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expensive. Most weather identification research uses cam-
eras to capture footage and computers to identify weather. 
The three main types of image-based weather recognition 
algorithms are those that train classifiers using weather 
image features, those that use deep learning, and those that 
use fusion features.

Using spatial information from weather photos, a weather 
identification classifier may be trained. This approach 
requires spatially-based weather image characteristics. 
Dictionary learning and multicore learning were used to 
classify weather images. This approach extracts the charac-
teristics of the picture using spatial data. These features are 
the sky, shadow, rain line, snowflake, dark channel, contrast, 
and saturation. By employing a multicore learning algo-
rithm, the optimal weight of all these features is learned. 
This weight is then used to identify and classify four types 
of weather images: fog, rain, snow, and clear. According 
to the source [2], the accuracy rate is reported to be 71%. 
The traditional feature extraction method, which involves 
mining, is a spatially oriented method. The extracted fea-
tures, when analyzed spatially, can effectively capture the 

1 Introduction

Most computer vision research uses good weather photos or 
movies. Fog, rain, and snow reduce video visibility, mak-
ing all-weather monitoring difficult. In outdoor video sur-
veillance, it is crucial to swiftly gather weather conditions 
and quality video pictures. Conventional weather identifica-
tion involves sensors or radars [1], but it is restricted and 
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Abstract
In the context of spatial information, particularly in video surveillance and intelligent transportation systems, the visibility 
of video images is severely impacted by adverse climates including rain, snow, and fog. Accurate and swift recognition 
of current weather conditions and adaptive clarification of surveillance videos are crucial to maintaining the integrity of 
spatial information. Addressing the limitations of traditional weather recognition methods and the scarcity of weather 
image datasets, a multicategory weather image block dataset was constructed. This research introduced a weather rec-
ognition algorithm that integrates image block processing with feature fusion. The algorithm uses traditional methods to 
extract shallow spatial features such as average gradient, contrast, saturation, and dark channel from weather images. It 
also employs transfer learning to fine-tune a pretrained VGG16 model, extracting deep spatial features from the model’s 
fully connected layers. The approach improves the SoftMax classifier’s recognition of fog, rain, snow, and clear weather 
photos by merging shallow and deep spatial information. This improvement is essential for the quality and reliability of 
spatial data in bad weather. The algorithm achieves 99.26% accuracy in weather detection; however, the best accuracy 
archive by state of art is 97.14%, confirming its usefulness as a module for adaptive video picture clarification in spatially 
informed systems.
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surface-level information present in the image. However, 
they do not adequately capture the intricate spatial relation-
ships and underlying semantic meaning embedded within 
the image. Therefore, the recognition effect of the first type 
of method is usually poor in terms of spatial difference.

Second, end-to-end recognition based on deep learning. 
This study created the RFS (Rain Fog Snow) data collection 
of rain, fog and snow photographs and recommended ana-
lysing it with Superpixel masks. Although RFS data collec-
tion is private, enhancement and 10 types of convolutional 
neural networks for training can achieve recognition accu-
racy greater than 70% [3]. This article labels nine weather 
photographs. Integrating deep residual and dense convolu-
tion networks yields a weather recognition accuracy of 80% 
[4]. Fang et al. suggested an updated SqueezeNet-based 
weather classification approach that reduces the parameters 
to AlexNet equivalent in 1/50 of the original condition, but 
performs worse than ResNet and VGG16 [5]. This work 
suggested a block image and voting strategy-based clas-
sification approach for outside transmission line weather 
picture data, including foggy, rainy, snowy and sunny days. 
Refine ResNet50 to extract weather. The method identi-
fies weather effectively, but lacks shallow weather image 
processing. Expression of layer data [6]. The characteris-
tics of the deep neural network from end to end express the 
abstractness of the image and the intrinsic information [7]. 
The second method improves the accuracy of recognition 
when trained on large weather image data.

The third type of method combines the first two types 
of methods by incorporating spatial information. Integrates 
the underlying features extracted by traditional methods 
and deep learning features to train the classifier, consider-
ing the spatial relationships between the features. Guo et 
al. suggested a feature-fusion-based outdoor weather pic-
ture classification approach that includes sky, contrast, and 
saturation. According to [8], it has been found that deep 
features extracted by the dark channel and the AlexNet 
network exhibit a recognition accuracy rate exceeding 
90%. The third type of method combines the underlying 
features and depth features of weather images, allowing 
for a more detailed expression of image information from 
various spatial perspectives. When comparing the first two 
types of methods, the addition of spatial information further 
enhances the accuracy of weather identification.

In order to address the issue of limited availability of pub-
lic data sets for outdoor image weather recognition, as well 
as the lack of alignment between existing data sets and the 
specific application focus of this article, a new data set called 
the Multiclass Weather Image Blocks Dataset (MWIBD) 
was created. This data set includes various weather condi-
tions such as fog, rain, snow, and sunny outdoor weather 
images. This study presents a novel approach to recognising 

outdoor weather conditions using image blocking and fea-
ture fusion. It improves existing weather recognition meth-
ods and employs the migration VGG16 network model to 
extract deep features from weather images. These features 
are then combined with superficial features such as aver-
age gradient, contrast, saturation, and dark channel to train 
a SoftMax classifier. The classifier is capable of accurately 
identifying fog, rain, snow, and clear weather conditions.

The significance of the work is to increase the visibil-
ity of the weather image of the global spatial information 
system. Intelligent global transportation and video surveil-
lance require this. The main goal is to develop and execute 
a strong weather detection algorithm that can quickly and 
reliably identify weather in various areas. Standard image 
processing retrieves surface characteristics, whereas pre-
trained VGG16 models collect deep spatial features. The 
goal is to train a SoftMax classifier to distinguish clear, rain, 
snow, and fog using a spatially improved, multicategory 
weather picture block dataset using feature fusion. Finally, 
our surveillance film should be waterproof while providing 
accurate and reliable location data for these devices. Experi-
mental validation shows the utility of the algorithm locally. 
The 99.26% weather recognition accuracy suggests that it 
might be effective in spatial information-based adaptive 
video picture clarification systems.

This study presents a novel perspective on the impact of 
inclement weather on geographical data used in intelligent 
transportation and video surveillance systems. The main 
accomplishments include a weather recognition system that 
takes into account geographical context, as well as a collec-
tion of weather images organized by place. The system can 
enhance its accuracy in distinguishing between four differ-
ent weather conditions by utilising deep spatial information 
and typical image processing techniques. The accuracy of 
the algorithm, determined by testing, is 99.26%. The results 
demonstrate that the algorithm improves video clarity even 
in challenging circumstances. This approach improves the 
dependability of geographic data during adverse weather 
conditions.

The study proposes a complete method to mitigate the 
influence of unfavourable weather on GIS. Section 2 intro-
duces a multicategory weather picture block dataset to facil-
itate model training and testing in the absence of acceptable 
datasets. A weather picture crashing dataset image. Geo-
spatial feature extraction for weather photos is covered in 
Sect. 3. Deep features employ transfer learning, while shal-
low features use standard techniques. The unique strategy of 
merging shallow and deep information to improve the Soft-
Max classifier, which is critical for weather classification, is 
introduced in Sect. 4. The way in which the weather image 
recognition model distinguishes clear, snow, rain, and fog is 
explained in Sect. 5. In Sect. 6, Experimental Results and 
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Analysis, the system achieves 99.26% accuracy in weather 
identification. The algorithm’s function in adaptive video 
picture clarification for spatial data integrity in bad weather 
is highlighted in Sect. 7, Conclusions, which highlights the 
important aspects and discusses future research.

2 Methods

2.1 Weather Image Chunking dataset

The currently available public weather image datasets, in 
terms of spatial coverage, are very limited. Chu et al. con-
structed the Image2 Weather dataset, which has 183,798 
images. It includes photographs of clear, overcast, snow, 
rain, fog, and other 6 weather situations [9]. The Multiclass 
Weather Dataset (MWD) uses spatial data. There are 65,000 
photos in 6 categories: sunny, overcast, rain, snow, fog, and 
thunder [10]. Although both public data sets have six cat-
egories of weather, it is observed that the presence of clouds 
or cloudy conditions does not significantly affect the recog-
nition of video image targets. In the absence of any cover, 
such as trees or buildings, and with targets appearing blurred 
due to lightning weather conditions, it is worth noting that 
such weather occurrences are relatively rare. Therefore, the 
weather classified and identified in this article includes fog, 
rain, snow, and clear weather occurring in various locations.

This article selected some images that meet the needs of 
this article from the Image2 Weather dataset and MWD, and 
collected some public images to construct a weather image 
data set dataset. The sources of the data set are mentioned 
in Table 1.

The data set dataset includes four categories of images: 
fog, rain, snow, and clear, with 1,000 images in each cate-
gory. Based on the purpose of the weather recognition model 
application in this article, the rainy and snowy images in the 
data set are those that are raining and snowing images. Since 
the data set is small and there are many identical targets and 
features in different types of weather image, such as roads, 
trees, vehicles, pedestrians, etc., it will seriously interfere 
with the recognition of weather in outdoor images. There-
fore, this article chooses to crop the images. and flipping 
to filter out images with weather characteristics, thereby 
reducing interference and effectively improving weather 
recognition. This paper processes the data set dataset and 
constructs a multi-category weather image block data set 

MWIBD. The processing process is shown in Fig. 1. The 
data set contains 4000 images, and each image is randomly 
cropped into 10 images with a size of 224 * 224.

First, each image in the data set is randomly cropped into 
10 images of 224 × 224 size. There may be images without 
weather features in the cropped images, such as the close-up 
area of the foggy image. The fog is very light, approximately 
Sunny day images, so it is necessary to filter the images to 
remove images without weather features (fog, raindrops, 
snowflakes) or with unclear whether features, and then flip 
the remaining images left and right, finally forming a mul-
ticategory weather image block data set A sample of the 
MWIBD. MWIBD Fig. 2 shows data.

The MWIBD weather image block data set includes four 
categories of weather images: fog, rain, snow, and clear. 
Each category has 10,000 images and each image size is 
224 × 224. 80% of the images in the MWIBD data set are 
used for training and 20% for training. Image used for 
testing.

2.2 Weather Image feature extraction

This paper extracts shallow features from weather images 
to express the spatial information of the image, and extracts 
deep features to express the abstract and intrinsic spatial 
information of weather images.

The three geographically separated modules that make 
up the weather recognition model are decision recognition, 
feature fusion, and feature extraction. Both shallow and 
deep feature extraction methods are included in the feature 
extraction module. From the provided spatial information, 
the shallow feature mainly derives the average gradient, 
contrast, saturation, and dark channel. The fully connected 
layer features FC1 and FC2 of VGG16GTL, which are situ-
ated inside the model’s architecture, are the main sources of 
extraction for the deep feature.

2.2.1 Shallow-feature extraction

2.2.1.1 Average gradient The average gradient of a pic-
ture might indicate its clarity, according to this study [11]. 
Images with higher average gradients have more edge infor-
mation and are sharper. The mean gradient of the grayscale 
image is as follows: Eq. (1) Shown:

G =

∑w
i=1

∑h
j=1

√
(Aij−A(i+1)j)

2
+(Aij−Ai(j+1))

2

2

w ∗ h

 (1)

Among them, Aij indicates the image’s pixel-point gray 
value (i, j), w width andh  height of the picture.

Table 1 Source distribution of weather image datasets
Weather Image Data Set Foggy Rainy Snowy Suny
Image2 Weather Dataset 500 100 200 400
MWD 200 600 600 300
Public Image 300 300 200 300
Dataset 1000 1000 1000 1000
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Fig. 2 Example of MWIBD Dataset

 

Fig. 1 Data Set Processing 
Process
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under different lighting conditions [2]. The normalized satu-
ration of each pixel of image I is as shown in Eq. (4):

Si,j =
Si,j − min (SI)

max (SI) − min (SI)
 (4)

Among them, Si,j  represents the saturation of pixel point 
(i, j), max (SI) is the maximum saturation value of image 
I , and min (SI) is the minimum saturation value of image 
I .

2.2.1.4 Dark passage The work suggested image dehaz-
ing using dark-channel prior theory. According to the prior 
hypothesis of the dark channel, most local portions of out-
door haze-free photographs include pixels with very low 
values in at least one color channel, approaching 0 [12]. 
Therefore, the dark channel represents hazy weather. Image 
I’s dark channel is Eq. (5):

Id (x) = min
c∈{R,G,B}

(Ic (x)) (5)

Among them, Ic  represents the RGB channel of the image.

2.2.2 Deep feature extraction

2.2.2.1 Transfer learning Traditional machine learning and 
data mining work better when training and test sets are in 
the same feature space and equally distributed. Transfer 
learning is gaining popularity as each job requires a new 
data set, which is costly [13]. Transfer learning optimizes 
model training by transferring trained model parameters to 
a new model. Transfer learning improves training results, 
as most data and tasks are correlated [14]. This article fine-
tunes transfer learning using the VGG16 network model.

2.2.2.2 VGG16 network model This research built VGG16 
to solve ImageNet’s 1000 picture categorization and place-
ment categories [15]. Compared to AlexNet [16], VGG16 
presents a smaller 3 × 3 and 1 network topology. The ×1 
convolution kernel and 2 × 2 pooling kernel can enhance 
network depth while reducing parameters. Figure 3 shows 
the structure of the VGG16 network model. VGG16 has 
13 convolutional layers, 5 pooling layers, and 3 fully con-
nected layers.

2.2.2.3 Deep feature extraction based on transfer learn-
ing The VGG16 network model has very good generaliza-

2.2.1.2 Contrast This study found that contrast describes 
changes in picture value in image space [11]. Degraded 
photos have less contrast than clean ones. Under different 
weather conditions, the contrast difference is large, so it can 
be used as a feature to distinguish the contrast of weather 
images. As shown in formula (2):

C =

√√√√√
V√[∑255

k=1(k − G)4 ∗ Nk
w∗h

]
/V 2

 (2)

Among them, G  is the average gradient of the image, V is 
picture standard deviation, Nk pixel count with gray value k
, k represents input image gray value, k ∈ [0.0.255]. Among 
them, the standard of the image the difference V  is as shown 
in Eq. (3):

V =

√√√√√




w∑

i=1

h∑

j=1

(
Aij −

−
Aij

)2


 / (w ∗ h)  (3)

This includes, Aij  represents the mean value of Aij .

2.2.1.3 Saturation This research indicated that saturation is 
not affected by lighting, so it can describe different images 

Fig. 3 VGG16 Structure Diagram

 

1 3

477



M. Shabaz, M. Soni

determined by the current gradient but by the first-order 
moment of the gradient. The estimation correction and the 
second-order gradient moment estimation correction are 
two parts of adaptive adjustment. Using Adam to update 
parameters is not affected by the scaling transformation of 
the gradient and can automatically adjust the learning rate. 
The relevant calculation formula for Adam is as follows.

The objective function J (θ) is differentiated with respect 
to θ to obtain the gradient gt

:

gt = ∇θJ (θt−1) (6)

Among them, θ  is the parameter of the network, which 
refers to the weight, deviation, or activation value; J (θ) 
refers to the objective function with parameter θ  to be 
optimized.

The first-order moment estimates mt
 of the gradient gt

 
is shown in Eq. (7):

mt = β1mt−1 + (1 − β1) gt  (7)

Among them, β1 is the first-order moment attenuation 
coefficient.

tion capabilities when migrating the network to new tasks. 
The model migration based on VGG16 is shown in Fig. 4.

The migration idea based on the VGG16 model is as 
follows: freeze 13 convolutional layers, remove all fully 
connected layers of the pre-trained model, and add 2 fully 
connected layers of your own design. Name the new two 
fully connected layers FC1 and FC2 respectively. Set the 
number of neurons output by FC1 and FC2 to 2048 and 
1024 respectively.

The training parameters of the three fully connected 
layers FCG4096, FCG4096 and FCG1000 in the VGG16 
network model are: 7 × 7 × 512 × 4 096102760448, 
4096 × 4096 = 6,777,216, 4096 × 1 000 = 4,096,000. And 
based on the training parameters of the two fully con-
nected layers FC1 and FC2 of the VGG16 migration 
model, VGG16GTL are: 7 × 7 × 512 × 2048 = 51,380,224, 
2048 × 1024 = 2,097,152. Fine-tuning VGG16 After that, 
the training parameters were greatly reduced, making train-
ing more efficient.

The optimizer used in this article to optimize the network 
model is Adam [17], which combines the advantages of 
two optimization algorithms, AdaGrad  and RMSProp . 
The step size of Adam’s calculation update is not directly 

Fig. 4 Migrate VGG16 Model 
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F = [FG, FC, FS, FI, FFC1, FFC2] (12)

Among them, FG  represents the average gradient feature, 
FC  represents the contrast feature, FS  represents the satura-
tion feature, FI  represents the dark channel feature, FFC1 
and FFC2 represent the deep features extracted from the 
fully connected layers FC1, FC2 of VGG16-TL respectively.

2.3.2 Weather Image Feature Fusion

The shallow features are to extract the average gradient, 
contrast, saturation, and dark channel histograms. Each 
feature has 256 dimensions, and the shallow features have 
a total of 1024 dimensions. The deep features are used to 
extract the features of the fully connected layers FC1 and 
FC2 of VGG16GTL, and the deep features have a total of 
1024 dimensions. 3072 dimensions and then cascade and 
fuse all features to form 4096-dimensional weather image 
features.

This article uses TensorFlow in the feature fusion mod-
ule. The tf.concat () function implements cascade fusion 
of average gradient, contrast, saturation, dark channel, FC1

, and FC2.

2.4 Weather image recognition model

The outdoor image weather recognition model designed in 
this article based on image segmentation and feature fusion 
is shown in Fig. 5.

The weather recognition model consists of three modules 
that are spatially divided: feature extraction, feature fusion, 
and decision recognition. The feature extraction module 
consists of both deep feature extraction and shallow feature 
extraction techniques. The shallow feature mainly extracts 
the average gradient, contrast, saturation, and dark channel 
from the given spatial information. The deep feature mainly 
extracts the fully connected layer features FC1 and FC2 
of VGG16GTL, which are located within the architecture 
of the model. The features can be found in Sect. 3, which 
provides specific details about the content of the extraction 
module.

The VGG16GTL transfer learning model, which is based 
on VGG16, has features of fully connected layers FC1, FC2 
that can better describe the deep information of weather 
photos. Furthermore, the features of the completely con-
nected layer are one-dimensional features that are simple 
to combine with traditional features. As a result, the FC1 
of VGG16-TL is extracted in this paper, and the properties 
of the FC2 layer are used as deep features of the weather 
image.

The feature fusion module cascades and fuses the 
extracted deep features and the combined shallow features. 

The second-order moment estimate vt
 of gradient gt

 is 
shown in Eq. (8):

vt = β2vt−1 + (1 − β2) g2
t  (8)

Among them, β2 is the second-order moment attenuation 
coefficient.

Since the initial value of mt
 is 0, it is biased towards 0 

in the early stage of training, and mt
 needs to be biased and 

corrected, as shown in Eq. (9):

∧
mt =

mt

(1 − βt
1)

 (9)

Among them, βt
1  is the tth power of β1.

Since the initial value of vt
 is 0, it is biased towards 0 

in the early stage of training, and vt
 needs to be biased and 

corrected, as shown in Eq. (10):

v̂t =
vt

(1 − βt
2)

 (10)

Among them, βt
2  is the tth power of β2.

The updated step size θt  is shown in Eq. (11):

θt+1 = θt − α
1√

v̂t + ε
m̂t  (11)

Among them, it was suggested through experiments to set 
ε = 10−8, and the learning rate α  can be adjusted according 
to the specific situation [17]. This article sets it to 0.0001 on 
the basis of experiments.

The features of the fully connected layers FC1, FC2 in the 
transfer learning model based on VGG16 can better express 
the deep information of weather images, and the features 
of the fully connected layer are one-dimensional features, 
which are easy to integrate with traditional features. There-
fore, this article extracts the FC1 of VGG16-TL the features 
of the FC2 layer is used as deep features of weather images.

2.3 Weather Image Feature Fusion

2.3.1 Feature Fusion Method

This article analyses in detail the fusion methods of different 
types of features and mentioned deep feature fusion meth-
ods, including additive fusion, maximum fusion, cascade 
fusion, etc. [18]. .

This paper adopts the idea of cascade fusion to fuse the 
shallow features and deep features of weather images. The 
feature fusion method is shown in Eq. (12):
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calibration is a positive sample and the classification result 
is also a positive sample. FP  means that the image is cali-
brated as a negative sample and the classification result is a 
positive sample; FN  means that the image is calibrated as 
a positive sample and the classification result is a negative 
sample; TN  means that the image is calibrated as a nega-
tive sample and the classification result is also a negative 
sample.

The weather recognition model of the article can be 
evaluated using a confusion matrix [8]. Table 2 shows the 
spatial confusion matrix. The geographical data in Table 2 
and the classification result imply that TP is a solid picture 
calibration and classification sample. FP, FN, and TN indicate 
negative images with positive, negative, or negative classifi-
cation results, respectively, in spatial calibration.

Please, see Sect. 3 for the specific content of the feature 
fusion module. The decision recognition module is a fea-
ture fused through Softmax training, which can realize the 
recognition of four weather conditions: fog, rain, snow, and 
clear weather.

3 Results and discussion

3.1 Experimental environment

The experiments in this article were all conducted on an 
Intel(R) Core (TM) i7G9750H CPU @2.60 GHz, 8GB 
RAM, 64-bit Windows 10 system, NVIDIA GeForce GTX 
1660 Ti, python 3. 6. Conducted in a TensorFlow2.2.0 GPU 
environment.

3.2 Evaluation index

The confusion matrix is an indicator to evaluate the effect of 
the model and can be used to evaluate the weather recogni-
tion model designed in this article [8]. The confusion matrix 
is listed in Table 2. In Table 2, TP  indicates that the image 

Table 2 Confusion Matrix
Actual Value
Positive Sample Negative 

Sample
Predictive Value Positive Sample TP FP

Negative Sample FN TN

Fig. 5 Weather Recognition 
Model
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As shown in Table 3, the impact of a shallow feature’s 
recognition is poor, since it may be better at recognizing one 
sort of image than another. For example, the dark channel 
can effectively identify foggy weather images, but the clas-
sification effect on rainy and snowy days is poor; contrast 
can effectively distinguish foggy, sunny and rainy images, 
but it is difficult to distinguish between rainy and snowy 
images.

Although the classification effect of a single shallow 
feature is not good, the fusion of four shallow features can 
achieve a good classification effect. The fusion of the four 
shallow features of average gradient, contrast, saturation, 
and dark channel can achieve a recognition accuracy of 
74.66%. Rate.

When comparing 7 shallow features, the accuracy of 
HOG, LBP, and brightness is relatively low. This article 
chooses to use four shallow features: average gradient, con-
trast, saturation, and dark channel.

3.4 Experiment 2: deep-feature experiment

Design experiment 2 compares the recognition effects of 4 
network models AlexNet  [16] GoogLeNet  [19], ResNet50 
[20], VGG16 [21] and the migration models of these 4 net-
work models: Alex-Net-TL [22], GoogLeNet − TL  [23], 
ResNet50-TL [24] and VGG16-TL [25].

The training parameter settings of all models are consis-
tent, the batch size batch_size  is set to 32, the network 
model optimizer is Adam, the learning rate is set to 0.0001, 
and the number of training iterations epoch is set to 100. 4 
network models AlexNet , GoogLeNet , the change curves 
of the recognition accuracy of ResNet50 and V GG16  in 
different iteration cycles are shown in Fig. 6 (a) and 6 (b).

As can be seen in Fig. 6, the training loss of GoogLeNet  
is relatively the smallest among the four trained network 
models. The training loss after 20 epochs is basically less 
than 0.1, and the classification accuracy is high, up to 96.20. 
%.

Comparing the four full training models, first of all, 
AlexNet  uses large convolution kernels with sizes of 
11 × 11 and 5 × 5 , while VGG16 uses smaller convolu-
tion kernels with sizes of 3 × 3  and 1 × 1 , and uses small 
convolution kernels. Replacing large convolution kernels 
with convolution kernels can deepen the network depth 
and reduce network parameters, so the effect of V GG16  is 
better than Alex − Net . Secondly, AlexNet  and V GG16
both have convolutional, pooling, and fully linked lay-
ers.ResNet50 uses the residual structure is replaced, while 
GoogLeNet  uses the Inception Module structure and con-
verts all connections to sparse connections [19]. Therefore, 
GoogLeNet  not only effectively controls the parameters 
and calculation amount, but also has better recognition 

Precision(P): Represents the proportion of correctly clas-
sified samples among the samples identified as positive 
categories:

Precision =
TP

TP + FP
 (13)

Recall (R): Represents the proportion of correct predictions 
among all positive category samples:

Recall =
TP

TP + FN
 (14)

Accuracy: Indicate the proportion of correctly predicted 
samples to the total number of samples:

Accuracy =
TP + TN

TP + FP + TN + FN
 (15)

3.3 Experiment 1: shallow feature experiment

This article designs Experiment 1 to compare the weather 
recognition of shallow features Local Binary Pattern (LBP), 
Histogram of OrienGted Gradient (HOG), brightness, aver-
age gradient, contrast, saturation, and dark channel. Effect.

As a threshold, the local binary pattern (LBP) technique 
uses the gray value of the center pixel in a local picture 
region. Compare this threshold to nearby pixels. Its position 
is recorded as 1 if the neighbourhood pixel value is larger 
than the central location pixel value, suggesting a spatial 
link. If the neighbourhood pixel value is less than the central 
pixel value, the location is shown as 0, indicating a different 
spatial connection. From the binary number that expresses 
spatial information, a decimal number may be obtained. 
Image’s center pixel LBP is stated in decimal form. The pic-
ture feature is a histogram of all local LBP values. HOG 
creates a histogram by computing gradient values in the 
immediate region of the image. Picture to create space. The 
experimental results of the shallow feature comparison are 
listed in Table 3.

Table 3 Shallow Feature Comparison
Shallow Features Accuracy
LBH 36.75
HOG 42.50
Brightness 43.80
Saturation 51.83
Dark channel 55.08
Average Gradient 60.25
Contrast 62.66
Average Gradient + Contrast + Saturation + Dark Channel 74.66
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GoogLeNet  and Res − Net50. When comparing the four 
migration network models, among them, the training loss 
of the V GG16GTL  model is relatively minimal. After 10 
epochs, the training loss is already lower than 0.1, and the 
classification accuracy is high, up to 97.29%.

Although among the four fully trained models, 
GoogLeNet  has better recognition results, when perform-
ing transfer learning, V GG16GTL  has better generaliza-
tion ability and can achieve good transfer effects. Therefore, 
V GG16GTL  extracts deep features from weather images 
CNN [26] preferred model weather images.

Comparing the training loss changes and the accuracy 
change curves of the full training model and the transfer 
model of a total of 8 models, theV GG16 − TL  model has 
a relatively small loss and the fastest training convergence 
speed. The comparison of the specific recognition accuracy 
of the 4 network models and the 4 migration network mod-
els is listed in Table 4.

It can be seen in Table 4 that the recognition accuracy of 
the VGG16GTL model [27] is relatively the highest.

Taken together, the VGG16-TL model has smaller losses 
[28], the fastest training convergence speed, and the high-
est weather recognition accuracy. Therefore, this article 
chooses the VGG16-TL model to extract deep features of 
weather images [29].

3.5 Experiment 3: comparison of different methods

To verify the effectiveness and superiority of the proposed 
model, experiment 3 is designed to compare the proposed 
method with previous methods presented in articles [30], 
[31], and [32]. This article compares the recognition effects 
of four methods on four types of images: fog, rain, snow, 
and clear. The experimental results are listed in Table 5.

3.6 Discussion

As can be seen in Table 5, the overall recognition accuracy 
of the model in this document can reach 99.22%. The rec-
ognition effect on fog, rain, snow, and clear weather and the 
overall recognition accuracy are better than those of other 

results. After comparing the 4 full training models, compare 
the migration network models of these 4 models, namely 
AlexNet − TL , GoogLeNet − TL , ResNet?0 − TL , 
V GG? − TL . The classification accuracy change curves 
of these 4 migration models in different iteration cycles are 
shown in Fig. 7(a) and 7(b). As shown in Fig. 7, it can be 
seen that the convergence speed of the four models of the 
migration network is faster than that of the fully trained 
network model, but the training loss of GoogLeNet − TL  
and ResNet50 − TL  is larger than that of the fully trained 

Table 4 Recognition Accuracy of Network Model
Network Model Accuracy
AlexNet − TL 79.93

AlexNet 85.77
GoogLeNet − TL 87.54

ResNet50 − TL 91.75

VGG16 94.85

ResNet50 95.26
GoogLeNet 96.22

VGG16 − TL 97.2

Fig. 7 Classification loss and accuracy of 4 migration models in dif-
ferent iteration cycles, (a) Loss Change Transfer Network Model (b) 
Accuracy Changes Transfer Network Model

 

Fig. 6 Recognition loss and accuracy of 4 mitigation models in dif-
ferent iteration cycles. a Loss Changes Network Mode, b Accuracy 
Changes Network Model
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appears, and the deeper level of semantic information, 
such as the meaning that lies behind the image. The model 
improves the accuracy of weather identification by using 
geographic data at every stage of the development process. 
The recommended weather identification model not only 
works well in a variety of geographical contexts, but also 
converges rapidly and has a low training loss. In the future, 
the method will try to be improved to be suitable for appli-
cations that include the management of spatial information, 
such as adaptive video image sharpening.
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