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Abstract In the present study, the main aim was the spatial

evaluation annual rainfall of Iran based on the European

Centre for Medium Range Weather Forecast (ECMWF)

database. An attempt, using geo-statistical modeling by

ordinary least squares (OLS) and geographically weighted

regression (GWR) procedures, was also made. The results

represented that the GWR model with higher S2, lower

residuals without spatial autocorrelation effect and lower

RMSE is an optimized geo-statistical model for rainfall

modeling of Iran based on ECMWF gridded database. This

model can explain spatio-temporal rainfall distribution in

Iran in a diversified topographical and geographical back-

ground. This model revealed that two high mountain ranges

of Zagros and Alborz in west and north, respectively,

strikingly affect the temporal and spatial patterns of rain-

fall. Therefore, the statistical correlation matrix revealed

that Iranian rainfall data is dominantly depended on geo-

graphical latitude and topographical altitude/slope with

0.56 and 0.32 correlation coefficients, respectively.

Keywords Rainfall data � Geo-statistical models �
European centre for medium range weather forecast

(ECMWF) � Ordinary least squares (OLS) � Geographically
weighted regression (GWR)

1 Introduction

Geo-statistical models, as the powerful tool for spatial

heterogeneity exploration, can help us to discover the

inherent structural characteristics and spatial variation

regularity, which cannot be found in classical statistical

method [1]. The key concept of these models is that the

nearer observations have more influence in estimating the

local set of parameters than do observations farther away

[2]. This is described by a kernel weighting function based

on distances between model calibration points and obser-

vation points. Euclidean distance is traditionally used as

default in calibrating a geo-statistical model. However, an

empirical work has shown that the use of non-Euclidean

distance metrics like network distance in geo-statistical can

improve model fit [3, 4]. Furthermore, the relationship

between the dependent and each independent variable may

have its own distinctive response to the weighting com-

putation [5].

Statistical regression and correlation techniques were

the common empirical approaches used to quantify the

relationships in most of studies [6]. Two regression models

of ordinary least square (OLS) and geographic weighted

regression (GWR) were developed to examine the rela-

tionship between the gridded rainfall data and some influ-

encing variables such as topography. In recent papers, new

local hybrid regression models were developed based on

aforementioned OLS and GWR models [7].

Due to the complex characteristics of precipitation/

rainfall spatial variability and its numerous influential

factors, it is difficult to estimate the spatial analysis of
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precipitation/rainfall [8]. Conventional methods for esti-

mating rainfall distributions are based on gauges and

employ spatial interpolations. Accordingly, there are at

least 10 types of rainfall spatial interpolation methods

[9, 10], and these can be divided into two categories.

The first type includes the ground–based rainfall mea-

surements. The rainfall at a specific location is estimated

from gauges at many adjacent sites without considering the

impacts of geographical position, topography, and other

factors. Geographic spatial interpolation algorithms such as

the spline, ordinary Kriging, and inverse distance weight-

ing techniques are typical representative methods [11, 12].

The second type of spatial estimation method combines

ground-based rainfall measurements with major influential

factors such as geographical position and topography

[13, 14].

Climatic variables are usually measured at meteorolog-

ical stations, and the data are only valid for the point of

measurement. To overcome this problem, the gridded

precipitation/rainfall dataset can be implemented via from

several grid-based sources [15, 16]. Gridded data sets are

useful for regional studies on climate variability and

changes. This opportunity gives many possibilities for

further applications especially for distributed modeling of

environmental processes [17]. Since, several studies on

spatial representation of Iranian precipitation were pub-

lished according to station-based data such as [18–22]. In

recent papers, researchers interested to apply gridded data,

especially APHRODITE project gridded data, for spatial

analysis of precipitation/rainfall. For example, a research

revealed the optimum R2 statistics equal 72% to measure

the agreement between station-based observation of daily

precipitation and APHRODITE estimations [23]. Further-

more, another research revealed that APHRODITE dataset

potentially could be used for regionalization of precipita-

tion regimes in Iran [15]. In regard of ECMWF application

for modeling of precipitation/rainfall data, there are only a

few studies carried out in Iran. By verifying ECMWF data

set for precipitation forecast over Iran, the ECMWF data

set correctly estimated the position of the precipitation

band in Iran [24]. According to literature review, applica-

tion of ECMWF products has been encouraged by [25, 26].

In the present study, the main aim is spatial evaluation

of Iranian annual rainfall based on the European Centre for

Medium Range Weather Forecast (ECMWF) database.

Thereafter, aforementioned rainfall data is analyzed using

ordinary least squares (OLS) and geographically weighted

regression (GWR) models. For this purpose, rainfall data is

defined as dependent variable and topographical altitude,

slopeand aspect and other spatial coordination of longitude

and latitude, derived from global digital elevation model

(GDEM), are defined as independent variables.

2 Methodology

2.1 Data preparation

In this study, daily rainfall gridded data as dependent vari-

able was extracted from ERA-Interim reanalysis version of

European Centre for Medium-Range Weather Forecasts

(ECMWF) via web site (http://www.ecmwf.int/products).

To spatio-temporal analysis of rainfall data, several data-

bases such as NASA/TRMM, NOAA/NCEP, APHRODITE

and ECMWF are available for research. Main reason of their

application is to estimate rainfall data over the high elevated

areas or difficult to access regions without any rain gauge

stations. Among aforementioned databases, ERA-Interim

reanalysis version of ECMWF database is an open source

web-based database with easily to access and friendly to

procedure in GIS software. According to [26], ERA-Interim

is the latest global atmospheric reanalysis produced by the

ECMWF and shows improvements on ERA-40 [27] due to

the use of four-dimensional data assimilation (4D-Var),

higher horizontal resolution, and bias correction of satellite

radiance data [28, 29].

Extracted data with spatial resolution of 12.5� 9 12.5�
and temporal intervals of 1979–2015 was selected for Iran

country with an area of 1,648,000 km2, approximately

limited between latitude 25�N to 40�N and longitude 44�E
to 64�E. All daily data based on time series with long-term

monthly intervals were extracted initially into MATLAB

software with NC sheet format. Thereafter, monthly time

series were recorded into GIS attribute tables, which cor-

responds to about 9954 spatial cell pixels. Therefore, the

topographical characteristics of altitude, slope and aspect

and other spatial coordination of longitude and latitude are

considered as independent variables. Attribute table of

aforementioned six variables were linked by all 9954 cell

pixels of ECMWF gridded data in GIS to establish desired

geo-statistical analysis such as OLS and GWR. In this

study, aforementioned topographical data was reproduced

based on a Global Digital Elevation Model (GDEM) from

the Advanced Space-borne Thermal Emission and Reflec-

tion Radiometer (ASTER) on the National Aeronautic and

Space Administration spacecraft Terra (Fig. 1a). The

ASTER GDEM is distributed as Geo-referenced Tagged

Image File Format (GeoTIFF) files with overall accuracy

of around 17 m with 95% confidence level and a horizontal

resolution approximately 75 m, which were extracted via

web site (http://www.gdem.aster.ersdac.or.jp/search.jsp).

2.2 Geo-statistical models

The regression model parameters derived, such as from the

ordinary least squares (OLS) method, are assumed to apply
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globally over the entire region from which measured data

have been taken, based on the assumption of spatial sta-

tionary in the relationship between the variables under

study. However, in most cases, this assumption is invalid

due to account for spatial autocorrelation prevents [30]. In

vice versa, geographically weighted regression (GWR), a

recent refinement to normal regression methods, explicitly

deals with the spatial non–stationary of empirical rela-

tionships [31]. The technique provides a weighting of

information that is locally associated, and allows regression

model parameters to vary in space. This can help reveal

spatial variations in the empirical relationships between

variables that would otherwise be ignored in the overall

analysis [32]. The simple linear model, usually fitted by

ordinary least squares methods (OLS) is estimated as fol-

low [33]:

c ¼ b0 þ
Xp

i¼1

bixi þ e ð1Þ

where c is the dependent variable, xi is independent vari-

able such as altitude, slope, aspect, etc., b0 is the intercept,
bi is estimated coefficient, e represents the error term and

p is the number of independent variables. The conventional

statistical regression method of OLS is stationary in a

spatial sense. It means that a single model is fitted to all

data and is applied equally over the entire geographic space

of interest. This regression model and its coefficients are

constant across space, assuming the relationship is also

spatially constant. That is usually not adequate for spatially

differentiated data such as rainfall data [6].

GWR is an extension of the common linear regression

model. GWR directly builds a relationship between loca-

tion and parameters using spatial x, y coordinates, as well

as the local fitting relationship between the dependent

variable and independent variables. GWR also can inte-

grate multiple factors to fit the dependent variable. As a

robust tool to describe spatial heterogeneity, the regression

coefficients in GWR are not based on global information;

rather, they vary with location, which is generated by a

local regression estimation using sub-sampled data from

the nearest neighboring observations [14]. The principle of

GWR allows local rather than global parameters to be

estimated as follow [33]:

y ¼ b0 uj; vj
� �

þ
Xp

i¼1

bi uj; vj
� �

xij þ ej ð2Þ

where j is the location, (uj,vj) denotes the longitude and

latitude coordination of each location in space and xij is the

local independent variable. In geographically weighted

regression, the parameter estimates are made using an

approach in which the contribution of a sample to the

analysis is weighted based on its spatial proximity to the

specific location under consideration. Thus, the weighting

of an observation is no longer constant in the calibration

but varies with different locations. Data from observations

close to the location under consideration are weighted more

than data from observations far away [32]. Both OLS and

GWR models were implemented by spatial-statistical

extensions of Arc–Toolbox in ArcGIS version 10.2.

2.3 Validations

The outputs of each regression model include Root Mean

Squared Error (RMSE), coefficient of determination (R2)

and local residuals, which are generated by ArcGIS geo-

Fig. 1 Geo-statistical variables of the study area. a Altitude mask of

global digital elevation model (GDEM) for Iran. b Mean annual

rainfall over Iran within 1979–2015 based on ECMWF database
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statistical extensions. RMSE and R2 principally are calcu-

lated as follows [34]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j¼1

Yj � Oj

� �2
=n

vuut ð3Þ

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1

Yj � �Yj
� �

Oj � �Oj

� �� �
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1

Yj � �Yj
� �2h is

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1

Oj � �Oj

� �2h is ð4Þ

where Yj is the observation measured at j location, Oj is the

precipitation estimated by a model at location of j, �Y is the

mean value of all observations, and �O is the mean value of

all estimated rainfall. Furthermore, the residuals may be

used to test the model’s accuracy at predicting local vali-

dations by running a test for spatial autocorrelation [33].

2.4 Spatial autocorrelations

Based on the observed and estimated data, some spatial

autocorrelation analysis should be utilized to assess the

characteristics of the geo-statistical models. In this regard,

some procedures have been proposed for autocorrelation

analysis in the literature. In this paper, both the Moran’s I

statistics is used to measure the spatial autocorrelation of

the rainfall gridded cells. Global spatial autocorrelation

analysis can be used to describe the spatial characteristic of

a given property in the entire study area and reflect the

mean of spatial difference between all the spatial cells and

their adjacent cells [1]. The normalized Z-Score value of

Moran statistics ranges from -1 to 1. Given a certain

significance level, a Moran value significantly beyond zero

implies spatial positive correlation and obvious spatial

clusters of cells with small global spatial difference. On the

other hand, a Moran value significantly below zero implies

spatial negative correlation and an obvious spatial differ-

ence in the attribute values between the cells and their

adjacent cells. The global Moran’s I statistics can be cal-

culated as follow [35]:

I ¼ N
PN

i¼1

PN
j¼1 wij

�
PN

i¼1

PN
j¼1 wijðxi � �xÞðxj � �xÞ
PN

j¼1 ðxi � �xÞ2i
ð5Þ

where N is the number of spatial observation cells, xi is the

observed value of cell i, �x is the mean of xi, and wij is the

spatial weighting value between the cell i and j.

The global Moran’s I statistics only indicate overall

clustering extent but cannot be used to detect spatial

association pattern in different locations. To further reveal

the spatial autocorrelation of precipitation grids in neigh-

borhood cells and visualize the spatial pattern of local

difference, the local spatial autocorrelation statistics, such

as local Moran’s I is used to evaluate the local spatial

association and difference between each cell and its sur-

rounding cells [1]. For a given spatial cell i, the value of.

Local Moran’s I is computed as follow [36]:

Ii ¼ xi
XN

i¼1;j6¼i

wijxj ð6Þ

where N is the number of spatial observation cells, xi and xj
are the standardized observed value of cell i and j, and wij

is the standardized spatial weighting value and
P

j wij ¼ 1.

Similar to the global Moran’s I, the result of local Moran’s

I may be estimated by means of Z-Score. In the present

study, aforementioned statistics were calculated based on

ArcGIS adjusted extensions of spatial statistics tools.

3 Results and discussion

According to ECMWF data, the distribution of mean

annual long-term rainfall data in Iran was produced in

Fig. 1b. The maximum annual rainfall observed in northern

Iran on the southwestern coast of the Caspian Sea, where

the mean annual rainfall is over 700 mm. In addition, on

the Zagros Mountains, the mean annual rainfall is about

500 mm. The lowest mean annual rainfall, less than

150 mm, occurs in the central and southeastern parts of

Iran. On this basis, over than 60% of the surface area of

country is categorized as the regions with annual rainfall

lower than average class of 250–350 mm.

In next step, both OLS and GWR models were imple-

mented in ArcGIS version 10.2. The produced maps were

shown in Fig. 2a, b. This figure revealed that the OLS

model has estimated the mean annual rainfall with linear

descending trend from northwestern to southeastern Iran,

while GWR model has predicted rainfall data affecting by

spatial characteristics. To validate the models, rainfall

residual values for both geo-statistical models was pro-

duced in GIS (Fig. 3a, b). The main advantage of running

of regression models in ArcGIS is the output from the

process includes the residual for each cell, allowing the

researcher to test the residuals for spatial autocorrelation

analysis [33]. Figure 3 reveals that high residuals (over

than ?100 mm) is related to lower estimation of rainfall

data against observed data and low residuals (below than

-100 mm) is related to higher estimation of rainfall data

against observed data. Hence, OLS model has a high gra-

dient between estimated and observed rainfall data com-

pared to GWR model. From the other side, the residuals of

OLS model have low spatial adaptions between estimated

and observed rainfall data compared to GWR model.
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Rainfall scatter plots for ECMWF observation and geo-

statistical model estimation were presented in Fig. 4. On

this basis, coefficient of determination (S2) in OLS and

GWR models were calculated as 0.64 and 0.90, respec-

tively. This validation statistics reveal that the GWR model

has a significant ability to explanation of more than 90% of

rainfall spatial distribution in Iran. Furthermore, the mean

errors validation statistics of RMSE for GWR model were

calculated as 55, which was twofold smaller than OLS

RMSE (103). The values of local Moran’s I statistics for

both OLS and GWR models were calculated in GIS as

about 0.89 and 0.13, respectively. Hence, the spatial

autocorrelation of OLS model that is close to ?1 is a sign

of spatial positive correlation and obvious spatial clustering

effect. However, in GWR model with local Moran’s

I statistics as 0.13 there is no other spatial clustering effect.

The two models, RMSE, S2 and Moran’s I statistics,

were presented in Table 1. We conclude that the GWR

model with higher S2 and lower RMSE is an optimized geo-

statistical model for rainfall modeling of Iran based on

ECMWF gridded database. This model can explain spatio-

temporal rainfall distribution in Iran in attribution to

complex terrains and geographic coordination. This model

reveals that two high mountain ranges of Zagros and

Alborz in west and north, respectively, strikingly affect the

temporal and spatial patterns of rainfall. Considering spa-

tial verification results, the ECMWF-based GWR model

describes the rainfall structure on the windward side of

Fig. 2 Estimated rainfall according to geo-statistical models. a Ordi-

nary least square (OLS). b Geographic weighted regression (GWR)
Fig. 3 Rainfall residual values of the geo-statistical model estima-

tion. a Ordinary least square (OLS). b Geographic weighted

regression (GWR)
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both mountain ranges. As mentioned by [24], it accurately

estimates the amount of precipitation over the Zagros

Mountains, but it is not able to estimate the precipitation

amounts on the Caspian coast, which can be explained by

the complexity of the rainfall process and high contribution

of convective cases in this region.

In the final step, based on the geo-statistical model of

GWR, the correlation matrix of dependent and independent

variables is described. The statistical correlation matrix in

Table 2 reveals that rainfall data is dominantly depended

on geographical latitude and topographical altitude/slope

with 0.56 and 0.32 correlation coefficients, respectively.

These two independent variables have direct effect on

rainfall data variations in each pixel of grids. In other

words, we anticipate increased rainfall between 32 and

56% for elevated and high latitude pixels in Iran. Con-

trarily, the rainfall data decreases as about 74% from west

to east longitudes. The variable of aspect has negligible

effect on rainfall variations and can be removed it from

review.

In Figs. 5 and 6, the spatial correlation maps in GWR

model between aforementioned effective variables and

rainfall data were presented. Based on these figures, the

most positive effect of altitude variable is observed over

the northern (Alborz) and western (Zagros) elevation ran-

ges in Iran. Accordingly, mutual positive effects of altitude

and slope variables are concentrated over the elevation

ranges in Iran. The negative effects of altitude and slope

variables on rainfall variation spatially are distributed on

northwestern and eastern parts, respectively. A research

revealed the same problem in ECMWF data set for

southern coastal areas of Caspian Sea in northward of Iran

[24]. However, the most positive effect of latitude and

longitude variables is spatially observed over the northern

parts in Iran. In vice versa, the negative effects of these

variables are also synchronously registered over the Zagros

elevation range. It may be related to the alteration of pre-

cipitated rainfall to snow falls over this elevated area.

Hence, the GWR model estimates an equable geo-statisti-

cal correlation between rainfall data and spatial charac-

teristics over southern coastal areas of Iran along Persian

Gulf and Oman Sea.

Fig. 4 Rainfall scatter plots for

ECMWF observation and geo-

statistical model estimation

a Ordinary least square (OLS).

b Geographic weighted

regression (GWR)

Table 1 Validation statistics of RMSE, S2 and Moran’s I statistics for

OLS and GWR models

Model RMSE S2 Moran’s I

OLS 103 0.64 0.89

GWR 55 0.90 0.13
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4 Conclusion

In this study, to analyze geo-statistical modeling of rainfall

in Iran, daily rainfall gridded data, used as dependent

variable and extracted from ERA-Interim reanalysis

version of European Centre for Medium-Range Weather

Forecasts (ECMWF), was used. In this regard, we showed

that the GWR model with higher S2 and lower RMSE is an

optimized geo-statistical model for rainfall modeling of

Iran based on ECMWF gridded database. GWR has the

Table 2 Correlation matrix of

rainfall and spatial

characteristics in GWR model

Correlation matrix Rainfall Altitude Aspect Slope Longitude Latitude

Rainfall 1

Altitude 0.32 1

Aspect 0.03 0.09 1

Slope 0.32 0.36 0.06 1

Longitude -0.74 -0.23 -0.04 -0.20 1

Latitude 0.56 0.24 0.07 0.10 -0.48 1

Fig. 5 Spatial correlation maps in GWR model between rainfall data

and effective variables a Altitude. b Slope

Fig. 6 Spatial correlation maps in GWR model between rainfall data

and effective variables a Latitude. b Longitude
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potential to reveal local patterns in the spatial distribution

of a parameter, which would be ignored by the OLS

approach. Furthermore, OLS may provide a false general

relationship between spatially non-stationary variables

such as rainfall data [32]. As mentioned by [37], OLS

model in this study had residuals that were spatially auto–

correlated, while the GWR model was implemented cor-

rectly accounting for local spatial variables. This model

can explain spatio-temporal rainfall distribution in Iran in

attribution to complex terrains and geographic coordina-

tion. This model revealed that two high mountain ranges of

Zagros and Alborz in west and north, respectively, strik-

ingly affect the temporal and spatial patterns of rainfall.

The statistical correlation results revealed that rainfall

data is dominantly depended on geographical latitude and

topographical altitude/slope with 0.56 and 0.32 correlation

coefficients, respectively. In other words, we anticipate

increased rainfall between 32 and 56% for elevated and

high latitude pixels in Iran. Also, the spatial correlation in

GWR model between aforementioned effective variables

and rainfall data exposed the most positive effect of alti-

tude variable spatially observed over the northern (Alborz)

and western (Zagros) elevation ranges in Iran. Accordingly,

mutual positive effects of altitude and slope variables are

concentrated over the elevation ranges in Iran.

As a brief conclusion of this study, geo-statistical

analysis of ECMWF data set revealed a better performance

in elevated high lands and mountainous regions. Hence, it

can be observed that the Zagros and Alborz Mountain

ranges have an important role in distribution of rainfall in

the country. Nevertheless, the spatial results revealed to a

weakness of ECMWF-based geo-statistical models to

estimate orographic processes in southern coastal areas of

Caspian Sea in northward of Iran. We propose further

studies to investigate new geo-statistical models on grid-

based precipitation/rainfall data sets e.g., ECMWF, APH-

RODITE, etc., to develop the accurately data mining,

applicable forecasting and so to overcome on such that

localized problems.
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