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Abstract The main goal of the study is to prepare a land-

slide susceptibility map under Geographical Information

System (GIS) environment using statistical index model to

identify and demarcate the areas of future landslide occur-

rence. Firstly, landslide locations were identified with the

help of previous reports, satellite images and intensive field

study. For the preparation of landslide inventory, 80 land-

slide locations were identified and randomly separated to

create training and validation datasets. Fifty landslides

(62.5%) were used as training dataset and remaining 30

landslides (37.5%) were used for validating the model.

Twelve landslide conditioning factors, including morpho-

metric factors (slope angle, slope aspect, curvature, relative

relief and drainage density) and non-morphometric factors

(bedrock geology, soil, distance from drainage, distance

from lineament, distance from road, Normalized Difference

Vegetation Index (NDVI) and land use/land cover), were

used to generate landslide susceptibility map of Rorachu

river basin. Finally, the accuracy of the model was assessed

by area under curve of Receiver Operating Characteristics

(ROC) curve and landslide density method. The statistics of

ROC curve showed that, the landslide susceptibility map

using statistical index model has an accuracy of 91% which

indicates a very good predictive capacity of the model. The

result reveals that, landslide density of the Rorachu river

basin is increasing with landslide susceptibility classes.

Keywords GIS � Statistical index model � NDVI �
Landslide susceptibility � Area under curve � ROC curve

1 Introduction

Landslide is a result of wide variety of geo-environmental

processes and occurs when shear stress exceeds shear

strength. Varnes [1] classified slope movement types and

processes into six categories: falls, topples, slides, lateral

spreads, flows and complex. Varnes [1] introduced the term

‘‘complex’’ to indicate those cases where combination of

two or more principal types of movement is responsible.

These movements are very much active in hilly moun-

tainous regions. In India 25% geographical area is under

mountainous regions where landslide is a very common

phenomenon. Sikkim lies in Eastern Himalaya which is

geo-tectonically very much unstable and seismically active

[2]. Historical data elicits that landslides are main problem

in the Sikkim Himalaya, where huge damages of human

lives and properties are caused by them [3]. Heavy

downpour induced landslides are frequent in Sikkim while

slope failure due to earthquake and lateral modification of

slope by road construction is also more common phe-

nomena in East Sikkim. In East Sikkim district, human

lives loss and properties damage, as well as destruction of

habitable area, agricultural land and forest extensively took

place in the years of 1997, 2007, 2010, 2011 and 2015 [4].

In order to reduce landslide related problems and risks, a

study on landslide including susceptibility mapping, hazard

mapping and evaluation of risk is very much necessary.

Previous literatures [5, 6] have revealed that there are three
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dominating types of Geographical Information System

(GIS) based methods to investigate future landslide

occurrence or delineation of landslide susceptibility zones:

heuristic, deterministic and statistical approaches. Heuristic

approaches are completely based on expert opinions or

approaches which are intensively subjective and where

expert judgments incorporate large distinction during

mensuration of intensity and types of landslide hazard [7].

On the other hand deterministic and statistical approaches

are dependent on numerical values of the interrelation

between causative factors and the events. Deterministic

approaches require field based geotechnical and ground

water data, for these reason these approaches are often used

to prepare maps of small areas [7].

A landslide susceptibility map represents the areas

having high probability of landslide that can be assessed by

correlating the prime factors which are responsible for

landslide occurrence in the past [8]. In recent years,

preparation of landslide susceptibility map using GIS based

statistical models are very common due to high predictive

accuracy, easy data handle procedure and better spatial

distribution of landslide susceptible areas. A number of

statistical models and algorithms have been proposed to

generate landslide susceptibility map including analytical

hierarchy process (AHP) [9, 10], information value model

[11], modified information value model [12], artificial

neural network model [13, 14], frequency ratio model and

logistic regression model [15, 16] and others. Landslide

susceptibility analysis using GIS based statistical models

were employed by many researchers and scientists in the

recent past throughout the world [7, 17–28]. Till now a few

number of researchers successfully carried out landslide

susceptibility, hazard and risk zonation of Sikkim Hima-

laya. Some researchers used geospatial techniques [29, 30]

for the assessment of landslide susceptibility in Sikkim

Himalaya. Apart from geospatial techniques statistical

models like, Shannon’s entropy model [31] and informa-

tion value model [11] were also employed by a group of

researchers. Anbalagan et al. [32] compared the landslide

susceptibility using frequency ratio and fuzzy logic in

Lachung Valley, Sikkim. But till now there is an inade-

quacy of landslide susceptibility and hazard study of

eastern Sikkim Himalaya. The present study deals with the

identification of landslide susceptible areas in eastern

Sikkim Himalaya using GIS based statistical index method.

2 Study area

High relief, steep slope along with highly dissected terrain

are important physiographic characteristics of this state.

This hilly state occupies 7096 km2 area with maximum

altitude of 8586 m (the summit of Kangchenjunga). Sikkim

enjoys a wide range of physiography, geology, climate, soil

and vegetation. The variations encourage a plenty of geo-

environmental processes which may be responsible for the

modification of hilly topography or slope. Hilly rugged

terrain coupled with young and fragile geological structure,

heavy rainfall and high seismic intensity made the state

Sikkim a major hazardous region in India [33]. The study is

carried out for the Rorachu river basin of Sikkim Hima-

laya, which is located to the northern extent of east Sikkim

district. It covers an area of 71.73 km2 and extends

between 27�1701900–27�2305200N and 88�3503700–
88�4301700E with a maximum and minimum altitude of

4114 and 834 m respectively (Fig. 1). The altitude of the

area is rapidly increasing from southwestern periphery

(Ranipool) to its northeastern extent (Pandramaile).

According to Koppen’s climatic classification scheme, the

study area is dominated by subtropical highland climate

(Cwb). Because of its altitude and sheltered environment

the Rorachu river basin enjoys a mild temperature

throughout the year with an average maximum temperature

of 22 �C during summer and 4 �C during winter. Rainfall

of the area starts to increase from May and peaks during the

monsoon period in July with the highest monthly average

of 649.6 mm. Dissection of hilly terrain by fluvial action is

the main geomorphological process of the study area.

Northern and north-eastern parts of the basin where max-

imum altitude was found are under highly dissected hilly

terrain where relatively low lying areas like Gangtok,

Ranipool were under moderately dissected hilly terrain.

Steep slope along with the presence of numerous number

first and second order streams may be the main causes of

high topographic dissection of the basin, as well as slope

instability in the Rorachu river basin.

3 Database and methodology

The methods applied in this study includes the preparation

of spatial database, data analysis by bivariate statistical

index method, preparation of landslide susceptibility map,

evaluation of landslide inventories and validation of the

result [26]. Landslide occurrence is controlled by several

triggering and causative factors, but always it is not pos-

sible to attain all the necessary data for the preparation of

landslide susceptibility map [11]. During data preparation a

spatial database was framed to prepare necessary maps of

different triggering factors. Geomorphic factors like slope

angle, slope aspect, slope curvature, relative relief were

derived from Advanced Spaceborne Thermal Emission and

Reflection Radiometer Global Digital Elevation Model

(ASTER GDEM) of 30 m spatial resolution. Drainage and

roads were digitized from topographical map number 78

A/11 using arc GIS 10.3 software. The lineaments were
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extracted from the panchromatic band of LANDSAT 8OLI

(band no. 8) image with spatial resolution of 15 m using

PCI Geomatica line tool and ENVI 5.5 software. Using

ArcGIS 10.3 software drainage, road and lineaments were

converted into distance from drainage, distance from road

and distance from lineament map. Drainage density was

Fig. 1 Location of the study area
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also calculated from the drainage vector by dividing the

basin into 1 km 9 1 km grids. Lithological map and soil

map were vectorized from district resource map of East

Sikkim district and Natural resource atlas of Sikkim guided

by Geological Survey of India (GSI) and National Atlas

and Thematic Mapping Organization (NATMO). The

continuous data layers like slope angle, slope curvature etc.

were reclassified into several classes using natural break

reclassification method in ArcGIS 10.3 software. To obtain

the class wise frequency of landslide and non-landslide

pixels, all the factor maps were incorporated with landslide

inventory map and converted into raster domain with a

pixel size of 30 m using resample tool of ArcGIS 10.3

software package. For the demarcation of future landslide

occurrence zones and for the prediction purpose, suscep-

tibility values were extracted by landslide and non-land-

slide pixels [26] and analyzed in Statistical Package for the

Social Sciences (SPSS) statistical software. GIS based

statistical modeling is a useful technique for landslide

susceptibility analysis. But in case of statistical modeling

proper verification and validation of the model is strictly

needed. Model accuracy is measured from the validation

technique which determines the predictive accuracy or

predictive capacity of the model. Researchers used several

validation techniques such as Receiver Operating Charac-

teristics (ROC) curve [26, 34] success rate curve [11, 35],

landslide density method [11] etc. In the present study

ROC curve and landslide density method were used to

validate the landslide susceptibility map.

3.1 Statistical index method

To accomplish the study, statistical index method was used

for the assessment of landslide susceptibility. This method

was firstly proposed by Van Western [36]. Later several

researchers [33, 34, 37–39] have successfully carried out

their work with regard to landslide susceptibility using this

method. In this method, the weights of each class are the

natural logarithm of the ratio of class density of a particular

parameter and density of the total area. The method is

expressed in the following equation (Eq. 1).

Wij ¼ ln
Npix Si

Npix Ni
� RNpix Ni

RNpix Si

� �
ð1Þ

where Wij is the total weight of any class i of j parameter,

NpixSi is number of landslide pixel ofany class i of j

parameter, NpixNi is the total number of pixel of any class

I of parameter j. After the calculation of weight all thematic

data layers were integrated to obtain final landslide sus-

ceptibility index which can be expressed with the help of

following equation (Eq. 2).

LSI ¼
Xn
j¼1

Wij ð2Þ

where LSI expresses the value of Landslide Susceptibility

Index and n is the Number of parameters were taken.

3.2 Landslide inventory

A landslide inventory includes the location of recent and

past landslides. The landslide inventory map for the present

study was prepared on the basis of landslide location data

obtained from Survey of India topographical map, satellite

imageries and Google earth images which were verified by

actual or ground data received with the help of GPS.

Finally, 80 landslides were vectorized, of them 50 land-

slides were taken into account to prepare landslide sus-

ceptibility map of the Rorachu river basin and rest of them

were used for the verification of the landslide susceptibility

map (Fig. 2).

4 Triggering factor

Earthquake and rainfall are the two most important trig-

gering factors for landslide occurrences in Rorachu river

basin. History of landslide shows that the basin experi-

enced frequent landslides during and after earthquake in

Sikkim, West Bengal and Nepal. The basin faced

destruction of habitable area, collapse of road and

impairment of life. Rainfall data collected from Gangtok

meteorological station represents that, rainfall is maximum

between June and August (Table 1). Maximum rainfall of

614.4 mm was registered by Indian Meteorological

Department (IMD) of Gangtok in June 2012. The direct

impacts of heavy monsoon rainfall are saturation of soil

and very high surface run-off. The existence of large

number of first order stream reveals very high surface run-

off and it is found that most of the landslides are located

very close to the first order streams.

5 Conditioning factors

Landslide may be an outcome of several litho-tectonic,

geomorphic, climatic and anthropogenic factors. These

factors were divided into two main categories i.e. mor-

phometric factors (slope, aspect, curvature, relative relief,

drainage density) and non-morphometric factors(lithology,

distance from lineaments, distance from drainage, distance

from roads, soil, Normalized Difference Vegetation Index

(NDVI) and Land Use and Land Cover (LULC). All these

factors were frequently used by several researchers
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[12, 21, 37, 39] due to the great influence on the occurrence

of landslide in the different parts of the globe [39].

5.1 Morphometric factors

5.1.1 Slope

Slope is considered as the prime factor for the occurrences

of landslide. Slope map of the Rorachu river basin was

derived from ASTER GDEM of 30 m ground resolution

and it was divided into five classes (Fig. 3a). It was noticed

that the occurrence of the landslide increased with the

increase of slope steepness.

5.1.2 Aspect

Aspect is the orientation of slope, measured clockwise in

degrees from 0 to 360. Temperature and precipitation are

highly influenced by slope aspect which affects soil

moisture, soil thickness and vegetation cover of the slope.

Generally, in the northern hemisphere, south-facing slopes

receive more precipitation and become unstable due to the

direct impact of slope saturation. In this study, aspect map

was prepared from ASTER GDEM of 30 m spatial reso-

lution in ArcGIS 10.3 software and classified into ten

classes. It is evident that only east, southeast, south,

southwest and west facing slopes have faced landslides and

on the other hand landslide is absent in North and its

associated slopes (Fig. 3b).

Fig. 2 Landslide inventory map

Table 1 Monthly rainfall

distribution in the study area

(2009–2015). Source: Indian

Meteorological Department

(IMD) Gangtok, Sikkim

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

2009 5.7 4.2 87.3 251.7 335.4 355.4 408.6 454.1 180.1 201.6 1.7 5.4

2010 5.7 18 187 359.4 272.7 504.6 601 493.8 375.8 95.6 23.6 0.1

2011 21.6 40.5 68.5 14.7 278.8 515.9 587.3 459.1 376.7 44.9 60.8 2.3

2012 17.8 21.5 28.4 312.2 201.6 614.4 481.3 442.2 410.9 72.4 0.1 1

2013 4.3 32.1 128 256.1 409 382.6 412.1 325.1 195.5 191.8 40.7 7.9

2014 0 5.4 68.2 96.7 441.4 472.7 478.7 522.3 273 16.7 2.4 4.2

2015 7.4 17.4 73.3 270.3 387.8 603.1 561 284.7 316.1 99.6 55.8 1
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Fig. 3 Slope, aspect, curvature and relative relief of Rorachu river basin. a Slope, b aspect, c curvature and d relative relief
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5.1.3 Curvature

Curvature for this study was also calculated from digital

elevation model (DEM) and classified into three classes

(concave, flat and convex) (Fig. 3c). The negative curva-

ture value indicates concavity of the slope and on the other

hand positive curvature indicates convex slope. High

convexity and concavity leads to drainage concentration

over the space which introduce slope saturation and slope

instability.

5.1.4 Relative relief

‘‘Relative relief also called as ‘amplitude of available

relief’ or ‘local relief’ is defined as the difference in height

between the highest and the lowest points (height) in a unit

area’’ [40]. It is an important morphometric parameter as it

plays an important role with slope for the initiation of

landslide. Relative relief was calculated after Smith [41],

using the following equation (Eq. 3).

RR ¼ H � Lð Þ ð3Þ

where RR is relative relief, H is highest relief and L is

lowest relief of a place. The relative relief map was clas-

sified into six consecutive classes with the help of ArcGIS

10.3 software (Fig. 3d).

5.1.5 Drainage density

Drainage density is the ratio between total length of all the

streams and rivers in a drainage basin and the total area of

the drainage basin. It indicates how well or how poorly a

watershed is out flowed by stream channels. In the present

study Horton’s [42] method was considered to assess

drainage density (Eq. 4).

DD ¼ Lk=Akð Þ ð4Þ

where DD represents drainage density, Lk is the length of

the streams of a basin and Ak is the total area of the basin.

The basin was divided into 1 km 9 1 km grids and length

of all stream segments per grid was measured to analyze

drainage density. On the basis of the obtained value a

drainage density map was prepared with the help of Inverse

Distance Weighting (IDW) tool in ArcMap 10.3. Finally,

the map was classified into six classes (Fig. 4a).

5.2 Non morphometric factors

5.2.1 Geology

Geology is considered as one of the most significant cau-

sative factor for slope instability as well as landslide.

Fragile and immature geological structures are more prone

to landslides. In this study a geological map was prepared

from district resource map of east Sikkim district collected

from geological survey of India, Kolkata (Fig. 4b). In the

Rorachu river basin five lithological groups were found

such as quartzite, sillimanite bearing granite gneiss, schist,

amphibolite and granite gneiss (lingtse gneiss). Most part

of the basin mainly entire north eastern part was occupied

by sillimanite bearing granite gneiss followed by quartzite,

schist, lingtse gneiss and amphibolite.

5.2.2 Soil

Soil is a very significant non-morphometric factor for slope

instability as well as occurrence of landslide in hilly

mountainous areas and due to increase of soil saturation

slopes become unstable. Generally soil saturation depends

on the intensity, duration and amount of precipitation in

one hand and on the other hand it dependson physical

characteristics, i.e. texture, structure, porosity and perme-

ability of the soil. Infiltration or percolation rate is faster in

coarse grained, exposed soils and it is comparatively low in

fine grained soils for which coarse grained soils have

greater probability to become unstable. Soil of the Rorachu

river basin was divided into seven different categories on

the basin of material present in the soil (Fig. 4c) such as

fine loamy fluventic eutrudepts (S001), coarse loamy

humic pachic dystrudepts (S002), coarse loamy humic

dystrudepts (S003), fine loamy typic paleudolls (S004), fine

skeletal cumulic hapludolls (S005), loamy skeletal entic

hapludolls (S006) and coarse loamy typic hapludolls

(S007). The characteristics of different soil are mentioned

in the Table 2.

5.2.3 Distance from drainage

Streams are important agent of surface saturation or satu-

ration of slope. On the other hand intensive gully erosion

may cause dissection of slope which encourages mass

wasting process in hilly areas. Stream network has a great

influence on landslide occurrence and it has widely been

used by many researchers [34, 37, 39]. For the assessment

of impact of drainage on landslide initiation, a distance

from drainage map was prepared by multiple ring buffer

tool of arcgis 10.3 and classified into five classes (Fig. 4d).

5.2.4 Distance from lineament

Lineament is a linear expression of underlying geological

structure like fault. It can be generated from fracture zones,

shear zones and volcanic activities like igneous intrusions.

Lineaments were extracted from panchromatic band (band

no 8) of LANDSAT 8OLI image with the help of remote

sensing software- PCI Geomatica 10 and ENVI 5.5 and
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Fig. 4 Drainage density, geology, soil and distance from drainage of Rorachu river basin. a Drainage density, b geology, c soil and d distance

from drainage
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mapped by line feature in arcmap 10.3 software. To study

the spatial relationship between lineaments and landslide in

the study area distance from lineaments map was prepared

and classified into seven classes (Fig. 5a).

5.2.5 Distance from road

Among all anthropogenic activities which are responsible

for slope instability, construction and expansion of roads in

hilly terrain is considered as the dominant factor. Roads

modify the natural gradient of the slope and create an

obstacle for surface water flow [43]. On the basis of vec-

torized road layer distance from road map or road buffer

map was prepared to understand the relationship between

road construction and slope instability in the Rorachu river

basin. The buffer map was classified on the basis of 100,

200, 400, 800, 1600, 2400 and 3600 m distances (Fig. 5b).

5.2.6 NDVI

The Normalized Difference Vegetation Index (NDVI) is a

common graphical exhibitor that can be used to assess the

presence of vegetation on the surface (Fig. 5c). NDVI was

calculated from near infrared band (NIR, band no 5) and

red band (R, band no 4) of LANDSAT 8 OLI image using

erdas imagine 9.3 software (Eq. 5).

NDVI ¼ NIR� Rð Þ = NIRþ Rð Þ ð5Þ

The value of NDVI ranges from - 1 to ? 1 and values

closer to 0 indicates less vegetation, on the other hand

values close to ? 1 denotes maximum concentration of

green leaves.

5.2.7 Land use and land cover

Land use and land cover map was prepared from Sentinel-2

image of 10 m 9 10 m spatial resolution using maximum

likelihood based supervised classification in erdas imagine

9.3 software (Fig. 5d). Later image classification accuracy

was assessed by Cohen’s Kappa coefficient. The value of

Kappa coefficient was 89.07% which indicates overall

good classification accuracy. Several important land use

and land cover like bare ground, settlement, road, river,

terrace farming, sparse vegetation and dense vegetation

were identified from the study area where dense forest is

the dominant land cover which occupied 58.03% area of

the Rorachu river basin which is followed by sparse veg-

etation (22.03%), bare ground (9.30%), settlement (4.11%),

river (3.04%), terrace farming (1.90%) and road (1.59%).

6 Result and discussion

The value of statistical index method was calculated on the

basis of class wise landslides affected and non-affected

pixels (Table 3). It was noticed that, frequency of landslide

Table 2 Soil characteristics of the Rorachu river basin

Soil name Code Characteristics of soil

Fine loamy fluventic

eutrudepts

S001 Very deep, well drained, moderately permeable, fine loamy soil is found mainly in higher lying

floodplain associated with shallow, excessively drained, moderately rapid permeable upland loamy

soils

Coarse loamy humic pachic

dystrudepts

S002 Deep, well drained coarse loamy soil with medium run-off, moderately rapid permeability is occurred in

upland slopes associated with moderately deep, little stony, excessively drained fine loamy soils with

moderate erosion

Coarse loamy humic

dystrudepts

S003 Very deep, well drained, moderately rapid permeable coarse loamy soil is found in structural benches and

footslope of mountain associated with moderately shallow to deep, little stony, excessively drained

coarse loamy soil with moderate erosion

Fine loamy typic paleudolls S004 Moderately shallow to deep, well drained fine loamy soil is found in steep slope with moderate

permeability, moderately high saturated hydraulic conductivity and moderate erosion associated with

very deep, well drained fine loamy upland soils

Fine skeletal cumulic

hapludolls

S005 Moderately deep to very deep, excessively drained soils with gravelly surface, little stoniness and

moderate erosion is found in very steep slope associated with moderately shallow to deep, slight

stoniness, excessively drained, moderately erosion prone coarse loamy soil

Loamy skeletal entic

hapludolls

S006 Moderately deep to deep, excessively drained, gravelly loamy soil mainly found in very steep hill side

with small stoniness and moderate erosion associated with moderately shallow to deep, slight stoniness,

excessively drained, moderately erosion prone gravelly loamy soil

Coarse loamy typic

hapludolls

S007 Excessively drained, deep coarse loamy soil having little stoniness and slight to moderate erosion is

found mainly in the ridges associated with moderate deep to deep coarse loamy soil with little stoniness

and moderate erosion
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has been increased at the places where slope is more than

42�. Slope as a causative factor for landslide and it was also
discussed by several researchers for different parts of

Himalaya [11, 44]. Slope aspect played a passive or

indirect role to assess slope instability but it has an

important role for soil saturation in the study area. The

south and southwest facing slopes having greater weighted

value which indicates these slopes received more rainfall

Fig. 5 Distance from lineaments, distance from road, NDVI and land use and land cover. a Distance from lineaments, b distance from road,

c NDVI and d land use and land cover
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Table 3 Spatial relationship between landslide causative factors and landslide by statistical index model

Data layers Npix si Npix Ni Wij

Slope angle

0�–14� 34 9338 - 0.9952

14�–24� 98 18,761 - 0.6342

24�–32� 208 22,636 - 0.0694

32�–42� 269 19,899 0.31663

[ 42� 176 9066 0.67854

Slope aspect

Flat 0 130 0

North 0 2564 0

Northeast 0 2117 0

East 46 5312 - 0.1287

Southeast 157 11,645 0.31396

South 235 13,843 0.54439

Southwest 216 11,192 0.67267

West 118 12,516 - 0.0437

Northwest 13 15,830 - 2.4844

North 0 4551 0

Slope curvature

Concave 430 38857 0.1164

Flat 21 2448 - 0.1381

Convex 334 38395 - 0.1242

Relative relief (m)

308–403 0 1235 0

403–499 15 19,934 - 2.5718

499–594 181 27,775 - 0.4131

594–689 460 24,364 0.65071

689–785 129 6193 0.74898

[ 785 0 199 0

Drainage density

0.81–3.21 116 23,232 - 0.6794

3.21–3.78 328 18,256 0.60111

3.78–4.28 221 16,248 0.32278

4.28–4.91 60 12,028 - 0.6803

4.91–7.46 60 9935 - 0.4891

[ 7.46 0 1 0

Geology

Quartzite 189 12,193 1.573765

Sillimanite bearing granite gneiss 590 54,720 1.094699

Schist 0 269 0

Amphibolite 0 3739 0

Gneiss (lingtse gneiss) 6 8779 0.06939

Soil

S001 0 6437 0

S002 45 6973 - 0.4228

S003 306 40,816 - 0.2729

S004 0 284 0

S005 0 5476 0

S006 125 3955 1.16592
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than the others. Dhakal et al. [45], Lin and Tung [46],

showed that south, east and south-east facing slopes are

more unstable. The value of statistical index is higher at the

places where slope is extremely concave in nature and it is

lower along convex slopes which revealed that concave

slopes have greater influence in the occurrences of land-

slide in the study area. Geology is dominated by Silli-

manite bearing granite gneiss where the maximum

landslide affected pixels have been recorded. Snow-melt

water and location of thrusts, faults encouraged the

occurrence of frequent landslide in the gneiss rocks [11].

Loamy-skeletal entic hapludolls and coarse loamy typic

hapludolls are the soil group where frequencies of land-

slides are more than the other soil sub-groups of the study

area. A negative relationship between the distance from

lineament, drainage, road and occurrence of landslide was

Table 3 continued

Data layers Npix si Npix Ni Wij

S007 309 15,759 0.68852

Distance from drainage (m)

100 621 53,043 0.17281

200 125 19,375 - 0.4231

300 29 5196 - 0.568

400 6 1529 - 0.9203

500 4 374 0.08238

600 0 161 0

700 0 22 0

Distance from lineament (m)

100 123 6710 0.62117

200 130 7188 0.60771

400 199 14,147 0.35639

800 180 23,305 - 0.2431

1200 129 16,088 - 0.2057

1600 24 9512 - 1.3619

2400 0 2750 0

Distance from road (m)

100 481 21,498 0.82049

200 113 13,050 - 0.1288

400 66 14,755 - 0.7893

800 86 13,200 - 0.4133

1600 39 11,148 - 1.0351

2400 0 4703 0

3600 0 1346 0

NDVI

- 0.336 to - 0.090 86 9058 - 0.0367

- 0.090 to - 0.058 109 14,752 - 0.2874

- 0.058 to - 0.028 226 17,887 0.24905

- 0.028 to 0.002 223 19,118 0.16913

0.002–0.090 141 18,885 - 0.277

Land use and land cover

Bare ground 1649 64,397 0.95791

Settlement 191 28,476 - 0.3817

Road 1202 10,887 2.41922

River 1433 21,057 1.93534

Sparse vegetation 1795 152,499 0.18065

Terrace farming 77 13,198 - 0.5212

Dense forest 454 401,687 - 2.1625
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noticed. In case of lineament, maximum weighted value

was noticed between 0 and 200 m, where no landslide was

found beyond 1600 m distance. Slope steepness of north-

ern and north western parts of the basin is highly dissected

due to active fluvial erosion which is clearly evident from

the presence of numerous lower order streams. Maximum

landslide was noticed within 100 m distance from rivers.

Due to small length of streams, the value of drainage

density is low to moderate in the high relief areas where

maximum landslide event was found. The value of statis-

tical index is high in the areas where drainage density is

low to moderate and negative value is found in the areas of

high drainage density. Construction of roads modifies the

general condition and configuration of the slope by

changing natural slope angle which trigger the occurrences

of the landslide event. In the Rorachu river basin out of 80

major landslides 56 landslides are located along 31A

National Highway which indicates the influence of road

construction on slope instability. The weighted value is

maximum for 100 m distance from roads. Presence of

vegetation and vegetation density is considered as an

important factor of soil as well as slope stability. Generally

deforested or degraded areas are more landslides prone due

to less soil compaction and low resistance capacity. The

influence of greenness on landslide is also very prominent

because maximum weight value was found in negative

NDVI and on the other hand, minimum value was noticed

in the areas where positive NDVI present. In case of land

use and land cover, landslide is more frequently observed

in the areas where human intervention modified the slope

segment significantly. But anthropogenic activities are not

only responsible for landslide in the Rorachu river basin.

Due to active down cutting of lower order streams slope

become steeper in the northern and north western part of

the basin where maximum landslide was noticed. In these

areas many landslides were found along the lower order

streams due to which the weightage value of river was

found high in the land use and land cover (Table 3).

Calculated statistical index values were assigned as

weights to each factor and their different categories.

Weighted thematic data layers were propagated and

mobilized using raster calculator function of spatial analyst

tool in arcgis 10.3 software to derive the total statistical

index value (Eq. 2). Integrated statistical index value of

each pixel was considered as landslide susceptibility index

(LSI) of each pixel where values range from - 8.96 to

7.11. For the preparation of landslide susceptibility map,

LSI values were reclassified into five different classes using

Fig. 6 Landslide susceptibility map of Rorachu river basin
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reclassification tool in ArcGis 10.3 and the study area was

divided into Very Low Susceptibility (VLS), Low Sus-

ceptibility (LS), Moderate Susceptibility (MS), High Sus-

ceptibility (HS) and Very High Susceptibility (VHS) zones

(Fig. 6).

The prepared susceptibility map showed that mainly

northern, north-eastern and north-western parts of the basin

were under high to very high susceptibility where steep

dissected slopes coupled with very high relief and highly

weathered gneiss rock have provided suitable geo-envi-

ronmental conditions to make the slope more unstable.

Apart from this there were also several sporadic zones of

high to very high susceptibility in the southeastern and

southwestern parts of the basin. The susceptibility data

(Table 4) showed that 9% area of the basin occupied by

very high susceptibility zone. On the other hand high,

moderate, low and very low susceptibility zones were

accounted for about 17, 37, 28 and 9% respectively. From

the susceptibility map, it was evident that some parts of

Gangtok city located in the south-western periphery of the

basin were under very high susceptibility. It was also

observed from the final susceptibility map that degraded

parts of Bhusuk reserve forest was under very high

susceptibility.

7 Result validation

7.1 Receiver operating characteristics (ROC) curve

ROC curve is a commonly used method to visualize the

performance of the binary classifier, meaning a classifier

with two possible output processes, i.e. presence or absence

of an event where presence is considered as positive and

absence as negative classification. A cut-off point or

threshold value is used to discriminate two outcomes. On

the basis of the classification, the result is divided into four

types, i.e. true positive or TP (presence of event is correctly

classified as positive), false negative or FN (presence of

event is classified as negative), true negative or TN (ab-

sence of event is correctly classified as negative) and false

positive or FP (absence is classified as positive). All the

results are very much significant for the calculation of

specificity and sensitivity. ROC curve is a two dimensional

diagram in which specificity lies on the X axis and sensi-

tivity on the Y axis. A conceptual framework may help to

understand the basic structure of ROC curve (Eqs. 6, 7).

The Precision of the test depends how well the test divides

the area of an event from non-event areas. Accuracy of a

test is measured on the basis of the area under ROC curve

(AUC). The value of AUC ranges between 0.5 and 1.0

where 1 indicates perfect test and on the other hand 0.5

indicates useless test.

Sensitivity ¼ a= aþ bð Þ ð6Þ
Sensitivity ¼ d= cþ dð Þ ð7Þ

Thirty landslides as validation dataset were taken to

justify the overall accuracy and predictive capacity of the

landslide susceptibility map as well the statistical index

model. Landslide inventory raster with 279 landslide pixels

were overlaid on landslide susceptibility map and the dis-

tant position of ROC curve from the diagonal line indicated

a good accuracy of the model (Fig. 7). The AUC value 0.91

indicates a good predictive capacity of the landslide sus-

ceptibility map. Apart from this, the asymptotic signifi-

cance explains that the model is also statistically significant

(Table 5).

7.2 Landslide density method

Landslide density is the ratio of actual landslide area to the

landslide susceptibility classes [11]. The class wise land-

slide density and landslide susceptibility areas were cal-

culated with the help of pixels with and without landslides

for each susceptibility class. The basic rule of this method

is that, in case of highly accurate map landslide density will

increase with increasing LSI values and highest landslide

density will be found in very high landslide susceptibility

class. In the Rorachu river basin very high landslide sus-

ceptible areas corresponds to high landslide density and

vice versa (Table 6).

Table 4 Landslide susceptibility class of the Rorachu river basin

LSI value Susceptibility class No of pixel Area (in km2) Percentage of area No of validation slide pixel

- 8.96 to - 3.22 Very low 7398 6.6582 9.282308657 1

- 3.22 to - 0.80 Low 22,451 20.2059 28.16938519 18

- 0.80–1.64 Moderate 29,126 26.2134 36.54454203 54

1.64–2.95 High 13,188 11.8692 16.54705144 79

2.95–7.11 Very high 7537 6.7833 9.456,712,673 127

Total 79,700 71.73 100 279
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8 Conclusion

The above study reveals that amongst all the landslide

conditioning factors land use and land cover has a strong

influence on landslide occurrences. The bedrock geology

and slope curvature also plays an important role for

landslide occurrences. Gneiss is much more landslide

prone than the other rocks and concave slopes showed high

landslide susceptibility. The statistical index method is

quite easier because of its flexible data handling procedure

and less time consuming character. The model has a very

good predictive accuracy about the probability of landslide

occurrences and it satisfied the basic objective of the study.

The landslide susceptibility map is very much important

for the delineation of landslide potential areas. The pre-

pared landslide susceptibility map of the Rorachu river

basin can play a significant role for the preparation of risk

zonation map of the concerned study area. On the other

hand, with the help of this map, probability of loss can also

be predicted in the high and very high susceptibility zones

and proper mitigation techniques can be applied to keep

infrastructures and resources safe. Landslide susceptibility

analysis under GIS environment provides only spatial

zoanation of landslide susceptible areas instead of partic-

ular and specific information about the landslide occur-

rences. Finally, it may be concluded that the landslide

susceptibility map of the Rorachu river basin may be

considered as an important tool for the decision makers and

planners to select suitable places for infrastructural devel-

opment, urban area expansion and growth of tourism in

Eastern Sikkim Himalaya.
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