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Abstract In the present research work, the landslide sus-

ceptibility zonation (LSZ) mapping was carried out for the

landslide prone area Nilgiri hills, Tamil Nadu, India. The

LSZ mapping was carried out using ten landslide influ-

encing factors along with extensive field investigation. The

geospatial database was prepared through integrated

remote sensing, geographical information systems, and

GPS technologies. The methods adopted for the present

study are frequency ratio (FR) which is probabilistic and

analytical hierarchical process (AHP) which is subjective

and objective based model. The FR values were evaluated

through evaluating relationship between causative factors

and past landslide (training) locations. The FR values were

considered as the base for assigning the weights in AHP

method along with the subjective knowledge. The final

LSZ map were derived through the spatial integration of all

causative factors and classified as different susceptibility

classes viz. very low, low, moderate, high, and very high.

The prediction accuracy of final LSZ map were validated

using past landslide (validation) locations using area under

curve (AUC) method. The FR model shown the highest

prediction accuracy with AUC value of 0.6279, while the

AHP model shown the AUC value of 0.5620.

Keywords Landslide susceptibility zonation � Frequency
ratio � Analytical hierarchical process � GIS � Remote

sensing � Nilgiri

1 Introduction

Landslides cause serious threat to human life and damage

to properties such as buildings, road network, etc. Land-

slides are commonly occurs in cut slopes of Ghat roads as

well as natural slopes in the mountainous terrain. The

natural hill slopes in the mountainous regions is highly

altered by anthropogenic activities such as contruction of

road network, urban growth, deforestation, and rapid land

use modification, etc., may also influence the occurrence of

landslides [1]. The mapping of landslide-prone zones in a

region is essential for future planning and developmental

activities. Landslide hazard/susceptibility and risk assess-

ment has been getting comprehensive importance amongst

the international scientific research community particularly

in the field of geosciences [2]. Landslide susceptibility

zonation (LSZ) mapping refers to the probability of

future landslide occurrence in a region on the basis of

correlation between causative factors with spatial distri-

bution of past landslide locations. LHZ mapping differs

from the susceptibility mapping in such a way, the tem-

poral frequency (time recurrence) of a certain type and

magnitude in a particular location within a set time is

considered [3].

The landslide hazard or susceptibility assessment

methods can be qualitative or quantitative [4]. The quali-

tative methods are subjective which describes the hazard

zones in descriptive terms. The input data are generally

derived either from field visits or by aerial photo inter-

pretation. The qualitative methods can be divided into two
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types viz. field geomorphological analysis and the inte-

gration of parameter maps. The field geomorphological

analysis is made directly in the field based on the experi-

ence of the person who involved in the mapping [5]. The

overlay analysis involves the identification and mapping of

causative factors that influences the stability, assignment of

weighted values to each class and each parameters based

on the relative contribution to initiation of landslides,

integration of parameter maps, and preparation of final

landslide hazard or susceptibility map which shows varying

hazard classes [6]. The quantitative methods include sta-

tistical analysis which can be bivariate [7] or multivariate

[8] approaches, geotechnical engineering approaches [9],

and artificial neural network analysis [10]. Probabilistic

methods such as frequency ratio [11] and logistic regres-

sion [12] approaches were used in many research studies.

Many studies were carried out using fuzzy logic [13, 14].

The analytical hierarchy process (AHP) method developed

by [15] was applied widely to landslide studies [16].

In the present study, LSZ mapping was carried out in

part of Nilgiris hills using frequency ratio (FR) which is

complete statistical probabilistic method and analytical

hierarchy process (AHP) which is subjective based multi-

criteria method. The LSZ mapping of the study area were

achieved with the help of remote sensing datasets, GIS

tools and extensive field visit. The main objectives of the

present study was to carry out LSZ mapping for the land-

slide prone area as well as to compare the resultant LSZ

maps obtained by two different methods. Hence, the study

reveals the impact of weightage deriving process in the

final LSZ map. The LSZ map will be useful for adminis-

trators and planners for appropriate town planning in hilly

terrain, to take necessary preventive and mitigation mea-

sures, and future developmental activities in this region.

2 Details of study area

The Nilgiri hill range is a part of Western Ghats situated in

the North-Western part of State Tamil Nadu. The Nilgiri is

one of the important tourist spots in the State. Ooty (is

called ‘‘Queen of Hill Stations’’), Coonoor, and Kotagiri

are the three major hill stations located in this district. The

district has an area of 2552 km2, lying at an elevation of

1000–2633 m above mean sea level (amsl). The total

population of this district as per the 2011 cencus was

0.735071 million. The present study covering the area of

672 km2 and bounded by latitudes 11�150–11�270N and

longitudes 76�370–76�560E (Fig. 1). The Nilgiri hill sur-

rounded by the Coimbatore plains in the southeast, Bhavani

plains in the northeast, Moyar valley in the north and

Gudalur Plateau in the north-west. Moyar is an important

river in the District and runs in an easterly direction, along

the northern boundary of the District. The drainage pattern

is dendritic to radial and at places with outstanding rapids,

cascades and waterfalls. The district usually receives rain

both during south-west monsoon (Gudalur, Pandalur,

Kundah and portion of Ooty Taluk) and north-east mon-

soon (Coonoor, Kotagiri, and Some portion of Ooty

Taluks). The usual annual rainfall in this region varies from

place to place and the range is somewhere between 1500

and 3000 mm.

In Nilgiri hills, the major landslide occurrences in the

year 1978, 1993, 1995, 2002, 2007, and 2009, shows that

the frequency of landslide occurrences increased in the

study region [17]. The most devastation event that hap-

pened in the Nilgiris was in November 2009, when 45

people died [18]. The deforestation activity for growing

vegetables and seasonal crops, tea and other plantation

crops, which reduces the stability of the hill slope, leads to

slope failures (Fig. 2). In Nilgiris, landslides are due to the

effect of pore-pressure increase, particularly during the

rainy seasons [19].

Geologically, the Charnockite Group, comprising of

charnockite, two-pyroxene granulite, banded quartz-mag-

netite granulite/banded magnetite quartzite and thin pink

quartzo-felspathic granulite are extensively developed in

the north-eastern sector of the State and are well exposed in

many prominent hill ranges such as Pallavaram–Chen-

gleput, Javadi, Shevaroy, Chitteri, Kalrayan, Kollimalai,

Pachchaimalai and Nilgiri [20]. The charnockite group of

rocks with enclaves of Satyamangalam schist complex

represented by charnockite and pyroxene granulite covers a

major part of the district in the southern part, which is

popularly known as ‘‘Nilgiri Massif’’. The Nilgiri Massif

is capped by aluminous laterite at a number of places

indicating the deep zone of weathering. Lenses and pockets

of bauxite/bauxitic laterite, which are irregular in nature,

occur in the high level laterite cappings over charnockite in

the Nilgiri hills (1920–2530 m amsl), Nilgiri District. In

the Nilgiri District bauxite occurrences can be grouped into

three sectors, viz., Kotagiri, Ootacamund and Upper

Bhavani.

3 Geospatial database of landslide influencing
factors

In the present study various data sources such as the

topographical map on 1:50,000 scale of the Survey of India

(SOI), geological map published by the Geological Survey

of India [21], Indian remote sensing (IRS) satellite

ResourceSat2 LISS-IV satellite imagery with the spatial

resolution of 5.8 m was procured from National Remote

Sensing Centre (NRSC) and Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer (ASTER) digital
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elevation model (DEM) data of 30 m resolution were used

for the purpose of preparation of different thematic maps of

diverse factors influences landslides. The ArcGIS 10.1

version software was used to prepare the thematic maps

and its integration. There are no regulations available

globally for selecting the landslide causative factors to

prepare LSZ map [22]. The study on causative factors for

LSZ mapping by [23] suggested that the parameters can be

chosen on the basis of literature, data availability and

experience, and technical reasons. In the present study, the

different thematic layers of various causative factors con-

sidered for the study includes slope, slope aspect, slope

curvature, elevation, lithology, land use and land cover,

geomorphology, rainfall distribution, proximity to linea-

ment, and proximity to drainage based on the knowledge

about causes behind the past incidence of landslides in the

study region as well as through review of literature on

common landslide influencing factors. All the thematic

maps were prepared in raster format with common pixel

size of 10 m 9 10 m.

3.1 Landslide inventory map

The landslide distribution map were prepared to evaluate

the relationship between landslides and the causative fac-

tors, which will be helpful for the preparation of landslide

susceptibility zonation (LSZ) maps and validation of the

model [24]. The detailed landslide inventory or distribution

map of the study area was prepared by conducting field

survey using handheld global positioning system (GPS) in

the year 2015. The high resolution satellite imagery

ResourceSat 2 was used to identify the landslide locations

with the help of field GPS locations. There were 34 land-

slide locations identified in the study area and captured as

point data layer (Fig. 1). The landslide inventory dataset

was divided into training (24 landslide locations) and val-

idation (10 landslide locations) dataset. The training land-

slide dataset was used to build the model, while the

validation dataset was used to determine the prediction

accuracy of the model adopted.

3.2 Topographical factors derived from DEM

The density and spatial extent of landslides is highly

depends on the surface topography, which decides the flow

sources and controls the direction of run-off [25]. ASTER

DEM data was used to derive the topographical factors

such as the slope, slope aspect, slope curvature and ele-

vation. The factors were derived using the ArcGIS

10.1@ESRI spatial analyst tool.

3.2.1 Slope

The slope is one of the significant terrain factors which

influences landslide in an area, because it controls the

velocity of the surface and subsurface flows [26]. The slope

Fig. 1 Location map of the study area (part of Nilgiri hills)—Nilgiri District, Tamil Nadu, India
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map (Fig. 3a) was derived from the DEM and reclassified

into five classes viz.,\ 10�, 10�–17�, 17�–25�, 25�–36�,
36�–74� respectively based on the Jenks natural breaks

classification [13, 24, 27].

3.2.2 Slope aspect

Slope aspect describes the direction of the slope face which

may get affected differently by sunlight, precipitation, and

wind. Hence, it indirectly affects the factors like soil moisture

and vegetation cover [28]. Aspect map was derived from

Fig. 2 Field photographs show

different land use practices

along hill slopes in the study

area: a builtup area and

agricultural land, b tea

plantation, c mixed-land use

practice
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DEM and reclassified into eight directional classes as North

(337.5–22.5), Northeast (22.5–67.5), East (67.5–112.5),

Southeast (112.5–157.5), South (157.5–202.5), Southwest

(202.5–247.5), West (247.5–292.5), Northwest (292.5–337.5)

respectively and one flat class with negative values (Fig. 3b).

3.2.3 Slope curvature

In the present study we considered combo curvature

(combination of plane and profile), which helps us to study

the morphology of the slope and flow of water across the

surface [24]. The curvature map was derived from DEM

and reclassified as concave (negative values), convex

(positive values), and the zero values were classified as flat.

The flat class in curvature indicates linear slope surface

(Fig. 3c).

3.2.4 Elevation

The natural condition of the terrain gets affected by varying

climatic conditions at higher altitudes. The elevation gives

us the overview of lowest and highest elevation [13]. The

elevation range of the study area is 289–2633 m amsl. The

whole range was reclassified into five classes based on

natural breaks classification, i.e. 289–734, 734–1314,

1314–1764, 1764–2065, and 2065–2633 m (Fig. 3d).

3.3 Geological, environmental, and triggering

factors

3.3.1 Lithology

The withholding capacity of rocks to the erosion and

weathering activities is the important aspect in controlling

the stability of the slope [29]. The lithology map of the

study area was prepared from the geological map published

by Geological Survey of India [21]. Charnockite,

Fig. 3 Landslide causative factors: a slope, b slope aspect, c slope curvature, d elevation

Comparison of probabilistic and expert-based models in landslide susceptibility zonation… 761

123



garnetiferous quartzofeldspathic gneiss, fissile hornblende-

biotite gneiss, and ultramaffic rocks are the major litho-

logical units exist in the study area (Fig. 4a).

3.3.2 Land use and land cover

The land use modifications along hill slopes like defor-

estation, agricultural and constructional activities leads to

landslides [30]. The land use and land cover map was

interpreted and vectorized using high resolution Resour-

ceSat2 satellite image and using topographic sheet as ref-

erence. The different land use and land cover features

interpreted and digitized includes evergreen forest, decid-

uous forest, scrub forest, barren land, agriculture field-crop,

agricultural field-tea plantation, builtup area, water body

(Fig. 4b). The modification of natural slope conditions for

the agricultural activities such as crop and tea plantation

are influencing much for the landslides in the study area.

3.3.3 Geomorphology

Geomorphology describes the terrain condition, which

helps us to gain knowledge behind the development of

landslide occurrence in an area [11, 31]. The

geomorphological features were visually interpreted with

the aid of satellite image includes denudational hill, highly

dissected structural hill, intermontane valley, and piedmont

zone (Fig. 4c).

3.3.4 Rainfall distribution

The rainfall was considered as a triggering factor for

landslide initiation. The annual average rainfall was cal-

culated from the 0.5� 9 0.5� rainfall grid data. The rainfall

distribution map was prepared by inverse distance weigh-

ted (IDW) spatial interpolation method and reclassified into

five classes based on Jenks natural breaks classification viz.

1233–1430, 1430–1558, 1558–1695, 1695–1830,

1830–2028 mm (Fig. 4d).

3.3.5 Proximity to drainage

The distance from drainage to the source location of the

landslides has varying influence on the initiation of land-

slides i.e. closer the distance higher the possibility of

occurrences. The major streams and drainages were digi-

tized from the SOI topographic sheet. Further, the prox-

imity to drainage was calculated using Euclidean distance

Fig. 4 Landslide causative factors: a lithology, b land use and land cover, c geomorphology, d rainfall distribution, e proximity to drainages,

f proximity to lineaments
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method in ArcGIS 10.1@ESRI and reclassified into five

natural break classes viz. 0–140.625, 140.626–222.656,

222.657–359.375, 359.376–500.000,[ 500 m (Fig. 4e).

3.3.6 Proximity to lineaments

The lineaments were visually interpreted from high-reso-

lution satellite imagery, as the possible occurrences of

landslides are likely to be high in regions that fall close

[13]. The distance from lineament was calculated using

Euclidean distance method in ArcGIS 10.1@ESRI. The

proximity to lineament was reclassified into five natural

break classes viz., 0–155.822, 155.823–348.428,

348.429–492.752, 492.753–593.352, 593.353–739.128 m

(Fig. 4f).

4 LSZ mapping methods

4.1 Frequency ratio (FR) method

In the present study, the influence values of each class in

the individual causative factors were obtained through

frequency ratio (FR) method [32]. The relationship of past

landslides to each influencing factor can be calculated

using FR method. The FR value greater than 1 means

higher correlation which indicates higher the possibility of

landslide occurrence. The FR value of each class in indi-

vidual causative factor was calculated using the Eq. 1.

Further, the FR values of each causative factor were

summed up to get the final landslide susceptibility index

(LSI) value in each cell which indicates degree of landslide

susceptibility, using the Eq. 2 [24].

Frequency ratio ¼ slide ratio

class ratio
ð1Þ

where slide ratio is the number of landslide pixels in a class

to total number of landslide pixels; class ratio is the number

of pixels in individual class to total number of pixels in a

whole class

LSI ¼ RFR ð2Þ

where LSI is landslide susceptibility index; FR is fre-

quency ratios of each causative factor

4.2 Analytical hierarchy process (AHP) method

In the present study, analytical hierarchy process (AHP)

which is a multi-criteria decision making (MCDM)

approach developed by [15], was adopted to estimate the

weights of the factors and ratings of the class in each

landslide influencing factor through pair-wise comparison

matrix on the basis of scale of preference given by [15].

The scale of preference (Table 1) ranges from 1 (equal

preference) to 9 (extremely high preference) to the inter-

secting cell in the pair-wise comparison matrix of each

influencing factor/classes under comparison against other

factor/classes [33]. In the pair-wise comparison matrix, if

the factor/class on the vertical axis has higher degree

preference than the horizontal axis, at that time the scale

given between 1 and 9. In opposition, if the factors/class on

the horizontal axis of the matrix has having higher degree

preference than the vertical axis, the scale considered in the

reciprocals (1/2–1/9) [34]. In AHP method, the scale of

preference can be decided based on the subjective, objec-

tive, and combination of both [35]. In the present study, the

scale of preference was decided based on the subjective

and objective method. The values assigned on the basis of

presence of landslides in the classes of a parameter as well

as subjective knowledge. The effect of subjectivity i.e.

inconsistency can be estimated through the evaluation of

consistency index (CI) using the Eq. 3 and consistency

ratio (CR) using Eq. 4 [34].

CI ¼ ðkmax � nÞ
n� 1ð Þ ð3Þ

CR ¼ CI

RI
ð4Þ

where kmax is the maximum eigen value; n is the number of

causative factors present in the pair-wise comparison

matrix.

CR can be calculated by ratio CI/RI, where RI stands for

random index based on number of random samples [34]

(Table 2). In the pair-wise comparison matrix, CR[ 0.1

means there exists inconsistency and requires revision in

the scale of preference [36]. The landslide susceptibility

index (LSI) was calculated by adding all the scores

obtained by multiplying weight of factor with rating of

class as given in Eq. 5 [37].

Table 1 Scale of preference between two factors in AHP suggested

by [15]

Numerical scales Degree of preferences

1 Equal importance

3 Moderate dominance of one over another

5 Strong or essential dominance

7 Very strong or show dominance

9 Extremely high dominance

2, 4, 6, 8 Intermediate values

Reciprocals For opposite comparison
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LSI ¼
Xn

j¼1

ðWjwijÞ ð5Þ

where LSI is the landslide susceptibility index, Wj is the

weight value of causative factor j, wij is the weight value of

class i in causative factor j, and n is the number of cau-

sative factors.

5 Results and discussion

The FR values were evaluated based on the Eq. 1 and the

results are presented as supplementary material Table S1.

The results depicts that, the topographical factors like slope

(17�–25� and 25�–36�), slope aspect classes (north,

southeast, northwest, east), convex slope, elevation ranges

(734–1314, 1764–2065, 2065–2633 m) possess greater

than 1 FR values and indicating the higher correlation than

the other classes present in topographical factors.

Charnockite class in lithology; builtup area, agricultural

field-crop and tea plantation in LULC, denudational class

in geomorphology; 0–140.625 m distance from drainage

and 0–155.822 m distance from lineaments are having

higher correlation with past landslide locations. The hier-

archically ordered causative factors and its pair-wise

comparison to evaluate the normalized weights are given in

Table 3. Similarly, the pair-wise comparison of classes

within the individual factors were evaluated and presented

as supplementary material Table S2. The maximum eigen

value, consistency index (CI), random index (RI), consis-

tency ratio (CR) were also presented in the respective

places in both the tables. The final score of the individual

classes were calculated by multiplying the rating values of

individual class with weight of individual factors.

5.1 Geospatial integration: LSZ mapping

In the present study, we have processed and converted all

the vector based thematic layers into raster format to match

the nominal spatial resolution 10 m pixel size of IRS-LISS-

IV multispectral satellite imagery using the spatial analysis

tool in ArcGIS 10.1 software. Geospatial database of all the

considered landslide influencing factors were converted

into raster format using the respective FR values and scores

calculated using the AHP method. The spatial integration

of all the raster layers was carried out through raster cal-

culator tool in ArcGIS 10.1 software. The final landslide

susceptibility index (LSI) values were evaluated using the

Eqs. 2 and 5. The statistics of LSI values using the FR

model results the minimum (3.28), maximum (17.11),

mean (10.00), and standard deviation (1.83) values. The

LSI output of AHP method depicts the minimum, maxi-

mum, mean, and standard deviation values 0.07, 0.43, 0.21,

and 0.05, respectively. The integrated LSI values range

were reclassified using natural breaks into five suscepti-

bility classes qualitatively viz. very high, high, moderate,

low and very low (Fig. 5a, b). The resultant landslide

susceptibility classes indicate that each class having some

importance in the future landslide occurrences. The past

landslide locations were integrated with reclassified LSZ

Table 2 Random Index values for the pairwise comparisons in AHP

analysis (after [34])

N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Table 3 Pair-wise comparison matrix between the landslide influencing factors

Conditioning factors 1 2 3 4 5 6 7 8 9 10 Normalized

weights

Lithology (1) 1 0.02

Geomorphology (2) 2 1 0.02

Slope curvature (3) 3 2 1 0.03

Elevation (4) 4 3 2 1 0.04

Proximity to lineament (5) 5 4 3 2 1 0.06

Slope aspect (6) 6 5 4 3 2 1 0.08

Proximity to drainage (7) 7 6 5 4 3 2 1 0.11

Rainfall distribution (8) 8 7 6 5 4 3 2 1 0.15

Land use land cover (9) 9 8 7 6 5 4 3 2 1 0.21

Slope (9) 9 9 8 7 6 5 4 3 2 1 0.29

Maximum Eigen value: 10.85; consistency index (CI) = 0.09; random index (RI) = 1.49; consistency ratio (CR) = 0.06
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map prepared by FR and AHP methods, to determine the

percentage of landslides within individual susceptibility

classes. In the FR method, 62.50 and 20.83% of past

landslide locations fall in very high and high susceptibility

classes respectively, whereas in AHP method it was 37.50

and 29.17%, respectively as given in the Table 4.

Fig. 5 Landslide susceptibility

maps: a frequency ratio,

b analytical hierarchical process

models
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Table 4 Percentage of past landslide (training) locations identified in the different landslide susceptibility classes of LSZ map prepared by the

frequency ratio and analytical hierarchical process models

Landslide susceptibility class No. of pixels in class % of class pixels No. of landslides in class % of landslide pixels in class

Frequency ratio (FR) model

Very high 810,072 12.05 15 62.50

High 1,858,428 27.64 5 20.83

Moderate 2,165,144 32.20 3 12.50

Low 1,296,668 19.28 1 4.17

Very low 594,176 8.84 0 0.00

Analytical hierarchical process (AHP) model

Very high 796,296 11.84 9 37.50

High 1,115,917 16.59 7 29.17

Moderate 1,755,242 26.10 5 20.83

Low 1,862,989 27.70 3 12.50

Very low 1,194,044 17.76 0 0.00

Fig. 6 Graphical representation

a success rate curves with AUC

value derived using the

landslide susceptibility index

rank percentage and cumulative

percentage of landslide

(training) occurrence,

b prediction rate curves with

AUC value derived using the

landslide susceptibility index

rank percentage and cumulative

percentage of landslide

(validation) occurrence
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5.2 Comparison and validation

The LSZ map was prepared by FR and AHP methods were

validated using the Area Under Curve (AUC) method,

which determines the prediction capability of model

adopted [38]. In the present study, the success rate and

prediction rate curves were derived to validate the LSZ

maps. To determine the success rate and prediction rate of

the model adopted, AUC method has been globally used by

many researchers [39]. The AUC value near to 1.0 indi-

cates the higher accuracy of the model, while the value

close to 0.5 reflects the inaccuracy of the model [40]. To

draw the success and prediction rate curve and determine

the AUC value, the LSI value of both the models were

reclassified into 100 classes and ordered in the descending

order. Then the percentage of the pixels covered in the each

class was calculated. Further, training and validation

landslide dataset were intersected with 100 classes to

identify the percentage of landslide pixels fall in individual

class. Finally, the cumulative percentage of training land-

slides (success rate) and validation landslides (prediction

rate) occurrence in each class were evaluated. The AUC

value of success rate curve (Fig. 6a) for the FR and AHP

models were evaluated using training landslide dataset as

0.7312 and 0.6470, respectively. The AUC value of pre-

diction rate curve (Fig. 6b) for the FR and AHP models

were evaluated using validation landslide dataset as 0.6279

and 0.5620, respectively, reveals that the FR model shows

the higher prediction accuracy than the AHP model for the

chosen study area. The higher prediction accuracy of FR

method is due to weight deriving process in which the

influence of each class was derived based on the relation-

ship with past landslide occurrences. However, AHP

method results less prediction accuracy due to the fact that

the weight deriving process involved more subjectivity.

6 Conclusions

The present research work was carried out with the aim of

performing LSZ mapping and to prove the application of

probabilistic and subjective based method in LSZ mapping.

The remote sensing, GIS, and GPS techniques were helpful

in preparing the geospatial database of landslide influenc-

ing factors considered for the present study. In terms pre-

diction accuracy, the AUC value of Frequency Ratio (FR)

model was 0.6279, while the Analytical Hierarchical Pro-

cess (AHP) model given the AUC value of 0.5620. The

study depicts that the FR method has the higher prediction

accuracy than the AUC model in the present study.
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