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Abstract The continuous urban expansion is one of the

most important problems in urban development due to its

negative societal and environmental impacts. This study

encompasses the spatial–temporal of land use/cover change

(LUCC) monitoring (1999–2018) and urban growth mod-

elling (2010–2040) of El Jadida city, Morocco. For this

purpose, Landsat-7 ETM and Landsat-8 OLI images

combined with a Cellular Automata–Markov (CA–Mar-

kov) model were used to simulate and forecast LUCC. The

characteristics of LUCC were discussed based on the land

cover maps along with urban gradient analysis. After

understanding the spatial–temporal patterns of LUCC, the

CA–Markov and Multi-Layer Perceptron (MLP) model

were employed using the historical land cover maps and

other auxiliary data to simulate and forecast LUCC. The

results showed that the urban area (built-up) increased with

19.8 km2. The rapid urbanization has replaced and trans-

form bare soil (net loss 12.7 km2) followed by vegetation

cover (net loss 7.1 km2) during 1999–2018. The result

exhibited that the predominant built-up development was

observed in south-west followed by south-east direction

majorly within the municipal limits. The projected LULC

exhibit that the built-up area will increase from 29.9 to 43.8

km2 with an average annual growth rate of 0.63, primarily

in western and eastern parts during 2018–2040. The result

for year 2040 with reasonably good accuracy will be useful

to the planners, policy and decision makers. Therefore, the

protection measures for environment should be set in

advance according to the forecasting results of this study.

Keywords Urban sprawl � CA–Markov model � Spatial

metrics � Simulation and forecasting � MLP � El Jadida city

1 Introduction

The last decade, many regions of the world have rapidly

urbanized and the world urban population has increased

from 5% in 1900 to more than 54% nowadays. This per-

centage varies substantially in the levels of urbanization

across countries. A United Nations report affirms that the

urban future development and ultimate growth for world

population are estimated to add 2.5 billion people to the

urban population by 2050, reaching a percentage of 66%,

with nearly 90% of the increase will be concentrated in

Asia and Africa [1].

Urbanization is a complex process driven by a variety of

spatial–temporal factors and usually hard to quantify and

interpret [2]. The physical and morphological conditions,

economic state, population growth, political situation,

policies, and social behavior varies across regions that

makes the pattern of urban growth unpredictable [3].

However, an accurate and updated information about the

state of urbanization, the rate of urban expansion, and the

patterns and extent of sprawl are needed by planners to

provide for the services required by the urban population

and help to manage complex urban development effec-

tively [4]. Land use/cover (LULC) change has both direct

and indirect impacts on environment as well as regional
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and global sustainable development, for the continuous

evolution and transformation of land surface may result in

a number of changes in environmental processes, such as

soil erosion, surface run-off, pollution and carbon storage

[5–7].

The simulation and prediction of urbanization can give

input to various environmental and planning models [8]. In

the last 3 decades, many types of simulation and prediction

models include system dynamics model, GeoMod,

SLEUTH model, multi-agent model and Markov model

have been used within a GIS environment to determine

future urban growth and LULC change. However, none of

these models is perfect. GeoMod and SLEUTH models are

unsatisfactory in efficiency, and they require the reliance

from other auxiliary software. Markov models can quan-

titatively predict the dynamic changes in landscape pat-

terns; however, they cannot resolve the spatial patterns of

landscape change [9]. In contrast, cellular automata (CA)

models can predict the spatial distribution of landscape

patterns but cannot predict temporal changes [10]. For

these reasons, researchers integrate different methods to

characterize the dynamics of land use/cover, urban sprawl

and so forth [11], for example IDRISI software developed

by the Clark Labs at Clark University is one of the best

platforms to conduct CA–Markov modelling, that inte-

grates the functions of cellular automaton filter and Markov

processes, using conversion tables and conditional proba-

bility of the conversion map to predict the states of land-

use changes, and it may be better to carry out land-use

change simulations [12]. The coupling of CA with Markov

Chain Model provides a robust approach in spatial and

temporal dynamics modeling of LULCC, because RS and

GIS data can be efficiently incorporated [13, 14] and pro-

vide a more detailed information on a synoptic scale.

Temporal LULC and urban sprawl analyses with spatial

metrics are useful to quantify spatial patterns of landscape

dynamics [15] to understand the urban phenomena through

attributes such Shannon Evenness Index (SHEI), Number

of Patches (NP) The Normalized Landscape Shape Index

(NLSI) and Multi-Layer Perceptron (MLP), etc. [16],

which provides valuable insights to the inherent spatial

structures over time with growth patterns [17].

El Jadida city is the second largest metropolis in the

Casablanca Settat region after Casablanca city. El Jadida is

well known as an international tourist city (Old Portuguese

Medina) and pleasant natural landscape (forest and bea-

ches). Moreover, it experienced rapid urbanization after

2000 because of its favorable location, thereby causing a

rapid growth in population and economy. Considering its

advantageous location, rapid urbanization, many natural

resources, and international fame, El Jadida serves as an

interesting and important case study. Accordingly, the

objective of this study is to (1) monitor the changes in the

past 19 years (2) simulate and predict the future land use

change for years 2018 and 2040 based on CA–MARKOV

model and remote sensing data, (3) perform fragmentation

analysis, so as to enable development practitioners, plan-

ners, resource managers and policy makers effectively

manage and tailor intervention for better sustainable

development of the city.

2 Materials and methods

2.1 Study area

El Jadida city located on the Moroccan Atlantic coast,

covers 58 km2 of land and is located between 33.18� to

33.14�N latitude and 8.34� to 8.27�W longitude at an

average elevation of 22 m above mean sea level (Fig. 1).

According to the 2014 census, the population of El Jadida

increased from 66,296 in 2004 to 78,616 in 2014 with an

urbanization rate of 49.7%. The overall population density

of El Jadida has increased from 5430 inhabitants per km2 in

2004 to 6620 inhabitants per km2 in 2014, with a local per

capita GDP of USD $2505 in 2017, which is well above the

national average (USD $2402) (High Commission for

Planning, 2014). The climate is of semi-arid type with an

annual rainfall of 366 mm, a mean temperature of 18 �C
and high atmospheric humidity. The study area character-

ized by a low slope with an average slope of 4�, is a part of

the geological unit known as the Moroccan coastal Meseta

(Sahel Doukkala). It contains sub-tubular sedimentary

series from Mesozoic and Cenozoic era that are based on

Paleozoic land pleated during the Hercynian orogeny [18].

El Jadida is considered as the second future industrial pole

in Morocco, is well-known for its picturesque natural

scenery (forest and beaches) and highly developed socio-

economic activities (industry, tourism, agriculture and

fisheries production), particularly those related to phos-

phate and the Jorf Lasfar harbor, which contributes with

23% of the national industrial production and 32% of

Morocco’s total exports [19].

2.2 Data and preprocessing

The methodological framework used in this study is shown

in Fig. 2. It includes data processing steps, the CA–Markov

model developing, simulation and forecasting for urban

sprawl, simulation accuracy verification and land con-

sumption patterns in El Jadida Urban Agglomeration in

1999, 2006, 2010 and 2018 in GIS environment.

In the present study, the time-series Landsat images

downloaded from USGS (https://earthexplorer.usgs.gov/)

were employed to create the LULC maps for built-up

growth and land transformation monitoring and modelling.
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Four images were selected to overlap the 19 years span for

detecting the temporal dynamics in the urban area. All

these satellite images were acquired in dry season (summer

and autumn) with a minimal cloud cover were considered.

These images have 30 m resolution multispectral bands

and 15 m resolution panchromatic band. The Landsat-7

ETM? images in 2006 and 2010 were used for model

calibration, and the Landsat-8 OLI image of 2018 was

applied for model validation. All images were subjected to

geometric correction, image enhancement and strip pro-

cessing. The Landsat 30 m spatial resolution multispectral

bands were fused with the 15 m panchromatic band using

Gram–Schmidt fusion method, which can improve the

spatial resolution of multispectral bands and retain the

spectral information of source imagery [20]. Auxiliary and

explanatory data obtained from El Jadida urban agency

included a 5 m resolution digital elevation model (DEM),

slope, location of the main public and commercial equip-

ment’s, railway stations, main roads, census data (such as

administrative boundaries and core area) and residential

objects updated in 2018 were selected for their potential

effects in promoting urbanization during the modelling

phase (Table S1), these locations were used to produce

distance maps employing the ‘‘Euclidean Distance’’ anal-

ysis in the ArcGIS� software package, version 10.3. All

input data of LCM model were structured in order to have

the same processing extent which is the limit of study area,

the same coordinate system, a cell size of a 30 m (same as

classification obtained from the Landsat satellite images).

The same number of land cover classes should be used, the

roads layer should be binary classified and the driving

factors were normalized to [0–255]. Excluded areas are

expressed in the form of a Boolean map.

2.3 Land cover classification and gradient analysis

with spatial metrics

In order to observe and quantify the urban growth, the

maximum likelihood supervised classification method was

employed for classifying the Landsat images because of its

simplicity and robustness. Three land-cover categories

were classified, namely, built-up, vegetation and bare soil

Fig. 1 Map showing the study area
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(Bareland) (Table S2). A total number of 165 (for 1999),

146 (for 2006), 171 (for 2010) and 151 (for 2018) training

samples were collected for maximum likelihood supervised

classification. To avoid any major misclassification, an

accuracy of the classifications was assessed by comparing a

set of sample points from the classified landcover maps

with reference data, based on selective field checks in 2018

by GPS and historical images for 1999, 2006 and 2010 in

Google Earth�, the overall classification accuracy and

Kappa coefficient of the four periods LULC map was

determined [20, 21]. The overall classification accuracy

was 84%, 89%, 91% and 94%, whereas the Kappa coeffi-

cient was 0.79, 0.84, 0.91 and 0.93 for the year 1999, 2006,

2010 and 2018 respectively, that indicated that the simu-

lation method was effective [22].

Urban gradient analysis with spatial metrics are helpful

in quantifying spatial characteristics of the landscape and

identifying the causal factors and locations experiencing

various levels (sprawl, compact growth, etc.) of urbaniza-

tion in response to the economic, social and political for-

ces. The select spatial metrics given in Table 1 (with

characteristics of each metrics) were used to analyses and

understand the urban dynamics at different levels: patch,

class and metrics. The Number of Patches (NP), the Nor-

malized Landscape Shape Index (NLSI) and the SHANON

Evenness Index (SHEI) were involved in the analysis as the

indices of area, these metrics were calculated using the

FRAGSTATS 4.2 software package, employing the eight-

cell neighbor rule (consider all the eight adjacent cells,

including the four orthogonal and four diagonal neighbors)

in defining patch neighbors [23]. FRAGSTATS metrics

Fig. 2 Hierarchical structure of the urban LCM model
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were designed for ecosystem and landscape related studies

[24] and have been widely used in different studies

[25, 26]. In this study, a multiple ring buffer with a distance

interval of 1 km from the city center of El Jadida (old city

Portuguese) was prepared to deduce the zonal urban

expansion along all directions viz., North (N), East (E),

South (S), West (W), North-East (NE), South-East (SE),

South-West (SW), North-West (NW).

2.4 Urban growth forecasting and accuracy

assessment

2.4.1 CA–Markov chain model

CA–Markov model is a combination of CA and Markov

chain, which adds an element of spatial and the knowledge

of likely spatial distribution of transitions to Markov chain

analysis and has the capability to simulate changes and

predict decadal variations using satellite images [27, 28].

The Markov model focuses on quantitatively predicting

dynamic changes of land-use change between previous (t1)

and later time (t2) periods by developing a transition

probability matrix between them, but lacks skill at dealing

with the spatial patterns of land-use change. The CA is a

cellular entity and is based on proximity concept and has

the ability to predict the transitions among any number of

categories, which indicates that the regions which are

closer to the existing areas of the same class are more

probable to change to a different class, conditioned by

Markov transition rule and adjacent neighbors. IDRISI

software developed by the Clark Labs at Clark University

is one of the best platforms to conduct CA–Markov mod-

elling, and it was applied in this study. The CA–Markov

model in IDRISI integrates the functions of CA filter and

Markov processes, using conversion tables and conditional

probability of the conversion map to predict the states of

land-use changes, and it may be better to carry out land-use

change simulations [29]. Carrying out CA–Markov mod-

elling using IDRISI involves two techniques: Markov chain

analysis and CA [30]. The transition probability matrix

determines the likelihood that a cell or pixel will move

from a land use category or class to every other category

[31]. In this study, the land cover maps in 2006 and 2010

were selected to calculate the transition probability matrix

using Multi-Layer Perceptron (MLP) from vegetation to

built-up and from bare soil to built-up. The MLP constructs

a network of neurons between two example classes and

driving factors, together with a web of connections that

consist of sets of weights. Then, the sample cells are

divided into two groups. The first 50% of the sample cells

are used for training and the second 50% for validation.

2.4.2 Potential driving factors

The expansion of urban area is generally related in search

of better infrastructural facility. The forces and drivers of

urban expansion are different in each region. Further,

detecting and locating the driving factors that may be

related to LULC change is a crucial step in modelling

urban growth. In this study, the explanatory variables

included in the transition probability matrix to simulate

land use maps for 2018 and 2040 are: elevation, slope,

distance to public and commercial equipment’s, distance to

urban areas (residential objects), distance to roads and

railway. These locations were used to produce distance

maps employing the ‘‘Euclidean Distance’’ analysis in the

ArcGIS� software package, version 10.3 (Fig. 3). A con-

straints layer was also introduced to prevent some areas in

the region from becoming urban such as public parks. To

test the potential power of explanatory variables, the Land

change model (LCM) provides Cramer’s V correlation

coefficient, which tests the relationship between variables

and the distribution of land use types. After transformed the

driving forces file to natural log the research made very

important step that was test and select the driver variables

based on the Cramer’s V factor. In general, the variables

that have a Cramer’s V of about 0.15 or higher are useful

while those with values of 0.4 or higher are good [32].

Table 1 Spatial metrics

Number of Patches (built-up) (NP) Normalized Landscape Shape Index (NLSI) Shannon Evenness Index

Formula NP = ni NLSI = (ei - min(ei))/(max (ei) - min(ei)) -
P

(Pi * In (Pi))/ln(m)

Range NP C 1 0 B NLSI B 1 0 B SHEI B 1

Unit None None None

The aspect of the pattern Subdivision metric Shape metric Diversity metric

Level of heterogeneity Class level Class level Landscape level

Pi, proportion of the landscape occupied by patch type (class) i; m, number of patch types (classes) present in the landscape, excluding the

landscape border if present; ei, total length of edge of class i in terms of number of cell surfaces; min ei, minimum total length of edge of class i

in terms of number of cell surfaces; max ei, maximum total length of edge of class i in terms of number of cell surfaces
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Fig. 3 Urban growth contributing factors: a Elevation, b Slope, c Distance from roads, d Distance from urban areas, e Distance from public and

commercial equipment’s, f Excluded areas (Constraints areas)
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2.4.3 Calibration and validation

Calibration and validation are two critical processes for

testing the effectiveness of the CA–Markov model. A clear

distinction between calibration and validation is needed to

make the modeling results credible [33, 34]. Quantifying

the predictive power of the model consists in comparing

the result of the simulation (2018) to a reference map

(2018) using variations of Kappa [35, 36]: Kappa for

location (Klocation) and Kappa for quantity (Kquantity).

During calibration, the 2006 and 2010 land use maps were

used to calculate the transition probability matrix. In

addition, the 2010 land use map and the six potential

driving factors were integrated into the transition proba-

bility matrix to simulate the 2018 land use map. For vali-

dation, the simulated 2018 map was cross-tabulated with

the classified 2018 map. The predictive power of a model is

considered strong when its efficiency is greater than or

equal to 80%, then it is useful to make future projections

(2040) assuming that the transition mechanism verified

between 2010 and 2018 will be repeated.

3 Results and discussion

3.1 The spatial–temporal land use/land cover

change

According to Fig. 4 and Table 2, The study area has wit-

nessed increased urbanization and change in different

LULC during the 1999–2018 period. LULC change maps

show that the built-up area experienced the largest changes

with a total increase of 33%, mainly at the expense of the

vegetation class during the first and second periods, with a

decrease of 11.0771 km2 and 4.2039 km2, while in the

third period the change was at the expense of the bare soil

class with a decrease of 18.8343 km2. This increase in

built-up, probably took place due to migration of popula-

tion towards the city, which offers better education activ-

ities, business and job opportunities. This is in conformity

with many LULC studies conducted in Morocco [6, 37, 38]

and other global studies [28, 39–41]. The urban growth in

EL JADIDA, although it wasn’t steady in its growth rates

due to the changes in the city policies, it was persistent. El

Jadida in the first period, precisely in the late 90’s was

satisfied with the urban dispersion that both the industrial

area and the port of Jorf Lasfer has created away from the

city center making a small annual growth rate of 25%,

completely ignoring the raise of population. The cause and

effect of this industrial success is the raising demand on

public and administrative services and housing. By 2006,

attempts to solve the problem started to immerse by

implementing major investments that helped shake the

urban dynamic of the city such as the hippodrome and

Mohammed V hospital in the North East, the residential

parks in the south and touristic parks in the North West,

making the annual growth rate reach its peak with 1.62.

The growth rate dropped back down in the period between

2010 and 2018 to 1.33. After the classification of satellite

data, the reliability of results depends on the overall

accuracies of the classified images. The result of this pro-

cess indicates whether the LULC changes have been

accurately identified and extracted. According to Anderson

(1976) [42], approving the reliability of classified images is

through estimation of overall accuracies. The overall

accuracy should clearly exceed the minimum accept-

able standard of C 85% stipulated by the USGS classifi-

cation scheme. The accuracy assessment showed an overall

accuracy of 79% in 1999, 84% in 2006, 91% in 2010 and

93.4% in 2018. Misclassified pixels were mostly mixed

pixels observed along the boundary between multiple land-

cover types. These mixed pixels were inherent in medium

spatial resolution images, such as Landsat images, and

considered to be a main reason for classification errors

[43].

3.2 Gradient analysis with spatial metrics

Dramatic LULC changes affect urban form through alter-

ing the patterns of the landscape. Landscape metrics such

as NP, NLSI and SHEI are significant indicators for eval-

uating landscape attributes such as diversity, shape and

fragmentation. The Fig. 5 represents the NP, NLSI, SHEI

values per direction and per gradient during different

periods. The number of patches (NP) metric explains the

order of fragmentation or clumped growth in the built-up

area calculated as patches.

As observed, it is noticed that the decreasing NP in the

core area for both directions in years between 1999 and

2006 is a sign of clump. The clump continued until 2006

for all of the first six circles in the SW. After 2006, the NP

in the SE started to increase and spread reaching 5000,

6000 and 7000 m circles with high values ranging between

[230–300] in 2018. The SW noticed a severe fragmentation

in the 5000, 6000 and 7000 m circles reaching respectively

131, 159 and 168 in 2018, and have been only 29, 48 and

47 comparing to 2010. The NLSI started with high values

in the SW and SE regions in 1999 reflecting a disaggre-

gation especially within 7000 and 8000 m circles with

values respectively 0.46, 0.78 in the SE and 0.58, 0.75 in

the SW (value 1 completely disaggregated). Up to 2010,

the NLSI had a decreasing trend which means that patches

are going more and more towards a compact simplified

shape [44]. In 2018, the values have noticed a slight re-

increase especially in the 5000, 6000, 7000 m circles in the

SE and in the last four outer circles of the SW, it is also
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noticed and as expected (based on the NP), that the inner

circles are more aggregated than the outer ones. The values

of SHEI computed on the landscape level for the study

period started relatively high (Especially in the SE) and

kept on increasing until reaching in 2018 values of 0.9079

in the SW and 0.9184 in the SE, which means that the built

up grew toward more even distribution in both directions

with slight more evenness on the SE side. The phenomena

of increasing NP and SHEI, especially in the outside cir-

cles, is an indication of a spread [45] that can be partially

due to the leapfrog urban growth type [46], while the

clump and the decline of the shape complexity in the inner

core area, can partially be attributed to the extension and

infill urban growth type, similar to the case referenced by

[47], where it has been explained that the built-up spatial

pattern of Sancaktepe district, had by 2009, become

contagious as new development tended to infill around

existing development forming large contagious patches.

3.3 LULC forecasting and analysis in 2040

After detecting and highlighting the urban change, a set of

potential driving factors maps were prepared to be inte-

grated as sub models in order to run the MLP and generate

transition potential maps. To test the degree of association

between each potential driving factor and the changes,

Cramer’s value test was first performed. The Tables 3 and

4 represent the V-Cramer score for the considered factors,

the Cramer’s values shows that the distance to the urban

area is the most influential factor for both sub models,

while the slope factor has been eliminated since its value

0.0836 is low than the acceptance rate 0.15 [48]. However,

Fig. 4 Land use/cover change from 1999 to 2018

Table 2 Net change of each

land cover category during

1999–2006, 2006–2010, and

2010–2018

Change 1999–2006 (km2) Change 2006–2010 (km2) Change 2010–2018 (km2)

Built-up 1.7749 6.5097 10.6596

Vegetation - 11.0771 - 4.2039 8.1747

Bare soil 8.3022 - 2.3058 - 18.8343
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Fig. 5 Spatial metrics zone-wise for each gradient during all years: a Zonal and gradient division of the study area; b The SHEI per year and per

direction; c The NP for SE direction; d The NP for the SW direction; e The NLSI for SE direction; e The NLSI for the SW direction

Table 3 V-Crammer’s test of

potential driving factors
Total V-Cramer’s

From vegetation to built-up From bare soil to built-up

Distance to the urban area 2006 0.584 0.4507

Distance to equipment 0.3393 0.3393

Elevation 0.1654 0.1654

Distance to main roads 0.3065 0.3065

Slope 0.0836 0.0836

Distance to railway 0.3106 0.3106

Table 4 Adopted driving factors and MLP transition potential accuracy

Vegetation to built-up Bare soil to built-up

Model Accuracy (%) Skill measure Influence order Accuracy (%) Skill measure Influence order

All variables 80.4 0.608 N/A 79.25 0.585 N/A

Equipment 77.98 0.5596 2 77.18 0.5436 3

Distance to roads 74.64 0.4927 2

Distance to urban 68.13 0.3626 1 71.7 0.434 1

Elevation 79.2 0.5841 5

Distance to railway 78.67 0.5734 4
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and due to the limitations of this test in taking into account

the intricacy of the relationship for values superior to 0.15,

it was necessary to check the sensitivity analysis after

running the MLP. Unlike what the V-Cramer has indicated,

the sensitivity analysis shows that the most influential

variable ‘‘from bare soil to built-up’’ is the distance from

roads. The exclusion of this variable causes a drop of the

overall accuracy from 79.25 to 71.7. As for ‘‘from vege-

tation to build’’ variable, the sensitivity test confirmed the

ranking of the distance to urban area as the most influential

factor, it was also possible to detect, that some factors are

negatively affecting the accuracy of the sub model. The

exclusion of the elevation factor for example, would

increase the overall accuracy by 0.10. A several MLP runs

were conducted in which variables affecting the overall

accuracy of the first sub model were excluded only two

final explaining factors were kept.

In order to verify the model performance, and based, on

(1) the land use data for 2006, 2010, 2018; (2) the transition

potential maps and (3) the Markov transition probability

matrix; a simulation of the year 2018 was performed and

compared to the real LULC of 2018 by the mean of the

KAPPA index. The resulting statistics shows that Kloca-

tion value is 0.7902. The validation process has shown a

successful prediction of LULC map for 2018. The accuracy

rate is acceptable and the performance of LCM to identify

grid cell level location of future change is satisfactory. As a

consequence, we can predict future urban sprawl in 2040

(Fig. 6). The built-up area in 2040 will increase from

29.9907 to 43.81740 km2 between 2018 and 2040, mean-

ing a total increase of 13.8267 km2 in 22 years with an

average annual growth rate of 0.6284.

The expansion in 2040 seems to be a succession to the

previous years characterized by the linear development

Fig. 6 Land use/land cover map by years a 2018 actual, b 2018 simulated and c 2040 simulated
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type along the main roads, extension type from the urban of

2018 and some infill urban type as well. When it comes to

spatial metrics, SHEI is forecasted to reach its highest

levels of evenness in the SW region by 2040 with a value

of 0.9203 while in the SE the value has dropped to 0.8849

indicating the start of the dominance of the built-up class.

The number of patches (Fig. 7) has also noticed a major

decrease in both directions with the majority of the five

circles reaching a full clump (NP = 1). The NLSI values of

2040 on the circles level for both directions are low,

ranging only between 0 and 0.1 which mean that the region

patches grew into a compact simple shape.

4 Conclusion

This study used a combined approach of remote sensing,

GIS and statistical models to reveal, quantify and predict

the urban growth in El Jadida city. To conduct the study, a

maximum like hood classification of the LANDSAT

satellite images of years 1999, 2006, 2010 and 2018 was

first performed, to produce the LULC maps. Second, and in

order to quantify the urban landscape pattern in terms of

diversity, shape complexity and fragmentation, SHEI,

NLSI and NP indices were computed using the FRAG-

STAT software according to a zonal division. For the

prediction of the future urban growth, we opted for the

LCM model, since it integrates the MLP, the CA model

and the Markov Chains, and it is able to process hetero-

geneous data. The accuracy of predicted LULC map of

2018 was validated using Klocation index (the difference

between the actual built up area and the simulated one is

0.9 km2). For better understanding of the predicted result

we computed the spatial metrics used previously in the

study for the built-up class of 2040. This study can con-

tribute in helping the local and regional planners to have

insight on the future urban growth and therefore provide

better adopted management policies that may lead the city

toward a sustainable development.
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Ramı́rez, C. A., et al. (2017). Urban driving forces and megacity

expansion threats. Study case in the Mexico City periphery.

Habitat International, 64, 109–122.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

123

Simulating spatial–temporal urban growth of a Moroccan metropolitan using CA–Markov model 621


	Simulating spatial--temporal urban growth of a Moroccan metropolitan using CA--Markov model
	Abstract
	Introduction
	Materials and methods
	Study area
	Data and preprocessing
	Land cover classification and gradient analysis with spatial metrics
	Urban growth forecasting and accuracy assessment
	CA--Markov chain model
	Potential driving factors
	Calibration and validation


	Results and discussion
	The spatial--temporal land use/land cover change
	Gradient analysis with spatial metrics
	LULC forecasting and analysis in 2040

	Conclusion
	Acknowledgements
	References




