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Abstract This study addresses the potential of geospatial

information extraction by using light detection and ranging

(LiDAR) data and aerial optical images in an urban land-

scape. We have adopted an advanced geographic object-

based image analysis (GEOBIA) technique consisting of

rule-based procedures relying upon the integration of

spectral, textural, and spatial characteristics of aerial ima-

gery and roughness of point cloud of LiDAR to fuse aerial

imagery and airborne LiDAR for effective urban geospatial

information extraction. This study is focused on the

extraction of four tangible geospatial features, e.g., build-

ings, trees, marine vessels, and cars. LiDAR-derived nor-

malized digital surface model (nDSM) was insufficient in

delineating the polygon features because of the sparse point

cloud density at the edges of features, which greatly

affected the accuracy of extracting the polygon features.

Therefore aerial imagery was supplemented in order to

enhance the quality of extraction. The final feature

extraction accuracy was assessed against manual digitiza-

tion by visual interpretation, statistical analysis, and con-

fusion matrix. The accuracy of feature extraction was

found to be ranging from 90 to 95%. The accuracy of

buildings class was improved using intensity image gen-

erated from LiDAR data and Hough image along with

morphological operations. In a nutshell, this study high-

lights robust improvements in the geospatial extraction of

urban features by merging more than one dataset

synergistically.

Keywords LiDAR � Aerial imagery � Segmentation,

objects, feature extraction

1 Introduction

The study of urban regions using earth-observation data

helps in many applications from city development to

sprawl modeling. However, it also implies many chal-

lenges while urban feature mapping because of numerous

and diverse semantic urban land cover features, peculiar

geometries of features because of the image-capture angle,

and practical issues in ortho-rectification process caused by

the phenomena of ghost images and occlusions. Parametric

and non-parametric pixel-based classifiers are widely dis-

cussed in remote sensing literature [1, 2], however these

pixel-based classifiers fail to exploit spatial and textural

information, causing a salt-and-pepper effect [3]. Geo-

graphic Object-Based Image Analysis (GEOBIA) has been

used to analyze very high resolution (VHR) imagery to

overcome supplementary issues with pixel-based classifiers

and to consider complexities in data processing that arise

from the spatial and spectral heterogeneity of urban areas
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[4, 5]. GEOBIA results prove especially useful for complex

landscapes composed of fine-grain land-cover, for exam-

ple, urban parcel or neighborhood analysis [6]. Supple-

mentary Table 1 lists the recent studies on urban feature

extraction using LiDAR, unmanned aerial vehicle (UAV),

high-resolution satellite data, aerial imagery, and their

combinations. The difference in elevation and intensity

between the first and last return of LiDAR point cloud data

was employed as two key attributes [7] for clearly differ-

entiating trees from other urban features as trees have a

comparatively much larger proportion of returns, which

exhibit significant elevation and intensity differences. Xu

et al. [8] employed multi-temporal point cloud processing

for building change detection and extraction. Xu et al. [9]

used multiple entity based urban information extraction in

urban areas. In this method, the authors extracted features

from 3 image entities: points, planar segments and seg-

ments derived by mean shift, and classified the result with

single entity classification for water, buildings, vegetation,

roof, wall, and roof element. Bandyopadhyay et al. [9]

dealt with LiDAR and aerial imagery for a feature level

fusion exercise, which employed structural and spectral

features obtained from LiDAR and aerial RGB imagery for

extraction of buildings and trees. In this approach, flatness

and distribution of normal vectors were approximated from

the LiDAR data, while the non-calibrated normalized dif-

ference vegetation index (NDVI) was defined by combin-

ing LiDAR intensity at 1064 nm, with the red spectral band

of the RGB imagery. Image fusion of optical/multispectral

and LiDAR images is currently an active field of remote

sensing research [10–12]. Therefore, in this attempt, we

followed an indirect pathway to analyze spatial-spectral

feature extraction using (optical ? LiDAR) shared repre-

sentation in a GEOBIA framework. There are various

global attempts, which accentuate the importance of inte-

gration of two or more datasets for better land-cover fea-

ture extraction, like Hamedianfar & Shafri [13], in which

LiDAR and WorldView-2 (WV-2) satellite data were used

for GEOBIA for detailed characterization of roof types and

surface materials. Supervised and unsupervised classifica-

tion techniques were used for airborne laser scanner (ALS)

and airborne imagery to extract buildings, trees, vegetated

ground and sealed ground [14]. An object-based point

cloud analysis method for vehicle extraction from an ALS

point cloud is proposed elsewhere [15], wherein texture

and length-to-breadth ratio plays a vital role in delineating

cars and discriminating them from other features. The

present study has implemented multiclass feature extrac-

tion using GEOBIA by synergistic use of VHR aerial

imagery and LiDAR datasets. The study area consists of

various urban features. Of these, buildings, marine vessels

(or containers), trees and cars were extracted in this

research. As the datasets used were having very high-

resolution, the difficulty in extracting exact building

boundaries and other urban features increased multi-di-

mensionally due to surplus spatial details. This challenge

was addressed by incorporating different rule sets and

validation methods (feature-wise and class-wise). Our

approach pursues the need of choosing the best possible

combination of data-algorithm to deal with a specific urban

mapping problem. Our approach can be used or tested on

various urban scenarios where multi-modal datasets have

to be integrated and rule-sets have to be defined according

to scene specific criteria.

2 Method

The geospatial data used in this study were made available

by IGARSS 2015 data fusion contest,1 which included 7

tiles, with the following data: (1) a 10,000 9 10,000 pixel-

sized color ortho-photo (GeoTIFF, RGB, 8bit, 5 cm reso-

lution), (2) a max 5000 9 5000 pixel-sized Digital Surface

Model (DSM) (GeoTIFF, floating point, 10 cm resolution),

(3) a LiDAR 3D-point cloud in XYZI format [containing X

(latitude), Y (longitude), Z (elevation), and I (LiDAR

intensity) information]. The imaging data (aerial ortho-

imagery) were acquired on 13 March 2011, using an air-

borne platform flying at an altitude of 300 m over the urban

and the harbor areas of Zeebrugge, Belgium (51.33�N,
3.20�E; Fig. 1). The port of Zeebrugge is a platform for

large containers, bulk cargos, vehicles and passenger ferry

terminal ports in the municipality of Bruges, Belgium. The

study area consists of several urban features like, buildings,

roads, cars, marine vessels, water-body etc. LiDAR DSM

was co-registered with Ortho imagery with the projection

and datum of the study area UTM zone 31N and WGS

1984 (Geographic Coordinate System, GCS–WGS-1984),

respectively. We manually built ground reference data by

digitizing and labeling semantic classes under considera-

tion, i.e. buildings, cars, trees, and marine vessels.

The methodology (Fig. 2) consists of two major parts;

region-based segmentation and geographical object-based

information extraction of multi-source (aerial imagery and

LiDAR) data space. The workflow of the present research

attempt is described in three sections: LiDAR data pro-

cessing, GEOBIA based fusion of LiDAR and aerial ima-

gery, and accuracy assessment.

2.1 LiDAR data processing

The LiDAR point cloud was integrated as a rasterized

surface (a DEM/DTM and a DSM) based on elevation or

1 IGARSS Contest: http://www.grss-ieee.org/community/technical-

committees/data-fusion/2015-ieee-grss-data-fusion-contest.
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intensity (Fig. 1). DSM was constructed from the point

cloud by rasterization of a TIN generated from the work-

flow used in LAStools (Rapidlasso, GMBH) by Khos-

ravipour et al. [16]. DEM/DTM was generated by

rasterization of the ground returns of the point cloud. Based

on the derived DSM, the mean elevation of the base level

was calculated (relative terrain height) as a reference to

measure the elevation of features of interest. The normal-

ized digital surface model (nDSM) gives the height varia-

tions above the ground, which was coupled with ortho-

imagery for segmentation and information extraction.

2.2 GEOBIA based fusion of LiDAR and aerial

imagery

A geospatial object-based information extraction of a

multi-source data space can be conducted within a GEO-

BIA framework [17, 18]. Decision rules for 2D feature

extraction through spatial, spectral and contextual analysis

were conducted within the eCognition Developer (Trimble

Geospatial) environment (Fig. 3). The nDSM was initially

smoothed to reduce noise through filtering processes. The

ortho-image and nDSM have different resolutions, there-

fore, application of slope filter before smoothing the nDSM

produces erroneous slope values, especially in this case

when the RGB data is finer in resolution than nDSM. Due

to difference in resolutions, the neighboring pixels have

similar elevation resulting in flat slopes, with steep slopes

only at the boundary of coarser resolution pixels. This

problem was tackled by smoothing the nDSM, which gives

different elevations to each pixel and removes the erro-

neous flat slopes. The resolution of the RGB image was

two times higher than that of nDSM, therefore the Kernel

size = 6 (more than 4) was selected. Surface calculation

algorithm was used for slope filter [19]. Multi-resolution

segmentation was used to divide the image into spatially

continuous, disjoint and homogeneous segments. Scale

parameter is crucial here, as the criterion of homogeneity is

highly dependent on this parameter, dealing with both

spectral and shape homogeneity [20–22]. Characteristics

such as elevation, spectral information, texture, roughness

and shape were considered for detecting building and non-

building regions. For analyzing image texture, we used the

gray level co-occurrence matrix (GLCM), which deals with

the relative variations in the gray values of the pixels.

Texture is the spatial variation of pixel values and tonal

heterogeneity along a particular direction in an image [23].

Second-order statistics or a co-occurrence matrix (contrast

and angular second moment) is commonly used for quan-

tification of the frequency of association between

Fig. 1 Remotely sensed datasets used in the present study, a An

aerial ortho-imagery (RGB) of the study area showing various urban

and harbor features of Zeebrugge, Belgium b imagery showing spatial

extent of 7 tiles over the study area. c Rasterization of a TIN

generated from the ground return (DTM/DEM) of the LiDAR, and

d rasterization of a TIN generated from the first return (DSM) of the

LiDAR

Fig. 2 GEOBIA based methodology protocol implemented for

effective urban geospatial feature extraction
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brightness value pairs [24]. The texture variables were

calculated based on the red band. Homogeneity parameters

used for segmentation, statistical parameters used for fea-

ture extraction, and texture variables derived from GLCM

are depicted in Table 1. A greenness index was used to

differentiate between vegetated and non-vegetated regions.

It can be mathematically defined as:

Greenness index ¼ Green � Red

Green þ Red
ð1Þ

The above-ground and objects with high greenness

values were classified as vegetation. Table 1 shows three

different scale parameters used for a multi-resolution seg-

mentation process. A scale parameter of 20 yielded the

highest number of objects in the information extraction

step; therefore, it was used for the segmentation process to

include the maximum number of objects. For building

feature extraction, the mean DSM slope was used to

delineate steep areas by using a threshold value of 50.

Here, we classified the steep objects around the buildings.

Buildings were extracted by comparing the brightness

values of neighboring objects. At this step, area threshold

([ 1000) was used. Thus, the building candidates having

area[ 1000 pixels were classified as buildings. Brightness

is calculated as:

Brightness index ¼ Red þ Blue þ Green

3
ð2Þ

LiDAR intensity image and Hough image were also

incorporated in this workflow. Hough image was generated

using Hough transform [25], which detects and links edges

of the polygons. These two datasets were used in multi-

resolution segmentation to enhance the quality of seg-

mentation and visualization of the particular object gen-

erated [26]. Multi-resolution segmentation was

implemented instead of mean-shift segmentation, which is

better at delineating river and road boundaries and

boundaries of parcels in relatively uniform elevation in

addition to exhibiting heterogeneous context pertaining to

brightness and/or color difference [27]. It was not suit-

able for this research as the study area consisted of trees/

vegetation and boundaries of many buildings and marine

vessels were not properly visible in the nDSM because of

less point cloud density at the edges. All seven tiles were

subjected to the same workflow. Various kinds of buildings

were distributed unevenly or randomly over the landscape,

trees were located in tiles 3, 5, 6 and 7, and marine vessels

were identified in tiles 1 and 7. Two standard statistical

indices, the intra-object height variance (m) and the Moran’s

I spatial autocorrelation index were used (Table 1) along

with the variance of slope index for optimum feature

extraction [28].Moran’s I valuewas chosen as per the spatial

nature of the target feature and the contextual information

near the features. Previous successful methods (Yu et al.)

[29] used length-to-breadth ratio for buildings and roads

extraction. The shape attribute has two factors, namely, size

and length-to-breadth ratio. Thresholds for these factors

were defined and building features were separated from

other objects by filtering. Length-to-breadth ratio was cru-

cial in discriminating other non-vegetation features from

building features, which were very thin. The length-to-

Fig. 3 Rule-sets designed on

the basis of different features/

properties of the data to extract

target features
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breadth ratio was smaller than the threshold of 2 for build-

ings while it exceeded 2 for marine vessels and car features.

2.3 Accuracy assessment

We assessed the results of GEOBIA based urban feature

extraction using visual and statistical analysis. We ran-

domly picked a feature from the image to check the

accuracy of the GEOBIA-based extraction method by

observing the variation in compactness and completeness

of the boundary of the extracted feature to the boundary of

the manually extracted reference feature. A geodatabase

consisting of four target features (buildings, trees, cars,

marine vessels) spatially distributed over the study region

was generated by manual digitization, based on the

knowledge of its geography and visual interpretation of

aerial and Google earth imageries. Aerial imageries were

visualized in ArcGIS 10 at several scales using various

RGB band combinations. Our digitized vector data was the

most crucial reference set employed in this study. We

compared a number of extracted features with the manually

digitized reference features, and evaluated statistical sig-

nificance based on accuracy assessment. It should be noted

that all the four target features were unevenly distributed

over the study region. Therefore, to provide robustness to

our accuracy analysis, the study region was segregated into

7 tiles (Fig. 1b). The distribution of urban features over 7

tiles is depicted in Supplementary Table 3. Statistical

parameters were calculated for all tiles, both separately and

cumulatively. Table 2 lists the statistical parameters along

with their mathematical expressions and descriptions used

for accuracy analysis.

The accuracy assessment was carried out using a strat-

ified random selection of 7000 test points to ensure

approximately equal distribution of points to the four urban

features [30–32]. Four urban feature classes were visually

interpreted for 7000 random points (1750 per feature) using

the high-resolution aerial imagery. The accuracy measures

employed were pixels classified correctly for the entire

feature extraction, errors of inclusion/commission (EC),

errors of exclusion/omission (EO), user’s accuracy (UA),

producer’s accuracy (PA), overall accuracy (OA, which

Table 1 Homogeneity parameters, statistical parameters, and texture variables used for implementation in GEOBIA

Scale Parameter Color Shape Smoothness Compactness

Homogeneity parameters used for segmentation in GEOBIA

Homogeneity parameter

20 0.8 0.2 0.4 0.6

40 0.8 0.2 0.3 0.7

60 0.8 0.2 0.3 0.7

Classification feature Moran’s I value Intra-object variance

Statistical parameters used for feature extraction during region-based segmentation

Trees - 0.85 14.26

Building 0.26 9.62

Cars 0.42 7.33

Marine vessels 0.78 0.35

Texture

variable

Formula Description

Texture variables derived from GLCM to implement in GEOBIA

Mean
PN�1

ij¼0 iPij
It gives the mean of the probability values from GLCM. It has direct relation with

the image spectral heterogeneity

Variance
PN�1

ij¼0 Pij i�Meanð Þ2 It measures the global variation in the image. Larger values denote higher spectral

heterogeneity

Contrast
PN�1

ij¼0 Pij i� jð Þ2 It is the quadratic measure of local variation in the image in which higher values

indicate the larger difference between the neighboring pixels

Dissimilarity
PN�1

ij¼0 Pij i� jð Þ It is the linear measure of the local variation in the image

Correlation
PN�1

ij¼0 Pij ij�Meanij �Mean
� �

=Variance It measures the linear dependency between the neighboring pixels

Homogeneity
PN�1

ij¼0 P
Pij

1þ i�jð Þ2
It measures the uniformity of tones in the image. The concentration of higher values

along the GLCM diagonal denotes high homogeneity

Entropy
PN�1

ij¼0 PijlnPij
It measures the disorder in the image
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represents the number of correctly classified pixels divided

by the total number of pixels), mean accuracy, and kappa

coefficients of agreement (j). Supplementary Fig. 4 shows

7000 random points generated using ArcGIS 10 along with

final extracted features. Considering the total area of study

(1.62 km2), approximately 4321 points/km2 were gener-

ated for robust accuracy analysis. For the accuracy of each

extracted feature class, the mapping accuracy percentage

(MA) was computed. It is defined as:

MA ¼ PCC

PCC þ POM þ PCM
� 100; ð3Þ

where, PCC is the number of pixels assigned to the correct

feature class, PCM is the number of pixels assigned to

other classes along the column of the confusion matrix

relevant to the class considered, and POM is the number of

pixels assigned to other classes along the row of the con-

fusion matrix relevant to the class considered.

3 Results and discussion

In the first step, visual analysis and interpretation were used

to check the quality of feature extraction. However, visual

analysis is the subjective measure of accuracy. Therefore,

in the second step, the statistical performance and quanti-

tative analysis of extracted features were evaluated against

digitized reference features. In the third step, the accuracies

of the extracted features were evaluated by computing error

matrix based indices of the extracted class area.

3.1 Visual analysis and interpretation

A visual comparison shows that most of the urban features

were detected, and the boundaries of the extracted features

closely match the actual boundaries of the features in the

aerial images or digitized reference data. Figure 4 and

Supplementary Figure 5 depicts all the extracted urban

features, i.e., buildings, trees, cars and marine vessels. In

Fig. 4d, few cars were not detected due to lack of sufficient

point cloud density which is crucial in delineating such

Table 2 Set of parameters used for robust statistical accuracy analysis of extracted urban geospatial features

Curacy parameter Mathematical expression and description

Misclassification (Mc) (%) No: of unextracted features
Total no: of refernce features � 100

False alarms (FA) (%) No: of false extractions
No: of total extractions � 100

It is the fraction which represents the number of false detections/extractions of features with respect to

the total no. of extractions of features

Accuracy (Ac) (%) 100�% Misclassification

False positive (FP) No. of extracted features—no. of correctly extracted features

It represents the number of features that are wrongly classified (included) as target extracted class

False negative (FN) No. of reference features—no. of correctly extracted features

It represents the number of features that are wrongly rejected (not included) from (in) target feature

class

Completeness (Ce) (%) True positive
True positiveþFalse negative

� 100

or

Length of matched reference
Length of reference

� 100

Correctness (Cr) (%) True positive
True positiveþFalse positive

� 100

or

Length of matched extraction
Length of extraction

� 100

Quality (Q) True positive
True positive þ False positiveþ False negative

9 100

Bias Ari - Ami

where, Ari represents reference features generated from digitization, Ami represents extracted features

from GEOBIA based method. A positive (negative) bias value indicates an average amount of

underestimation (overestimation) in the extracted number of features

Root mean square error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðAri �AmiÞ2

q

where, Ari represents reference features generated from digitization, Ami represents extracted features

from GEOBIA based method, and n is the number of tiles. For quantifying the uncertainty of our

analysis, we have used the root mean square error (RMSE), because it is a more consistent and

statistically significant indicator of accuracy than bias
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small cars. As far as tree feature extraction is concerned

(Fig. 4a), the number of extracted trees was less than the

actual number of trees present in the ortho-image. All the

extracted trees were correctly identified by visual inter-

pretation on the image. Out of 571 trees extracted, 557

trees were actually interpreted in the image. The potential

sources of errors (overestimation) include adjacent build-

ings, low point density of the LiDAR point cloud and

misclassification because of defined thresholds. Proper

delineation of tree canopies would have reduced the error,

which can be achieved by precise canopy height model

(CHM) [33]. It should be noted that building and car fea-

tures were extracted as multiple polygons, i.e., multiple

polygons belonging to the same building or car. Supple-

mentary Table 2 shows that all the building features were

extracted from aerial imagery, while a significant amount

of underestimation was observed in the case of trees, cars,

and marine vessels. We infer that the varying densities and

populations of urban features in 7 different tiles caused this

under-estimation. In this study, the threshold values for

greenness (spectral) and texture (GLCM) produced

appreciable results, however, because of erroneous filtering

in point cloud, some misclassification was evident in case

of building polygons. Furthermore, though the threshold

values used for different attributes resulted into accept-

able buildings delineation, there were few buildings with

complex structures (tilted roofs) which were surrounded by

trees, were not exactly delineated because of lack of con-

textual information and sparse point cloud density at the

building edges, which enhanced the number of false neg-

atives in building polygons. In case of cars and marine

vessels, the most important discriminating factor was

length-to-breadth ratio, so the threshold value of 2 yielded

desired outcomes of extraction. In case of marine vessels,

there was specific pattern (adjacent alignment) which was

absent in case of cars due to random distribution on road

and parking lots, which contributed to texture difference.

For marine vessels, the total number of extracted polygons

or length of extraction was observed to be less (underes-

timated) than those of reference polygons (length of ref-

erence). The underestimation of marine vessels appeared

because of merging of few polygons causing faulty

Fig. 4 Extracted tangible urban

geospatial features [trees (a),
marine vessels (b), buildings
(c) and cars (d, e)] using LiDAR
and aerial imagery
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extraction. It should be noted that car features were

observed to be consistently extracted by maintaining shape,

size and dimensions of extracted features compared to

manual reference, while the positions of extracted and

manual cars were very slightly shifted. We surmise that the

inherent geometrical errors in aerial imagery and LiDAR

data caused this error because of moving objects at the time

of capturing the data.

3.2 Statistical accuracy analysis

Visual analysis of Fig. 5 and Supplementary Figures 5 and

6 indicated that the extracted features were similar to the

features in the imagery, and manually digitized reference

data, which suggested that features are mostly preserved

under the same display conditions. Complex building

footprints were selected for this analysis. Such buildings

were extracted with multiple polygons. In other words, a

single building had many polygons extracted correspond-

ing to different parts of that building; these polygons were

different from the segments/objects created during seg-

mentation in eCognition. Segmentation gave rise to many

objects in case of one part of the buildings, which were

merged/split depending upon the thresholds defined. But,

the finally extracted polygons displayed the portion of a

house/building (after segmentation) like facades, roofs etc.

which brought more complexity to the analysis. Therefore,

polygon-wise accuracy was assessed. The footprints of the

cars were extracted as the imagery and nDSM obtained

from LiDAR data were not oblique so, side-way texture

was not considered. Different polygons belonging to a

single car had different elevations (intra-object height

variance), which served the key factor in delineating the

polygons. The extracted polygons against reference poly-

gons over aerial imagery are depicted in Fig. 5 and Sup-

plementary Figures 5 and 6. A robust accuracy analysis

was carried out using numerous statistical parameters by

interpreting extracted features vis-à-vis reference features

on aerial imagery. Statistical parameters used in present

analysis are misclassification (Mc) (%), false alarms (FA),

accuracy (Ac) (%), false positive (FP), false negative (FN),

completeness (Ce) (%), correctness (Cr) (%), bias, and root

mean square error (RMSE). Accuracy analysis was carried

out on all the tiles individually. Tables 3 and 4 and Sup-

plementary Table 4 depict the statistical parameters eval-

uated for accuracy analysis.

3.2.1 Feature-wise accuracy analysis based on bias

and RMSE

3.2.1.1 Extraction of buildings The extracted building

polygons were compared against manually digitized

building polygons to test the accuracy of extraction. A total

of 917 building features were correctly interpreted based

on aerial imagery and manually digitized reference data.

Polygon-wise accuracy was carried out as each building

consisted of multiple polygons. An insignificant amount of

underestimation was observed for building polygons. A

total of 2692 building polygons were found to match a total

of 2699 reference polygons, indicating that the density of

extracted building polygons (1665/km2) was underesti-

mated with respect to the reference building polygons

Fig. 5 Quantitative assessment of extracted a car, b building, and

c marine vessel features against reference digitized features
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(1669/km2). We surmised that 7 building polygons were

not interpreted in manually digitized data as a consequence

of adjacent urban features like trees, which might have

confounded with the building polygons. Briefly, building

features were extracted with an estimated bias in 7 poly-

gons and bias in density of 4 polygons per square

kilometer.

3.2.1.2 Extraction of trees An insignificant amount of

underestimation was observed for tree feature extraction. A

total of 557 tree features (out of 571 reference features)

were correctly interpreted on aerial imagery and manually

digitized reference data. The density of extracted tree

features (642/km2) was observed to be under-estimated

with respect to reference tree features (659/km2).

Conclusively, 14 tree features were not interpreted in

manually digitized data as a consequence of adjacent urban

features, such as buildings, which might have confounded

with the tree features. Briefly, tree features were extracted

with an estimated bias in 14 features and bias in density of

16 polygons per square kilometer.

3.2.1.3 Extraction of cars The extracted car polygons

were compared against manually digitized car polygons to

test the accuracy of extraction. 312 (out of 326 total ref-

erence features) car features were correctly interpreted on

aerial imagery and manually digitized reference data.

However, as each car feature consisted of multiple poly-

gons, polygon-wise accuracy was also undertaken. An

insignificant amount of underestimation was observed for

Table 3 Feature classes and a total number of extracted features per tile

Feature Tile Area (km2) # EF Density (EF) # RF Density (RF) Bias (#) Bias (Density)

Buildings* 1 0.25 15 (35) 60 (140) 15 (35) 60 (140) 0 (0) 0 (0)

2 0.25 2 (2) 8 (8) 2 (2) 8 (8) 0 (0) 0 (0)

3 0.25 26 (68) 104 (272) 26 (70) 104 (280) 0 (2) 0 (8)

4 0.25 16 (46) 64 (184) 16 (44) 64 (176) 0 (- 2) 0 (- 8)

5 0.25 381 (1098) 1523 (4390) 381 (1101) 1523 (4402) 0 (3) 0 (12)

6 0.25 451 (1364) 1801 (5448) 451 (1371) 1801 (5476) 0 (7) 0 (28)

7 0.12 26 (79) 223 (678) 26 (76) 223 (652) 0 (- 3) 0 (- 26)

Total 1.62 917 (2692) 567 (1665) 917 (2699) 567 (1669) 0 (7) 0 (4)

RMSE 0 (3.27) 0 (15.73)

Trees 3 0.25 221 884 220 880 - 1 - 4

5 0.25 14 56 14 56 0 0

6 0.25 216 863 223 891 7 28

7 0.12 106 883 114 950 8 67

Total 0.87 557 640 571 656 14 16

RMSE 5.34 37.29

Cars* 3 0.25 31 (97) 124 (388) 33 (105) 132 (420) 2 (8) 8 (32)

5 0.25 122 (378) 488 (1511) 128 (383) 512 (1531) 6 (5) 24 (20)

6 0.25 156 (462) 623 (1845) 162 (484) 647 (1933) 6 (22) 24 (88)

7 0.12 3 (11) 26 (94) 3 (11) 26 (94) 0 (0) 0 (0)

Total 0.87 312 (948) 360 (1093) 326 (983) 376 (1134) 14 (35) 16 (41)

RMSE 4.36 (11.97) 17.44 (47.87)

Marine vessels 1 0.25 396 1584 412 1648 16 64

2 0.25 428 1712 460 1840 32 128

3 0.25 95 380 109 436 14 56

7 0.12 56 481 62 532 6 51

Total 0.87 975 1125 1043 1204 68 79

RMSE 19.44 80.96

*Note that building and car features were extracted with multiple polygons, i.e., a building or a car feature was extracted as more than one

polygon representing one single building or car. A total number of polygons for buildings and car features are represented in the bracket. The

total and RMSE values of tile-wise statistics are highlighted in bold and bold-italics respectively. Tile-wise least bias (# and density) values

(maximum accuracy) are highlighted with Italics. Tile-wise highest bias value (# and density) (minimum accuracy) are highlighted with bold and

underlined

RF reference features, EF extracted features, Density (per km2), Area (km2)
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car polygons. A total of 948 car polygons were found to

match with a total of 983 reference polygons. Inferentially,

density of extracted car polygons (1093/km2) was observed

to be underestimated with respect to the reference car

polygons (1134/km2). We concluded that 14 car polygons

were not interpreted in manually digitized data due to

adjacent urban features, such as trees and buildings, which

might have confounded with the car polygons. Briefly, car

features were extracted with an estimated bias in 35

polygons (14 cars) and bias in density of 41 polygons (16

cars) per kilometer.

3.2.1.4 Extraction of marine vessels In our study, 975

(out of 1043 total reference features) marine vessel features

were correctly interpreted on aerial imagery as well as

manually digitized reference data. A significant amount of

underestimation was observed for marine vessel features.

Consequently, the density of extracted marine vessel fea-

tures (1125/km2) was observed to be underestimated with

Table 4 Accuracy analysis of extracted urban geospatial features vis-à-vis total reference (digitized) features based on false positive, false

negative, % misclassification, and overall accuracy

Feature Data interpreted Error measures Accuracy measures

Tile # RF # EF # FN # FP Mc (%) FA (%) Ac (%) Cr (%) Ce (%) Q (%)

Buildings 1 12 (17)* 12 (17) 0 0 0 0 100.00 100.00 100.00 100

2 2 (2) 2 (2) 0 0 0 0 100.00 100.00 100.00 100

3 11 (15) 11 (16) 1 2 6.67 12.50 93.33 87.50 93.33 82.35

4 10 (15) 10 (17) 0 2 0 11.76 100.00 88.24 100.00 88.23

5 40 (108) 40 (111) 7 10 6.48 9.00 93.52 91.00 93.52 85.6

6 30 (67) 30 (64) 8 5 11.94 7.81 88.06 92.19 88.06 81.94

7 12 (32) 12 (35) 2 5 6.25 14.28 93.75 85.72 93.75 81.08

Total 117 (256) 117 (262) 18 24 31.34 55.35

Average 9.40 12.36 95.52 92.09 95.52 88.46

Trees 3 220 221 2 3 0.90 1.35 99.10 98.65 99.10 97.79

5 14 14 0 0 0 0 100.00 100.00 100.00 100.00

6 223 216 10 7 4.48 3.24 95.52 96.76 95.52 92.70

7 114 106 8 0 7.01 0 92.99 100.00 92.99 92.98

Total 571 557 20 10 12.39 4.59

Average 3.10 1.15 96.90 98.85 96.90 95.87

Cars 3 15 (57)* 15 (56) 2 1 3.50 1.78 96.50 98.22 96.50 94.83

5 20 (77) 20 (76) 6 5 7.79 6.58 92.21 93.42 92.21 86.58

6 20 (79) 20 (82) 3 6 3.80 7.31 96.20 92.69 96.20 89.41

7 10 (30) 10 (29) 3 2 10.00 6.89 90.00 93.11 90.00 84.37

Total 65 (243) 85 (245) 14 14 29.68 22.56

Average 7.42 5.64 92.58 94.36 92.58 88.80

Marine vessels 1 70 67 4 1 5.71 1.49 94.29 98.51 94.29 92.96

2 90 82 12 4 13.33 4.87 86.67 95.13 86.67 82.98

3 15 14 2 1 13.33 7.14 86.67 92.86 86.67 81.25

7 10 9 2 1 20.00 11.11 80.00 88.89 80.00 72.72

Total 185 172 20 7 52.37 24.61

Average 13.09 6.15 86.90 93.85 86.90 82.48

Overall accuracy of all features: 92.98% (average of Ac (%) average values)

*Note that building and car features were extracted as multiple polygons, i.e., a building or a car feature was extracted as more than one polygon

representing one single building or a car. A total number of polygons for buildings and car features are represented in the bracket. Total and
average values of tile-wise statistics are highlighted in bold and bold-italics respectively. Tile-wise minimum error value (least error measure)

and high accuracy value (maximum accuracy measure) are highlighted in italics. Tile-wise maximum error value (highest error measure) and
low accuracy value (minimum accuracy measure) are highlighted in bold-Underlined

# number, RF reference features, EF extracted features, FN false negative, FP false positive, Mc Misclassification, FA false alarms, Ac accuracy,

Ce completeness, Cr Correctness, % quality
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respect to the reference marine vessel polygons (1204/

km2). Conclusively, 68 marine vessel polygons were not

interpreted in manually digitized data as a result of merg-

ing of adjacent harbor features. Briefly, marine vessel

features were extracted with an estimated bias in 68 fea-

tures and bias in density of 79 features per square

kilometer.

3.2.2 Overall accuracy analysis based on bias and RMSE

Bias (# and density) and RMSE (# and density) values were

calculated for each tile to estimate overall accuracy trend.

The overall trend of performance for each tile for extrac-

tion of 4 features, based on bias (# and density) and RMSE,

is summarized in Table 3 and can be ranked as follows:

Buildings[Cars[Trees[Marine vessels. Amongst the

4 urban features extracted by fusing LiDAR and aerial

imagery, the extraction of buildings and trees outperformed

the other features, while marine vessel feature extraction

performed the worst in the given cohort.

3.2.3 Overall accuracy analysis based on error

and accuracy measures

After estimating the bias and RMSE values, we deduced the

accuracy on the basis of 4 error measures [False negative

(FN), False positive (FP), Misclassification (Mc), and False

alarms (FA)] and 4 accuracy measures [Accuracy (Ac),

Correctness (Cr), Completeness (Ce), and Quality (Q)]

(Supplementary Figures 7, 8, 9). All 8 statistical parameters

were calculated by interpreting randomly selected 938

extracted features spatially distributed over 7 tiles. The

interpreted features, error measures and accuracy measures

are given in Table 4. The average Mc and FA values for the

feature extraction ranged from * 3 to * 14% and * 1

to * 12%, respectively. The performance trend of feature

extraction using the Mc values can be summarized as: Trees

(3.10%)[Cars (7.42%)[Buildings (9.40%)[Marine

vessels (13.09%). The performance trend using the FN (#)

values can be summarized as: Cars (14)[Buildings

(18)[ [Marine vessels (20) = Trees (20)], while based on

FP (#) the trend is illustrated as: Marine vessels (7)[Trees

(10)[Cars (14)[Buildings (24). Performance trends

display a trade-off between FN (#) and FP (#) values for

feature extraction. The average Ac (%) and Q (%) values for

the feature extraction ranged from * 80 to * 100%

and * 72 to * 100%, respectively. The performance trend

of feature extraction using the Ac (%) values can be sum-

marized as: Trees (96.90%)[Buildings (95.52%)[Cars

(92.58%)[Marine vessels (86.90%), while based on Q (%)

the trend can be summarized as, Trees (95.87%)[Cars

(88.80%)[Buildings (88.46%)[Marine vessels

(82.48%). The average Cr (%) and Ce (%) values for feature

extraction ranged from * 85 to * 100% and * 80 to *
100%, respectively.

3.3 Confusion matrix based accuracy analysis

A multi-sequence methodology ensured the accurate

extraction of urban features from the LiDAR data and

aerial imagery. Results of the final accuracy assessment for

each extracted feature based on error matrix are shown in

Supplementary Table 4 and 5. Confusion matrix based

accuracy measures yielded applicable results for extraction

with OA (98.70%), mean PA (98.43%), mean UA

(98.81%), mean MA (97.29%), and kappa value

(j = 0.98). The statistics in Supplementary Table 5 indi-

cate that building class extraction outperformed the other

three feature classes, yielding MA values of 98.91%

(buildings), 97.85% (trees), 95.21% (car), and 97.37%

(marine vessels) respectively. In case of marine vessels

(EO = 2.11%) and car features (EO = 2.87%), error of

omission (EO, false negative) was more as compared to

other features. For trees (EO = 1.48%), EO (false negative)

was more than for buildings (EO = 0.92%). This is

because, trees next to building roofs reduced the accuracy

of building extraction due to improper delineation in case

of urban vegetation. Building class exhibited least value of

false positive (EO) (0.17%) with 99.83% user’s accuracy,

while EO was observed to be 0.92, which corroborates the

fact that buildings were classified with robust accuracy.

The potential sources of errors include incorrect delin-

eation of polygons for cars, marine vessels and buildings.

In case of trees, improper crown periphery would be the

source of error. Kappa value of 0.98 demonstrates the

overall robustness of the methodology protocol in extrac-

tion of urban features.

Different segmentation scales were used from fine to

coarse, to achieve an optimum solution for the feature

extraction problem. Fine-scale worked excellent for vege-

tation—non-vegetation segmentation, whereas, the coarse

scale was efficient in estimating heterogeneity within the

class. Marine vessels were concentrated in particular areas,

i.e., harbor. Therefore, over-segmentation was necessary to

extract them distinctly. Similarly, different segmentation

parameters were used for extraction of cars as their sizes

were small compared to buildings and were concentrated

on different roads and parking lots. The homogeneity

parameters were used specifically for extracting/delineat-

ing objects pertaining to each landcover class. Rule-based

hierarchical information extraction employed in this study

automated the classification process of object primitives,

which were grown, merged or separated based on defined

rule-sets at various levels. Furthermore, Moran’s I values

were chosen as per the spatial nature of the target feature

and the contextual information in the vicinity of the
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features. We used length-to-breadth ratio and intra-spatial

variance, which was more important in case of car

extraction because of their different structure than other

features. Morphological operations (dilation and erosion)

used for preserving the shapes of objects/polygons yielded

optimistic results. We also recommend to use this algo-

rithm, particularly, cars and marine vessels extraction for

oblique aerial/UAV images and LiDAR point clouds, as

side-way texture is also prominent giving rise to more

detailed 2.5D information.

We observed that the extraction of rectangular shaped

buildings was easier and yielded better accuracies than

complex shaped buildings having intricate structures. In

this study, few cars which were parked nearby houses and

trees were not extracted because of sparse point cloud and

insufficient contextual information required for discrimi-

nation. Low point cloud density problem largely affected

marine vessels as they were arranged adjacent to each other

with little to no gaps in between. Spatial spacing of point

cloud of LiDAR data couldn’t recognize these gaps, which

resulted in merging of marine vessels and container poly-

gons at many locations. Therefore, it is highly recom-

mended for users to give an emphasis on LiDAR point

cloud filtering as it plays a major role in identifying tar-

geted objects. Applications of the technique used for this

purpose should be implemented very carefully especially in

areas where point cloud density is considerably low. The

sparse point cloud density reduces the accuracy of feature

extraction and 3D reconstruction of the features (especially

buildings and cars) because the accurate delineation of

boundaries, facades and car polygons requires high point

cloud density at the edges. Users shall utilize specific

contextual information, geometrical parameters and

improved LiDAR point cloud filtering to use present

methods optimally. Moreover, spectral context can be

enhanced if more bands are available in case of optical

imagery. In brief, the researchers in GEOBIA should focus

on creating automatic, computationally efficient (though

potentially complex), more accurate or precise and trans-

formative workflows for robust outcomes [34–41].

4 Conclusion

Based on our results, we claim that our GEOBIA based

workflow is prolific and produced optimistic results as far

as data fusion is concerned. A trade-off between segmen-

tation and merging turned out to be useful for properly

delineating urban features. The subsequent merging of

similar objects after segmentation of helped to grow the

objects into meaningful features and overcoming over-

segmentation resulting in compact features/polygons

extraction. The integration of extreme spatial heterogeneity

of aerial imagery and LiDAR elevation facilitated robust

feature extraction and is responsible for discriminating

different types of buildings like flat roofed and tilted

roofed. We conclude that our workflow has yielded

promising results which could have been improved if the

imagery had a NIR band (especially, roof-tops and type of

roof-tops extraction) and the LiDAR data had a more dense

point cloud at the erroneous locations. More research is

needed for precise car extraction and 3D modeling of all

the extracted features. Our workflow could be used for

precise urban mapping applications using new earth

observation satellites such as Cartosat-2 series and Car-

tosat-3 in the near future.
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