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Abstract Drought is one of the most complex and least

understood climate-related natural hazards. Active drought

mitigation and contingency plan formulation often require

a reliable drought distribution map. This study analyzed

different spatial interpolation techniques to produce

drought distribution map in East Texas, USA. Determin-

istic [inverse distance weighting (IDW) and spline], and

geostatistical [ordinary kriging (Gaussian (KG) and

spherical (KS))] interpolation techniques were employed as

candidate methods for evaluation. Thirty-four years

(1980–2013) of weather station data (N = 47) were used to

calculate a 12-month Standardized Precipitation Evapora-

tion Index (SPEI). The dataset was randomly divided into

test data (70%, N = 33) and validation data (30%, N = 14).

The resulting SPEI maps were cross-checked and validated

through a validation dataset by calculating error matrices.

The results indicate that KG tends to perform well in

relatively drier conditions while IDW shows mixed results,

performing well both in dry and wet conditions. The

overall power of the four techniques to map 12-month

drought conditions resulted in the order of

IDW[KG[KS[ spline.

Keywords Drought � Interpolation � Inverse distance

weighting � Kriging � SPEI � Spline � Validation

1 Introduction

Predicting risks associated with drought requires informa-

tion from a drought monitoring system that provides the

onset, progress, severity, and spatial extent of drought.

Such information, when available, could assist in drought

contingency plans for mitigating potential impacts.

Drought monitoring is usually performed using drought

severity indices that are based on other meteorological

variables such as temperature, evapotranspiration, and

wind speed [1]. Owing to its complexity drought is one of

the least understood natural hazards [2]. Drought and its

impacts are variable at different spatial and temporal scale,

therefore; it is difficult to have a standard definition of

drought that fits for all circumstances.

Many indices for different categories of drought condi-

tions have been developed in the past. Three primary

indices that are most commonly in use include the Palmer

Drought Severity Index (PDSI) [3], Standard Precipitation

Index (SPI) [4], and Standard Precipitation Evaporation

Index (SPEI) [5]. PDSI was the first drought indicator used

for comprehensive assessment of drought and is widely

used in the United States. PDSI generally reflects long-term

drought, with the time span of 9–11 months [6] and has

been extensively used when directing drought-relief
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funding and programs [7]. A long-term (at least

20–30 years) monthly precipitation values are required to

compute SPI index [8]. The SPI can be calculated at a

monthly to annual scale which is useful in short or long-

term applications [4]. The SPEI is a recently developed

multi-scalar drought index that is based on climatic water

balance, which subtracts water demand (potential evapo-

transpiration: PET) from the water supply (total precipita-

tion) in water balance equation.

The SPEI is robust and generally improved results over

SPI [5, 9, 10]. The 6-month SPEI can characterize rainfall

amounts during the preceding half-year that is useful in

describing shallow soil moisture availability to crops and

forage grasses. While 12-month and 24-month SPEI maps

are mostly used for characterizing sufficiency of precipi-

tation for recharge of reservoirs, some aquifers, and deep

soil moisture [11]. Tree roots frequently penetrate lower

soil horizons [12]. In this regard, soil moisture that is

available to trees could be characterized by climate maps

of 12-month SPEI.

Spatial interpolation techniques are widely used for

rainfall [13], potential evapotranspiration [14], geophysical

data [15], temperature [16], ozone [17], and drought indi-

ces: PDSI [18], SPI [19, 20] and SPEI [20]. Because SPEI

is multi-scalar and is sensitive to both precipitation and

atmospheric evaporative demand, it is a more useful

measure of drought when the focus is on spatiotemporal

patterns. Rhee et al. [18] evaluated drought index mapping

using three deterministic and one geostatistical interpola-

tion method in North and South Carolina, USA and found

IDW as the best method. Ali et al. [1] evaluated the

accuracy of drought index interpolation using IDW, OK,

thin plate spline based on 27 climatic stations in the

Boushehr province of Iran. They found that the IDW

method was more appropriate for the spatial analysis of SPI

index. Bae et al. [21] estimated SPEI index in South Korea

using evapotranspiration based on Thornthwaite and Pen-

man–Monteith equation and interpolated drought using the

IDW method.

While several methods have been used to evaluate the

accuracy of SPI and other drought indices, relatively

fewer studies attempted using SPEI index in drought

interpolation. Studies have reported that the SPEI corre-

lates well with hydrological and ecological variable than

other indices and can be computed at multiple time and

scale to investigate the relationship between drought and

ecological conditions. The choice of drought index may not

affect the accuracy of interpolation, whereas the choice of

interpolation techniques does [22]. Therefore, comparing

several interpolation techniques yield valuable information

about the suitability and effectiveness of these spatial

interpolation methods in studying various drought

conditions.

This study aimed to (1) assess the most effective inter-

polation techniques for drought conditions based on SPEI

values, (2) understand and explain interpolation compar-

isons, with specific emphasis on sub-tropical humid areas

that exhibit higher annual rainfall variability, and (3) val-

idate the results obtained from interpolation through a

pseudo-random validation dataset. To achieve this four

interpolation techniques were evaluated: IDW, spline,

ordinary kriging with Gaussian model (KG), and ordinary

kriging with the spherical model (KS). The results of this

study can be used as a for the cost-effective tool for local

level drought mapping, agricultural planning, and water

resources management.

2 Materials and methods

2.1 Study area

This study was conducted in East Texas, USA, where mean

annual temperatures increase from north to south while

annual precipitation generally increases from west to east

[11] (Fig. 1). This study area includes two climatic divi-

sions, East Texas and the Upper Coast. The wettest month

of the year in this region is December followed by May,

while the driest months are July, August, and September

[23]. East Texas is far enough north of the tropics to

experience continental wintertime disturbances, including

periodic frost, and far enough east in the humid subtropics

that there is generally ample moisture available when

disturbances arrive.

Drought has historically been part of the natural climate

pattern in Texas, and the state has experienced a procession

of droughts and interspersed wet periods in recent years

during the last 15–20 years. Statewide precipitation for the

water year 2011 (October 2010 through September 2011)

averaged 287 mm, a new record for the driest 12 consec-

utive months [24]. During the historic drought of 2011,

Texas attained the lowest Palmer Drought Severity Index

(PDSI) value in four distinct climate divisions: (1) High

Plains, (2) Low Rolling Plains, (4) East Texas, and (5)

Trans-Pecos.

2.2 Meteorological data and drought index

calculation

Weather data in East Texas (N = 47 weather stations) were

downloaded from the National Centers for Environmental

Information (NCEI, formerly known as NCDC) hosted

Climate Data Online (CDO). To understand average annual

trends in temperature and precipitation, acquired monthly

summary data were used.
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This study used 34 years (1980–2013) of weather data

from 47 weather stations in the study area (Fig. 1). How-

ever, for interpolation, the last 14 years (2000–2013) of

SPEI values were used to calculate drought values for

forest inventory plots in the study area during the years

2000–2013, which can help in extracting drought-affected

plots for the same period [25]. Thirty-four years of monthly

weather data were used because the calculation of the

multi-scalar drought index required long-term data

(20–30 years) [8, 26]. The study aimed to examine

12-month drought distribution patterns in East Texas for-

ests to understand whether drought is responsible for

increasing tree mortality. The forest inventory data for East

Texas with multiple inventories of the same plots were

available only after 1999. Therefore, the study only used

last 14-years that coincide with forest inventory data for

drought distribution analysis.

2.3 SPEI calculation

SPEI mimics the SPI calculation process, which is calcu-

lated using weekly or monthly precipitation as the input

data. The SPEI utilizes precipitation and Potential Evapo-

transpiration (PET) and calculates the difference between

precipitation and PET (Di ¼ Precipitationi � PETi) which

provides water surplus or deficit for the analyzed period

(month). Calculated Di values can be aggregated at dif-

ferent time scales as in the calculation process of SPI. More

detailed version of the calculation process is described in

Vicente Serrano et al. [5].

2.3.1 PET calculation

PET was calculated using Thornthwaite’s [27] equation

which requires only a few climatic variables.

PET ¼ 16K � 10 � Tið Þ
I

� �a
ð1Þ

where PET is measured in (mm), Ti is average temperature

(�C) in month i, I is an annual heat index, which can be

calculated using Eq. 2, a is an empirical derivative of

Eq. 3, and K is a correction coefficient computed as a

function of the latitude and month (Eq. 4) [5]

Fig. 1 Map of the study area. Red dots on the location map (right)

represent weather stations used as test data, and green dots represent

validation data. The upper part of the study area represents the East

Texas climate division, and the bottom part represents the Upper

Coast climate division. (Color figure online)
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I ¼
X12

i¼1

Ti

5

� �1:514

ð2Þ

a ¼ 6:75 � 10�7I3 � 7:71 � 10�5I2 þ 1:79 � 10�2I þ 0:49
� �

ð3Þ

K ¼ N

12

� �
NDM

30

� �
ð4Þ

where N is the maximum number of sun hours, and NDM

is the number of days in a month. N was calculated as,

N ¼ 24

p
�xs ð5Þ

where �xs is the hourly angle of the sun rising, which is

calculated using Eq. 6

�xs ¼ arccos � tanu tan dð Þ ð6Þ

where u is the latitude in radians and d is the solar decli-

nation in radians as calculated using Eq. 7

d ¼ 0:4093sen
2pJ

365
� 1:405

� �
ð7Þ

where J is the average Julian day of the month.

2.3.2 Water surplus or deficit

After calculation of PET, water surplus or deficit for the ith

month is calculated using Eq. 8

Di ¼ Precipitationi � PETi ð8Þ

where Di is water surplus or deficit for the analyzed month.

The Di values can be aggregated at different time scales.

2.3.3 Standardization of the variable (statistical

distribution)

Modeling of D series was achieved using SPEI package in

R [26], using three-parameter log-logistic distribution with

the probability density function calculated using Eq. 9.

f xð Þ ¼ b
a

x � c
a

� 	b�1

1 þ x � c
a

� 	b
� ��2

ð9Þ

where a, b are scale, shape and origin parameters,

respectively, for the Di in the value range c\D\1ð Þ.
Parameters of the Log-logistic model were obtained

following the L-moment procedure and was calculated

following Singh et al. [28]:

b ¼ 2W1 �W0

6W1 �W0 � 6W2

;

a ¼ W0 � 2W1ð Þb
s 1 þ 1

b

� 	
s 1 � 1

b

� 	 ;

c ¼ W0 � as 1 þ 1

b

� �
s 1 � 1

b

� �

where s bð Þ is the gamma function of b

F xð Þ ¼ 1 þ a
x� c

� �b
" #�1

with F(x) the yields the standardized values for SPEI cal-

culation. This study used the classical approximation of

Abramowitz and Stegun [29] as used by Vicente-Serrano

[5].

SPEI ¼ W � C0 þ C1 þ C2W2

1 þ d1W þ d2W2þd3W3

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln Pð Þ

p
for P B 0.5, P being the proba-

bility of exceeding a determined D value, P = 1 - F(x). If

P[ 0.5, P is replaced by 1 - P which reversed the SPEI

sign. All other variables are constants: C0 = 2.515517,

C1 = 0.802853, C2 = 0.010328, d1 = 1.432788,

d2 = 0.189269, d3 = 0.001308. The SPEI is a standardized

variable (mean = 0, standard deviation = 1), and it can

therefore be compared across other spatiotemporal values

of SPEI.

Table 1 depicts the SPEI classification based on the

original classification by McKee [4] for SPI values. Refer

to Vicente-Serrano et al. [5] for an in-depth understanding

of the SPEI calculation process.

2.4 Interpolation techniques

Interpolation techniques estimate surface values for

unknown points using surface values of known points that

surrounds unknown points. There are four types of spatial

interpolation methods; they are local (Thiessen polygons,

Table 1 Classification of SPEI values based on McKee et al. [4] and

Vicente-Serrano et al. [5]

Value Condition Probability of occurrence (%)

C 2.0 Extremely wet 2.3

1.5 to 1.99 Very wet 4.4

1.0 to 1.49 Moderately wet 9.2

- 0.99 to 0.99 Near normal 68.2

- 1.0 to - 1.49 Moderately dry 9.2

- 1.5 to - 1.99 Very dry 4.4

B - 2.0 Extremely dry 2.3
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IDW, and spline), global (trend surfaces and regression

models), geostatistical (kriging), and mixed methods. The

mixed method combines the characteristic of the other

three methods [19]. Methods above offer apparent cir-

cumstances of best application depending on the area of

study and hence are all viable options for interpolation.

However, after considering computational complexity,

capabilities of the software, and size of East Texas; local

(IDW, spline) and geostatistical (OK) methods of interpo-

lation, which are often used by researchers elsewhere

[1, 18, 19, 30], were chosen to compare the outputs.

General interpolation techniques can be expressed as:

ẑ Sið Þ ¼
Xn
i¼1

f Sj
� �

þ e Sið Þ ð10Þ

where ẑ Sið Þ is the estimated value at location Si, f is a

interpolation function and e(Si) is the random errors.

2.4.1 Inverse distance weighting

IDW interpolation estimates values by averaging sample

data point values in the neighborhood of each processing

point. IDW assumes closer objects are more similar com-

pared to objects in farther apart [31]. The closer objects are

to the sample points the more influence they have in the

computing process. The weight of a given object or point is

inversely proportional to the square distance between the

observed samples (Eq. 11).

ẑ x0ð Þ ¼
Pn

i¼1 z xið Þd�r
ijPn

i¼1 d�r
ij

ð11Þ

where x0 is the point to be estimated and xi are sample data

points within a chosen neighborhood. The data points

within (r) are related to distance by dij.

2.4.2 Spline

Spline tempers data through function minimization, which

combines mean square residuals and signal surface, taking

the model form of (zi, x1i, …., xdi), which measures z as the

response variable and a set of d explanatory variables (x1,

…, xd). The model, simply expressed as [1]:

C hð Þ ¼ hk ð12Þ

where C(h) is the covariance function, h the distance

between the points, k = m - 1, and m is the order of rel-

ative derivation from observed points.

2.4.3 Ordinary kriging (OK)

In ordinary kriging z(xi) is assumed as a regionalized

variable with a variogram c(h). A variogram describes the

spatial dependence of a stochastic process of z(xi). The

experimental variogram has the value of half the average

squared difference between the value at z(xi) and the value

at z(xi ? h) [32]:

�c hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

zðxiÞ � zðxi þ hÞ½ �2 ð13Þ

where N is the number of paired data points, z(xi) and

z(xi ? h) are the amounts of the variables z(xi), and z(xi-

? h) are the analysis of the experimental locations. The

equation of the spherical (Eq. 14) and Gaussian (Eq. 15)

model can be defined as:

c hð Þ ¼
0 h ¼ 0

C0 þ C
3h

2a
� h3

2a3

� �
0\h� a

C0 þ C h[ a

8><
>: ð14Þ

c hð Þ ¼
0 h ¼ 0

C0 þ C 1 � e
r2

a2

� 	
h[ 0

(
ð15Þ

In both Eqs. 14 and 15, h measures the spatial lag between

two locations, C0 is the nugget value, C0? C is the partial

still, and a is the range. For ordinary kriging, a semi var-

iogram model, was used to select the best method (Sup-

plementary material Fig. 1).

2.5 Model evaluation

To evaluate the accuracy of the SPEI interpolation three

accuracy assessment metrics were employed. First, the

formatted dataset (47 weather stations) was divided into

two random datasets, i.e., a test dataset (70%, n = 33) and a

validation dataset (30%, n = 14). The test dataset was used

for interpolation while the validation dataset was used to

check model accuracy by calculating mean absolute error

(MAE), and root mean square error (RMSE), and relative

mean error (RME) which were calculated as:

MAE ¼ 1

n

Xn

i¼1

ŷi � yij j ð16Þ

RME ¼ 1

n

Xn

i¼1

ŷi � yij j
yi

ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ŷi � yið Þ2

r
ð18Þ

where ŷi is the predicted index value at points i, yi is the

observed SPEI value index at point i, and n is the total

sample observations. These evaluation criteria have been

used extensively in previous mapping of rainfall, soil

organic carbon and drought condition research [1, 30, 33].

All data were analyzed in SPEI packages in R v 3.3.2 [26]

and ArcGIS v 10.4.1.
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3 Results

3.1 General trend in temperature and precipitation

(2000–2013)

Average annual rainfall and temperature data from 2000

through 2013 in East Texas meteorological stations are

represented in Fig. 2. Mean rainfall was lowest in 2011

(760 mm), followed by 2010 (760 mm) and 2005

(860 mm), respectively. Highest annual mean rainfall

during the 14-year period occurred in 2001 (1702 mm).

Fluctuating rainfall trends were witnessed in East Texas

every 2–3 years.

The year 2011 received consistently low monthly pre-

cipitation. However, the record low monthly precipitation

was observed in October 2005. The lowest monthly aver-

age temperature was observed in December 2000

(6.32 �C). Average precipitation was highest in October

2009 (348 mm). Moreover, on average, the first 3 months

of the year also received comparatively low precipitation.

The range of average precipitation was highest during

October (125 mm), followed by June (123 mm).

Average yearly temperature (2000–2013) was 19.9 �C
with a minimum of 19.07 �C (2010), and a maximum of

20.22 �C (2012). Three peaks of temperature were

observed: 2000, 2005–2006, and 2011–2012, correspond-

ing to the three observed drought periods. Average monthly

temperature (2000–2013) was 19.24 �C. Average mini-

mum temperature (2000–2013) began dropping in August

and reached a minimum in December (9.9 �C) and January

(9.6 �C). Then temperatures slowly rose and to a maximum

in August (28.8 �C).

3.2 Drought distribution (2000–2013)

Changes in 12-month SPEI distribution by month for the

study period (2000–2013) in East Texas are presented in

Fig. 3. In 2000, 2005–2006, and 2012 moderately dry

conditions were seen throughout the region

(- 1.5\ SPEI\- 1). East Texas experienced extremely

dry conditions in 2010–2011 (- 2.5\ SPEI\- 2).

A 12-month representative example of drought distri-

bution maps (Fig. 4) indicates partial north–south and

west–east trends of drought without a clear trend except

during significant drought periods. Characteristic dryness

for 2011 is apparent as the entire region experienced a

year-long drought (October 2010–October 2011).

The 2000 drought was a continuation of a 1999 drought,

which reached its peak in East Texas in October 2000

(SPEI = - 1.23), whereas remaining regions in Texas

experienced record-setting temperatures in early Septem-

ber 2000 [11]. The 2005–2006 drought, which mostly

affected the East Texas climate division, reached its peak

in September 2006 and slowly decreased (Fig. 4). Most of

Fig. 2 Average annual rainfall and temperature in East Texas from

2000 to 2013. Vertical bars (primary Y-axis) indicate average annual

precipitation (mm/year), while the line represents average annual

temperature (secondary Y-axis)

Fig. 3 Twelve-month average

SPEI values in East Texas for

2000 to 2013. The smaller SPEI

(\- 0.5) values indicate drier

conditions and larger SPEI

([ 0.5) values indicate wetter

conditions. SPEI values

between - 0.5 and 0.5 represent

normal conditions
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the study area remained near normal until September 2010

(Fig. 3). Interpolation of SPEI values for 2008–2010

(Fig. 4) suggested that the drought in East Texas had

already started before the widespread record-breaking

drought of 2010–2011.

3.3 Accuracy assessment

The accuracy of interpolation methods was assessed using

MAE, RME, and RMSE. Interpolation techniques that

yielded the least MAE, RME, RMSE, and the coefficient of

determination (R2) close to unity are known to perform the

best. Selected interpolation techniques for each year were

subjected to test through the validation dataset to see

variance explained by each technique (Fig. 5). Among the

selected best models, the highest variation was explained

by IDW in 2011 (R2 = 82%) and the least by KS in 2008

(R2 = 30%). Spline performed relatively poorly ranging

from the smallest (0.234), and maximum (0.760) MAE

values for 2003, and 2007, respectively. The spline method

had a highest average error (0.47) followed by KS (0.322),

KG (0.313) and IDW (0.293). Further, volatility of spline

Fig. 4 SPEI distribution maps in sequential order, starting from 2000 (top left) to 2013 (bottom right) based on selected interpolation techniques

used in the study (Table 2)
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was substantially higher (0.022) than that of KG and KS

(0.004). KG interpolation was the best fit for drought dis-

tribution for 2000, 2001, 2003, 2004, 2005, and 2013 while

KS and spline performed best for 2008 and 2008, respec-

tively. For the remaining 7 years, IDW outperformed all

other methods (Table 2).

Around 90% of test stations and 88% of validation

stations experienced droughts during the study period

(Supplementary Table 1). At least six stations experienced

moderate to extreme drought for 5 years, 20 stations for

3 years. The normal quantile plot (Supplementary Fig. 2)

indicates that most of the data were approximately nor-

mally distributed for SPEI data. This indicates that the

climatic input data (1980–2013) follows the gamma dis-

tribution. The normal probability plot (Supplementary

Fig. 2) follows nearly a straight line, suggesting that the

original dataset is close to normal distribution. A Kruskal–

Wallis test for decadal analysis based on 12-month SPEI

indicates that there was statistically significant variation

among the three decades over the period of 1984–2013 at

the five percent level (Supplementary Table 2).

4 Discussion

The best drought mapping techniques may change with

changes of climatic variables mapped because climatic

factors that determine spatial drought distribution may

differ between variables used in the mapping process [19].

Twelve-month SPEI values were interpolated to examine

the pattern of underground soil moisture available to plants,

specifically deep-rooted species such as trees. Various

Fig. 5 Differences between

calculated and predicted values

for SPEI in East Texas from

various interpolation models in

years arranged sequentially

from 2000 (top left) to 2013

(bottom right)
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interpolation techniques may result in different interpola-

tion results impacted by the temporal scales examined as

climate varies daily, monthly, and seasonally. High varia-

tion in rainfall within the same month may reflect low

water percolation rates due to high-intensity, short duration

events including flash floods, with remaining periods

lacking significant precipitation.

Based on interpolation results, KG performed well in

relatively dry (moderate to extreme) conditions (e.g., 2000,

2013 interspersion) and best described the variation of

local precipitation within the study area. The Gaussian

model performed better than the spherical model all the

time when ordinary kriging outperformed deterministic

techniques. Ly et al. [34], using 30 years of daily rainfall

data from 70 rain gauges in two catchments in Belgium,

also found improved in accuracy from ordinary kriging

with Gaussian model compared to the spherical model. In

general, KG and IDW were considered the best methods,

because they yielded smallest MAE, RME, and RMSE

values for most of the time. Generally, when KG per-

formed the best, IDW also demonstrated competitive

statistics marginally different from that of KG. The ordi-

nary kriging values were close to observed values when

precipitation values were low.

The spline method did not perform well when the

variation of data was high, and data are more randomly

spaced because spline known to produce a better result

when applied to regularly spaced data with lower vari-

ability. Despite widespread use of the spline technique

[15, 35], it produced the best results only in 2007. The

minimum generalized cross-validation criterion of spline

could have produced a different result, which this study did

not use [35].

Studies suggest that deterministic techniques perform

better when data points are densely populated as opposed

to geostatistical methods, which perform better when input

data points are sparsely distributed [18]. Dense networks of

stations (at least 13 stations over 35 km2) are suggested by

Dirks et al. [36] to expect a better result. This study had a

relatively low density of stations (1 station per 75 km2), yet

the geostatistical method (ordinary kriging) and the deter-

ministic method (IDW) did not show a significant

difference.

IDW is the most often used method for mapping of

rainfall, temperature, and drought distribution [37, 38].

However, it can not be guaranteed that all the sites satisfy

the positive spatial autocorrelation assumption of IDW. In

such instances, the accuracy of the outputs cannot be

warranted [13]. KG and IDW yielded equally competitive

results both during dry and relatively wet conditions.

Therefore, a comparison between geostatistical and deter-

ministic models is necessary before choosing the best

model.

5 Conclusions

This study examined the abilities of four different spatial

interpolation techniques for accurate prediction of annual

drought conditions in East Texas. Inverse distance

weighting (IDW) and ordinary kriging with Gaussian

model (KG) were considered the best and most robust

Table 2 Mean absolute error (MAE), relative mean error (RME) and root mean square error (RMSE) per interpolation method for 14 years

(2000–2013)

Interpolation Error matrix Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

IDW MAE 0.230 0.300 0.323 0.493 0.307 0.492 0.229 0.248 0.340 0.270 0.241 0.111 0.189 0.335

RME 0.220 5.360 2.017 4.562 0.588 1.443 0.314 0.242 0.168 0.061 0.074 0.062 0.059 0.272

RMSE 0.089 0.156 0.145 0.326 0.214 0.364 0.088 0.085 0.179 0.129 0.107 0.023 0.068 0.179

KG MAE 0.162 0.272 0.367 0.506 0.294 0.413 0.265 0.306 0.338 0.347 0.296 0.254 0.285 0.278

RME 0.141 4.887 3.025 4.486 0.372 0.984 0.544 0.340 0.206 0.016 0.343 0.168 0.103 0.221

RMSE 0.041 0.133 0.169 0.331 0.181 0.237 0.110 0.136 0.172 0.163 0.143 0.097 0.130 0.143

KS MAE 0.249 0.338 0.345 0.524 0.342 0.401 0.303 0.244 0.316 0.319 0.303 0.262 0.283 0.279

RME 0.236 0.186 3.025 4.277 0.693 1.125 0.392 0.292 0.497 0.271 0.057 0.173 0.141 0.227

RMSE 0.112 0.195 0.153 0.349 0.248 0.238 0.149 0.079 0.154 0.161 0.152 0.104 0.129 0.141

Spline MAE 0.257 0.549 0.437 0.760 0.522 0.718 0.367 0.234 0.379 0.380 0.429 0.386 0.535 0.557

RME 0.240 15.769 0.725 5.291 0.910 1.730 0.470 0.405 0.218 0.240 0.051 0.243 0.602 0.699

RMSE 0.098 0.413 0.426 1.156 0.467 0.689 0.267 0.071 0.274 0.231 0.313 0.207 0.468 0.462

Selected technique KG KG IDW KG KG KG IDW Spline KS IDW IDW IDW IDW KG

Smaller values of MAE, RME, and RMSE indicate a higher accuracy for the model

123

Assessment of geostatistical methods for spatiotemporal analysis of drought patterns in East… 19



methods since they offered lower mean absolute error,

relative mean error and root mean square error. IDW and

KG were the best methods for interpolation of SPEI indices

during the period 2000–2013. Based on the overall power

of the techniques, IDW was the best, followed by KG and

KS and spline (IDW[KG[KS[ spline). KG tended to

perform well in relatively drier conditions while IDW

showed mixed results, performing well both in dry and wet

conditions.

Considering that the lower the error matrix value (MAE,

RME, and RMSE) the better the model criteria and vari-

ance explained by validation dataset, IDW was well-suited

for 6 years, KG for 6 years and KS and spline each for

1 year. It is recommended that before creating drought

distribution maps at different spatiotemporal scales, the

best models should be selected based on specific drought

conditions of interest in a given region. Interpolation

methods are context-specific calculations of different

temporal scale drought indices; their comparison helps

explain the most consistent methods of spatiotemporal

interpolation.

The vulnerability of drought varies spatially and tem-

porarily across the study area with drought frequency of

about 2–3 years. Comparing different drought indices at

different temporal scales would help identify and explain

the method that is consistent and can be considered in

future research. Use of ancillary topographical information

could yield different results. With accurate drought distri-

bution maps, drought affected forestry plots can be iden-

tified to model the rate of changes in tree mortality and

drought triggered biomass loss. While the models pre-

sented here may not have captured local variation caused

by the microclimatic condition, insight from this study can

be improved for a wide array of environmental modeling.
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