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Abstract Since the industrial revolution, rapid urban

sprawl has been one of the main characteristics of urba-

nised areas worldwide. The main objective of this study

was to detect, quantify and characterise the changes in land

use/land cover (LULC) in Istanbul Province between 2003

and 2015 using a hybrid geographic information systems

(GIS)-remote sensing method. Landsat Thematic Mapper

and operational land imager images were co-registered and

classified using object-based image classification tech-

niques and visual analysis. Land cover maps were raster-

ized at the same spatial resolution (30 m) in a GIS

environment and the same legend was used for both land

cover maps. Urbanised areas and other LULC types were

determined for the years 2003 and 2015. The extent and

spatial distribution of a number of LULC classes in

Istanbul changed between 2003 and 2015. Settlement areas

increased by 20,464.1 ha in only 12 years and 2529.89 ha

of forested land was destroyed for construction of a new

highway. Moreover, forests and agricultural areas became

highly fragmented. This study confirms the accuracy of the

hybrid GIS-remote sensing method. Moreover, the result-

ing data highlights the extent of the recent rapid land

degradation in Istanbul and calls attention to the impor-

tance of protecting the natural ecosystems in this area.

Keywords Rapid urbanisation � Remote sensing � Land
use/land cover change � Istanbul

1 Introduction

Population flow from rural to urban areas increased dra-

matically as a result of the industrial revolution in the early

nineteenth century. Such population movements have

negatively affected natural ecosystems in a variety of ways,

for example, by increasing pollution, forest degradation,

landscape fragmentation and surface runoff [1–3]. It is

suggested that land use/land cover (LULC) change is one

of the major components of global change and may have a

greater effect than climate change [4]. Indeed, changes to

land surfaces influence climate and impact ecosystems and

goods [5]. Very different forms of LULC changes have

occurred over time [6], though the decline in forest and

green space areas is the most important negative type of

change-impacted land degradation [7].

Temporal changes in LULC are critical aspects of sus-

tainable planning and development [8] due to the imme-

diate impacts of LULC on the major components of natural

ecosystems [9, 10]. Remote sensing (RS) images are a

valuable resource for assessing the magnitude and patterns

of change through LULC change analysis [11]. Landsat 4/5

TM and Landsat 8 OLI images are commonly used for

monitoring LULC changes due to their relatively high

spatial resolution and availability [12, 13]. LULC changes

in the same location can be detected by classifying before

and after images of the same area [14, 15]. For example,

Dewan and Yamaguchi [16] examined LULC patterns in

the Dhaka Metropolitan area over 45 years in the context

of sustainable land use and environmental planning, and

Wan et al. [17] investigated comparative dynamic LULC
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changes using GIS procedures and remotely-sensed satel-

lite images in the Jiansanjiang region of China for natural

resource conservation.

Various change detection methods have been developed

for different purposes, such as assessment of rapid urban-

isation [18, 19], vegetation cover changes [20, 21], defor-

estation [22, 23], and monitoring the environment [24, 25].

Several algorithms have been proposed for change detec-

tion studies and can be placed into two major categories:

(1) pixel-to-pixel comparison of satellite imagery and (2)

post-classification comparison [26]. Support vector

machine [27], image algebra [28], image classification

[29], change vector analysis [30], image transformation

[31] and feature extraction [32] are the most widely used

techniques for detection of temporal LULC changes.

In addition to these methods, post-classification com-

parison is another common method that enables compar-

ison of classified ‘‘before’’ and ‘‘after’’ images which are

imagery of same geographic location belong to different

dates [33, 34]. Taha [35] investigated urbanisation

encroachment in the Nile River delta using fuzzy post

classification comparison. Colditz et al. [36] studied the

potential effects of multi-resolution post-classification

changes in the Alvarado mangrove area of the Mexican

Gulf Coast. Teng et al. [37] applied post-classification

comparison and image differencing methods to multi-

temporal satellite images of central Taiwan.

The population of Istanbul has increased very rapidly

due to migrations in last 15 years. According to the

address-based census system [38], the population of

Istanbul was 10,072,447 in 2000 and increased to

14,657,434 in 2015. Therefore, LULC changes in Istanbul

Province need to be assessed using spatial techniques. In

this study, Landsat satellite imagery, remote sensing and

GIS methods were combined with object-based classifica-

tion and post-classification comparison techniques to

measure the rates of urbanisation and urban sprawl and

assess the impact of urbanisation on the environment and

vegetation cover by measuring LULC changes in Istanbul

Province between 2003 and 2015.

2 Data and methods

Rapid urbanisation and LULC changes were detected by

classification of ‘‘before (2003 mosaic)’’ and ‘‘after (2015

mosaic)’’ Landsat imagery. Each data set was composed

from Landsat 5 TM and Landsat 8 OLI satellite images,

which have the same spatial resolution (30 m) but a dif-

ferent spectral resolution (Table 1).

In order to generate highly accurate land cover maps of

the study area for the years of 2003 and 2015, pre-pro-

cessing steps including atmospheric corrections and

rescaling were applied to all Landsat scenes. In the second

step, the images were classified by spectral segmentation

and object based image classification methods. High res-

olution maps and images were used as auxiliary data to

determine LULC classes. In the final step, a confusion

(error) matrix was produced to evaluate the classification

results.

2.1 Study area

The study area, Istanbul Province, lies in North Western

Turkey. The city straddles the Çatalca Peninsula to the

West (Europe) and Kocaeli Peninsula to the East (Asia),

with the two parts of the city divided by the Bosporus. The

study area is located between the longitudes of 28�010–
29�550 east and latitudes of 40�280–41�330 north and covers

an area of 5.461 km2 including lake surfaces (Fig. 1).

Istanbul has a transitional climate that is affected by the

Black Sea from the North and Mediterranean Sea from the

South. The average annual temperature is 14.3 �C and the

monthly average temperature ranges from 5.8 �C in Jan-

uary to 23.6 �C in August. Annual total precipitation is

749.5 mm [39] and due to the impact of the Mediterranean

Sea, most precipitation occurs in winter and least in sum-

mer. The natural vegetation cover of Istanbul is composed

of forest, maquis shrubland, adapted pseudo-maquis and

shoreline plants [40]. Common tree species include oak,

chestnut, beech, hornbeam, maple, Mediterranean cypress

and pine (Pinus pinea); forests are widespread, especially

in the northern parts of the study area.

Istanbul Province lies on two abrasionplateaus, theKocaeli

and Çatalca peninsulas. The area has a moderate rugged ter-

rain with no abrupt or massive changes in the small-scale

valleys, plains, hills and highlands. The highest hills are

mainly located on the Asian side of Istanbul and have an

average altitude of 350 m; elevation generally increases from

west to east throughout the province. Aydos Mountain is the

highest peak in the study area at 537 m. There are three large

lakes in Istanbul Province, Terkos, Büyükçekmece and

Küçükçekmece, which formed as lagoons.

The population of the study area was 10,072,447 in 2000

and 14,657,434 in 2015 (TUIK 2016). Istanbul is composed

of 39 sub-provinces, 25 of which are located on the

European side; almost two-thirds of the population live on

this side of the city. Istanbul is the largest urban area and

major centre of industry, commerce, culture, education and

business in Turkey. The city is the geographic connection

point of Europe and Asia and has important roads and

highways which play major roles in transit transportation.

Population of Istanbul is increasing very rapidly due to

migration pressure from the other cities of Turkey and it is

important to assess LULC changes in the city by spatial

techniques.
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2.2 Pre-processing

Mosaic images were prepared for the years of 2003 and

2015 and then classified via an object-based image analysis

technique (Table 1). The pre-processing steps including all

image preparation stages such as geometrical setup and

atmospheric correction were applied to mosaicked images

before classification.

The first mosaic (for 2003) image was generated from

two Landsat 5 TM images taken in 2003. Six of the seven

bands in the TM images, except for the thermal band (band

6), were stacked and multispectral images were created.

The thermal band of the sensor was not included due to its

lower spatial resolution (120 m) in comparison with the

other bands (30 m; USGS 2015a).

The two multispectral images were mosaicked and a

single multispectral image covering the entire study area

was generated with a spatial resolution of 30 m. Mosaic

images usually contain artefacts due to variations in the

atmospheric conditions on the date of acquisition. There-

fore, a colour balancing algorithm was applied to remove

atmospheric effects while mosaicking: a histogram

matching procedure was applied to achieve image-to-im-

age color correction [41]. This technique is useful for

matching satellite images of the same or adjacent scenes

taken on different dates under different atmospheric con-

ditions. The histogram matching technique determines a

lookup table to approximately convert the histogram of one

image to the histogram of another image [42]. Master and

slave images were determined and the histograms of these

images were computed and compared. Band-to-band his-

togram matching was performed to remove color differ-

ences between the images and create a single image

covering the entire study area at the end of the mosaicking

procedure. Finally, the mosaic image was subset by the

province borders of Istanbul and prepared for atmospheric

correction.

The second mosaic (for 2015) image was prepared using

exactly the same methods/techniques as the before image.

Six bands of Landsat OLI images acquired of Istanbul on

two dates in 2015 were stacked and multispectral images

were created. Bands 2, 3, 4, 5, 6 and 7 were selected and

stacked to create multispectral images corresponding to the

same scenes as the Landsat 5 TM images. The other bands

of the OLI sensor were excluded to create images with the

same spatial and spectral properties [43] as the 2003

mosaic image.

Different atmospheric conditions in illumination, scat-

tering and absorption may produce alterations in radiance

values that are normally not associated with the reflectance

values of land cover classes [44]. The main principle of

determining LULC changes by remote sensing techniques

is that the radiance differences associated with LULC

changes are larger than the radiance changes due to vari-

ations in atmospheric conditions [45]. Seasonal effects can

lead to errors in change detection studies and satellite

images captured in clear weather conditions in the same

season have to be selected to mitigate uncertainties due to

Table 1 Characteristics of the

satellite images used as primary

data in this study

Scene ID Instrument Date acquired Spectral resolution Spatial resolution

LT51800312003184MTI01 Landsat 5 TM 03.07.2003 8-bit 30 m

LT51800322003184MTI01 Landsat 5 TM 03.07.2003 8-bit 30 m

LC81800312015137LGN00 Landsat 8 OLI 17.05.2015 12-bit 30 m

LC81800322015137LGN00 Landsat 8 OLI 17.05.2015 12-bit 30 m

Fig. 1 Location of the study

area, Istanbul Province
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inter-annual variability [46, 47]. All TM and OLI images

were subjected to a dark object subtraction (DOS) proce-

dure [23–48] to obtain reflectance images. DOS is a simple,

widely used image-based atmospheric correction method

[42] that was used to clean-up each band of the TM and

OLI images to remove atmospheric haze. The DOS method

accepts that the sunshine reflected by dark objects is one of

the major components of atmospheric scattering. This

method assumes some unwanted atmospheric effects, such

as haze, can be eliminated by determining the darkest pixel

value of a band (or image) and subtracting this value from

each pixel value in each band.

2.3 Image classification

For change detection applications, satellite images should be

acquired by the same sensor and at the same time of the year

[49]. Different sensors can have different spatial and radio-

metric resolutions, thus pixel-by-pixel (per pixel) compar-

isons of satellite images cannot be achieved. In this study, the

scenes of the 2003 mosaic image were acquired using a

Landsat TM sensor with 30 m spatial resolution and 8-bit

radiometric resolution. The scenes of the 2015 mosaic image

were acquired using a Landsat OLI sensor with 30 m spatial

resolution (without panchromatic band) and 12-bit radio-

metric resolution. A per pixel classification technique was not

applied in this study, though the 2015 mosaic image was

rescaled to 8-bit to equalise the segmentation conditions.

Image segmentation was the first step of object-based

classification. The image segmentation process was per-

formed using eCognition 8.9 software [50, 51], via an area-

merging technique achieved by selection of a random pixel

and determination of segments with connection to neigh-

bouring pixels due to scale, colour (DN values), homo-

geneity criteria and shape. At each step, image objects were

merged and converted to a new larger object. The merging

decision based on local homogeneity criteria consists of

‘fit’ or ‘fit not’ criterion but also merges the cost repre-

senting ‘degree of fitting’ (1). The degree of fitting h, for a

d-dimensional feature spaces is calculated as:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

ð r
1d

� r
2d

r

Þ ð1Þ

The ultimate goal of this ‘multi-resolution segmenta-

tion’ method is to build hierarchical sets of image objects

with different spatial resolutions [52]. The multi-resolution

segmentation approach produced more than 20,000 seg-

ments for both the TM and OLI images and all of these

segments were classified according to the National Land

Cover Definition (NLCD) system of the United States

Geological Survey (USGS) defined in 1992 [53]. Nine of

the 21 classes of this classification system were determined

from the 30 m spatial resolution Landsat images.

Visual analysis is a strong and highly accurate way of

evaluating segments [50]. The segments of the Landsat TM

images were classified by visual analysis of high-resolution

satellite images such as a IKONOS pan-sharpened 2006

image with 1 m resolution, IKONOS multi-spectral 2008

image with 4 m resolution, aerial photos and municipal

maps, along with the 2003 Landsat TM image itself. The

segments of the 2015 Landsat OLI image were classified by

visual analysis of ArcGIS base maps (2008 IKONOS images

with 1 m resolution), Google Earth and the OLI image itself.

2.4 Change detection

It is important to accurately inventory a number of biophys-

ical and human-made features so that physical- and human-

related processes can be better understood [54, 55]. Multi-

temporal data sets (satellite images) may be acquired for the

same geographic location by the repetitive surface coverage

of satellites. These data enable the adoption of different types

change detection techniques such as change vector analysis

(CVA), principal component analysis (PCA), image differ-

encing and multi-date image classification [56, 57].

Post-classification comparison (PCC) of the classified

Landsat images was used as the change detection technique

in this study. PCC is widely-used in change detection

studies [58, 59]. This method is based on the comparison of

land cover classes at the pixel scale and is applied by

subtraction of one image from another. A change matrix

was developed and change areas can be displayed along

with LULC classes [49–60]. The main advantage of this

method is that it provides a complete change matrix

between study dates [61, 62]. As it classifies each image

independently, PCC can greatly reduce the error in change

detection studies; however, the accuracy of this method

depends on the accuracy of classification [58].

If the accuracy of the transitions is of interest as well as

assigning classes, the transition error matrix is the most

informative tool [63]. In this study, the PCC error matrix was

basically calculated by subtraction of the 2003 mosaic image

from the 2015 mosaic image. A 2 9 2 change/no change

matrix was used to generate the change detection reports

(Table 2).

Matrix elements can be calculated as:

X ¼ A i ¼ j \ k ¼ lð ÞA i ¼ j \ k 6¼ lð Þ
A i 6¼ j \ k ¼ lð ÞA i 6¼ j \ k 6¼ lð Þ

� �

ð2Þ

3 Results

Multi-date Landsat images were classified by image seg-

mentation and visual analysis of the segments using high-

resolution imagery after co-registration of the satellite
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images. Accuracy assessment procedures were applied to

measure the quality of the classification processes and an

error matrix was produced (Table 3). In total, 144 random

points were selected on each of the classified images

according to the formula of Fitzpatrick-Lins [65]. The

expected accuracy was 90% and allowable error was set to

5%; these conditions required 144 points for reliable results.

A stratified random sampling method was used to assign

points to all LULC classes on the maps. For equal allocation

of samples, the smallest sample size was 5 per class and the

largest sample size was 50 per class. An accuracy assess-

ment procedure was applied with the support of field data,

aerial photos, prior studies and Google Earth imagery.

Overall, the classification accuracy was 93.71% for the

2003 image and 95.04% for the 2015 image.

Producer’s accuracy: total number of correct pixels in a

category divided by total number of pixels in that category.

User’s accuracy: division of total number of correct pixels

in a category divided by total number of pixels classified in

that category. Overall accuracy: total number of correct

pixels divided by total number of pixels in the matrix.

3.1 Classified maps

Representative LULC classes for Istanbul Province were

defined from Landsat imagery taken in 2003 (Fig. 2) and

2015 (Fig. 3). The USGS land cover class definitions

published in 1992, image composites and high-resolution

imagery were used to determine LULC classes. Overall,

nine classes of USGS 1992 definitions [53] were identified

in the study area.

In 2003, areas of vegetation were dispersed in the

northern part of Istanbul Province whereas agricultural

areas and settlements covered the southern part of the study

area. The shorelines of the Marmara Sea and Bosporus

were highly populated, as indicated by the densely-packed

high intensity residential areas. Another remarkable finding

was that the forests and agricultural areas are fragmented

by residential areas in both continents of the study area.

Generally, the same LULC patterns observed in 2003

were present in 2015; however, some important differences

were detected in the PCC analysis. Increases in settlements

and roads, along with decreases in forests, agricultural

areas and grasslands were the major differences in the 2015

map; these changes are discussed in detail in the next

section of this study.

3.2 LULC change detection

Determination of changes in the thematic land cover maps

of the 2003 mosaic and the 2015 mosaic images by a post-

classification change detection approach was the final step

of this study (Table 4).

Agricultural areas decreased 4.04% from 113,840 ha in

2003 to 109,237 ha in 2015 due to increased settlement

activities. Some agricultural areas transitioned to high

intensity residential or low intensity residential areas as a

result of increased human activity due to the rapid increase

in population (Table 5). Forested areas decreased by

3.68%; human activity was the main reason for this eco-

logical destruction, as indicated by conversion of forests to

agricultural areas (3.489%), herbaceous plant areas

(2.96%) and high intensity residential areas (1.442%).

Another important transition was observed in low

intensity residential areas: 28.579% of the low intensity

Table 2 Change/no change error matrix [64]

2015 mosaic image 2003 mosaic image

No change Change Sum

No change X11 X12 X1?

Change X21 X22 X2?

Sum X?1 X?2 1.0

Table 3 Accuracy assessment matrix for the TM and OLI images

Class name Landsat TM—2003 Landsat OLI—2015

Producers accuracy (%) Users accuracy (%) Producers accuracy (%) Users accuracy (%)

Agriculture 96.15 92.59 92.59 92.59

Bare soil 100.00 75.00 100.00 100.00

Forest 95.24 98.36 98.31 98.31

Herbaceous plants 76.92 76.92 100.00 72.73

High intensity residential 100.00 95.24 96.00 100.00

Low intensity residential 71.43 100.00 66.67 80.00

Roads 100.00 100.00 80.00 100.00

Water 100.00 100.00 100.00 100.00

Wetlands 100.00 50.00 100.00 75.00

Overall class accuracy (%) 93.71 95.04
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residential areas converted to high intensity residential

areas between 2003 and 2015; these were the places were

where most newcomers settled. As previously mentioned,

the population of Istanbul increased by about 5 million

between 2000 and 2015. Some new residential areas were

created for newcomers on previously forested and agri-

cultural areas, but most of the new population settled in

existing high intensity residential and low intensity resi-

dential areas.

Increased areas of roads was another important change

between 2003 and 2015. The area covered by roads by

doubled within 15 years: the road density increased in

urban areas along with forest destruction in northern parts

of the study area for construction of a new highway. In

Fig. 2 LULC classes for

Istanbul Province in 2003

Fig. 3 LULC classes for

Istanbul Province in 2015

Table 4 Total LULC changes

in Istanbul Province between

2003 and 2015

2003 (ha) 2015 (ha) Difference (ha) Rate (%)

Agriculture 113,840.0 109,237.0 -4603.0 -4.04

Bare soil 6806.5 9663.0 2858.0 41.96

Forest 269,353.0 259,433.0 -9920.0 -3.68

Herbaceous plants 47,538.8 35,082.3 -12,456.5 -26.20

High intensity residential 82,517.9 102,982.0 20,464.1 24.80

Low intensity residential. 11,249.4 11,575,9 3265 2.90

Roads 3098.3 6646.4 3548.1 114.52

Water 12,633.4 12,386.6 -246.8 -2.0

Wetlands 280.3 311.4 31.1 11.1
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total, 2529.89 ha of forested area was destroyed for con-

struction of the new highway; this area represents 0.46% of

the total area of Istanbul Province. Additionally, bare soil

areas increased markedly, especially due to mining activ-

ities in forested areas of northern Istanbul; these activities

contributed to a decrease in the green cover area of the

study area.

A LULC difference map (Fig. 4) was created by sub-

traction of LULC classes in the 2003 mosaic image from

the 2015 mosaic image. The subtraction was applied to

every corresponding pixel in the images; and differences of

more than 20% were classified as ‘‘change places’’. Red

and blue areas indicate positive and negative changes while

light grey areas underwent no change. Difference maps are

usually generated by subtraction of unclassified satellite

imagery and increase and decrease areas show amount of

changes in pixel values satellite images. Pixel values of

satellite imagery are usually high in urbanized areas and

bare soils and positive changes can be understood as veg-

etation loss and deforestation. The difference map shown

below was prepared by subtraction of classified imagery.

That means order of LULC classes on classified maps

affected type of change in unmeaningful way. Therefore

areas of changes should be considered more than type of

change as negative of positive. As shown in the map,

changes in LULC classes were observed thorough the

entirety of Istanbul Province; these changes were more

obvious in the centre of the European part that was mostly

covered by agricultural areas in 2003. Both agricultural

areas and forest areas became fragmented by different

LULC classes, as indicated by the small, thin areas of

change. The new highway appears very distinctively as the

thick red line throughout the centre of Istanbul and

represents the strongest proof of deforestation due to

human activities.

4 Discussion

LULC change analysis in Istanbul Province was achieved

by: (1) classification of Landsat imagery using USGS 1992

land cover class definitions, (2) comparison of classified

Landsat data in images captured in 2003 and 2015, and (3)

quantification of LULC classes in the before and after

images (using the method of Yuan et al. [66]). In the

context of determining LULC change detection over time,

this study demonstrates the potential of these techniques

for producing accurate land cover maps from Landsat

imagery compared to the lower accuracy of pixel based

methods [16]. Moreover, a number of significant LULC

changes were detected in the study area between 2003 and

2105 that merit further discussion.

Using pixel-based classification techniques, it is almost

impossible to separate urban areas from bare soils, mines,

beaches or fallow fields if the data is generated from a

30 m resolution satellite image such as Landsat TM ima-

ges. After supervised or unsupervised classification,

masking of incorrectly classified areas and secondary

classification is advised to overcome this issue. However,

even after applying all of the recommended techniques, it

is not possible to acquire a map with 95% accuracy using

Landsat imagery which is accomplished in this study by

visual analysis and editing of vector segments.

The improved classification accuracy of the image seg-

mentation approach over pixel-based classification is an

important finding of this study. Image segmentation has the

Table 5 LULC transition matrix for Istanbul between 2003 and 2015 (%)

Final State (2015) Initial State (2003)

Agr BS Forest HP HIR LIR Roads Water WL

Agr 80.779 0.758 3.489 9.876 1.740 18.406 6.796 1.398 14.643

BS 0.154 63.834 1.047 3.691 0.157 0.384 0.424 2.963 1.056

Forest 6.547 8.461 89.290 22.751 2.030 11.883 10.711 3.421 4.491

HP 3.715 13.434 2.960 36.465 3.781 6.504 12.960 2.689 1.159

HIR 5.130 6.258 1.442 22.336 90.584 33.645 22.470 0.443 0.000

LIR 3.180 0.596 0.519 2.287 1.030 28.579 1.158 0.046 0.000

Roads 0.385 3.307 1.005 2.090 0.637 0.586 45.449 0.328 0.000

Water 0.077 3.267 0.200 0.481 0.026 0.014 0.031 88.410 41.280

WL 0.033 0.000 0.047 0.012 0.000 0.000 0.000 0.301 37.370

CT 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

CC 19.221 36.166 10.710 63.535 9.416 71.421 54.551 11.590 62.630

Agr agriculture, BS bare soil, HP herbaceous plants, HIR high intensity residential, LIR low intensity residential,WL wetlands, CT class total, CC

class changes
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advantage of considering the spatial characteristics of

objects along with their spectral features. A multi-resolution

segmentation approach was initially applied in this study. A

secondary segmentation such as spectral difference seg-

mentation could have been applied to decrease the number

of existing segments, but resulted in similar issues as pixel-

based classification. Large segments produced by spectral

difference segmentation covered both bare soils and urban

areas. Therefore, the segments generated by multi-resolu-

tion segmentation were classified by visual analysis and the

secondary segmentation was ignored. More than 20,000

segments were classified with the help of high-resolution

satellite imagery, Google Earth and analogue maps. The

results acquired using this hybrid GIS–RS method are very

promising: normally it is very difficult to obtain maps that

are more than 90% accurate using mid-resolution (30 m)

resolution Landsat images. However, manual classification

of the segments by visual analysis achieved remarkable

accuracy for both the 2003 and 2015 images (93.71 and

95.04%, respectively).

The object-based approach also provides an advantage

with respect to atmospheric corrections. Satellite imagery

frequently have dark individual pixels distributed

throughout the entire image. This type of unwanted

atmospheric effect can be eliminated by a number of fil-

tering techniques, but filtering can affect the entire image

and change the original digital data. However, these pixels

could be detected individually and corrected manually

using the segmentation approach.

We suggest that image segmentation should not be

applied to images with a higher than 8-bit radiometric

resolution if another segmentation method will not be

applied to decrease the number of segments and visual

analysis will be selected as the classification method.

Otherwise, millions of segments would be produced by the

software; such a high number of segments would be

completely useless for classification by visual analysis. As

a result, object-based classification can be considered as a

time-consuming but very accurate approach for satellite

image classification.

5 Conclusions

Population growth due to migration has led to important

changes in Istanbul Province between 2003 and 2015. The

post-classification comparison revealed a dramatic increase

in high intensity residential areas. Agricultural areas, water,

roads and forested lands changed less significantly, though

6195 ha of forested lands and 3802 ha agricultural areas

were lost over the 12-year period, and these areas are very

important for the ecological biodiversity of Istanbul Pro-

vince. Moreover, while road network expansion is gener-

ally a good thing for a city, the road network expansion in

Istanbul Province during last the 12 years came at the cost

of forestland destruction.

Overall, this study demonstrates that the vegetation cover

and biodiversity of Istanbul have decreased in the last

12 years due to human activities that could have been

avoided or mitigated. At a minimum, the new road con-

struction could have been achieved with minimal damage to

forest areas (or even without their destruction) by applying

modern technological developments. Furthermore, as

Istanbul Province already has more than 15 million inhabi-

tants, local and central government representatives should

take note of these findings and develop political strategies

that discourage migration to the city and preserve its natural

habits and ecological biodiversity.
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E., Bartholomé, E., et al. (2014). A near real-time water surface

detection method based on HSV transformation of MODIS multi-

spectral time series data. Remote Sensing of Environment, 140,

704–716.

32. Zhang, Z., Chen, H., Xu, Y., Zhong, J., Lv, N., Chen, S., et al.

(2015). Multisensor-based real-time quality monitoring by means

of feature extraction, selection and modeling for Al alloy in arc

welding. Mechanical Systems and Signal Processing, 60–61,

151–165.

33. Yang, X. T., Liu, H., Gao, X., et al. (2015). Land cover changed

object detection in remote sensing data with medium spatial

resolution. International Journal of Applied Earth Observation

and Geoinformation, 38, 129–137.
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