig. 5) 
proved to be the least accurate. This result may primarily be 
explained by the topography data: as SRTM did not include 
the specific details of the terrain, e.g., the dykes, in reality, 
floods never inundated the areas outside the dykes. Accord-
ingly, both in spatial and temporal terms the accuracy were 
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provide answers to further emerging questions compared to 
the current research. The data obtained from drone-based 
photogrammetric surveys can serve as a suitable starting 
point and reference point for evaluating the data generated 
during this research.

5 Conclusions

Our goal was to assess the possibilities and accuracy of 
hydrological modeling considering topographic charac-
teristics, using event-based time series as input data in a 
data-deficient environment. Our findings of the inundation 
mapping showed that in the area we defined as the mid-
dle section, the extent of inundation was the largest. This 
was followed by the upper section, which had the high-
est topographic elevation values. The smallest inundation 
was observed in the lower section. However, to increase 
accuracy, we recommend using more detailed topographic 
data as a base, thus avoiding the inaccurate determina-
tion of boundary conditions and riverbank edges. Similar 
trends were observed in the modelled and observed water 
levels throughout all sections. Thus, segmenting smaller 
areas may not consistently offer resolution in all instances. 
Based on the results of the model divided into three areas, 
we recommend interpreting water levels and spatial inun-
dations together in future event-based modeling to create 
a comprehensive understanding. The accuracy assessment 
indicated that the values for the event “Largest Flood” pro-
duced excellent results across all areas, followed closely by 
the events “Flood” which also yielded similarly positive 
outcomes. Our hypothesis was confirmed in case of flood 
event of the longest duration and highest water levels. The 
NRMSE accuracy metrics confirmed that the models for 
larger flood events generally performed well. “Average” 
events typically performed poorly according to the accu-
racy metrics. Although the results showed discrepancies in 
event-based modeling, in data-limited environments, such 
models can still aid in mitigating the spread of water during 
potential flood events and facilitate more effective decision-
making processes for stakeholders.
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that during flood events, HEC-RAS is suitable for modeling 
the spread and temporal changes of water. In our investi-
gation, the HEC-RAS models demonstrated good perfor-
mance; however, we found that the accurate determination 
of boundary conditions is crucial, as it can result in signifi-
cant changes in the outcomes during mapping.

Many studies have employed modeling to explore and 
understand these processes. Chen et al. [44] investigated the 
relationship between river flow and floodplain areas. Zhang 
et al. [45] summarized the diversity of hydrological models 
and the importance of environmental parameters in vari-
ous aspects. Previous studies have addressed small water-
shed modeling in different software environments, such as 
MIKE-SHE [46–48]. Czigány et al. [49] also conducted 
flood modeling on smaller areas of Hungary; however, they 
used the HEC-HMS software environment [49]. In Hun-
gary, previous modeling efforts have been undertaken; how-
ever, they employed different methodologies and pursued 
distinct objectives.

Although the modeling process can vary significantly 
in several aspects, comparing the results aids in enhanc-
ing the process and accuracy of hydrological modeling. In 
their research, Chen et al. [44] also concluded that the river 
hydrodynamic model effectively reproduces the hydrologi-
cal conditions. Moreover, they found that large floods lead to 
shorter residence times and flow path lengths in floodplains, 
but result in increased cross-boundary flow within the river 
section. Tamiru and Dinka [12] found that the HEC-RAS 
model results and NDWI values were consistent 94.6% and 
96% of the time during the calibration and validation peri-
ods, respectively, aiding in the improvement of flood fore-
casting models. Similarly, in their hydrological modeling 
research, Ogras and Onen [23] emphasized the importance 
of current topographical and hydrological data for the area, 
suggesting that the modeling results can predict potential 
scenarios over several decades. Our current research, simi-
lar to the findings of the aforementioned researchers, also 
yielded promising results.

For further investigation, it is essential to consider a sig-
nificant error factor: during an event, the streamflow of the 
tributaries can greatly influence the flow of the Tarna River. 
The study was relevantly limited by data scarcity, avail-
ability of accessible high-resolution digital elevation mod-
els, lack of gauges, and the distances were large between 
existing gauges. The most significant challenge in param-
eterizing the models was the accurate determination of the 
riverbanks. As a future research opportunity, detailed geo-
detic surveying of the riverbank, precise determination of 
the shoreline zone, and parameterization of tributaries flow-
ing into the Tarna River, including determination of their 
flow rates. With this data, we would have the opportunity 
for complex hydrological model construction, which would 
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