
Distributed agents for online spatial searches

Elizabeth-Kate Gulland1,2 • Simon Moncrieff1,2 • Geoff West1,2

Received: 18 January 2016 / Accepted: 21 April 2016 / Published online: 2 May 2016

� Korean Spatial Information Society 2016

Abstract As the availability and utilisation of online data

blossoms, automated online searches—whether to answer a

simple question, seek specific sensor readings, or investigate

research in a particular domain—have raised a number of

issues. Simple search tools do not access the deep web of

services and online forms, and cannot handle knowledge

domain-specific search problems, but specialist search tools

can have a narrow domain and applicability. Some online

tools circumvent these problems by putting more filter con-

trols into the hands of users, but this leads to more complex

interfaces which can raise usability barriers. A distributed

approach, where specialised search agents act autonomously

to find contextualised information, can provide a useful

compromise between a simple, general search interface and

specialist searches. This paper outlines work in progress on

design and use of specialist search agents, with a case study

to find public transportation bus stops within a spatial region.

The approach is demonstrated with a proof of concept web

interface, developed to interpret a text query to find and show

bus stop locations within a named boundary by coordinating

multiple online search agents. Search agents were designed

to follow a common model to allow for future development

of agent types, including specialist agents used in the case

study to search standard open web services and extract spa-

tial features.

Keywords Agents � Online services � Spatial search

1 Introduction

Users searching for data are accustomed to simple text

inputs, such as implemented by web search engines like

Google, Bing and Yahoo, which are straight-forward to use

but raise processing complications for flexible searches

including: (1) how to interpret the user’s context, aims and

expectations; (2) what filters are appropriate and applica-

ble; (3) how and where the data itself can be accessed; (4)

how to format results; and (5) how to rank the relevance of

results.

In this paper, we outline an approach for using online

search agents, each capable of applying specialist opera-

tions and/or accessing specific data sources, to manage

complex problems such as these. We demonstrate the

approach with a case study web application to find and

display bus stop locations within regions found by name.

The case study example shows how agents can be used

to access the deep web by extracting individual spatial

features from online services, rather than documents such

as web pages or metadata descriptions that are indexed by

regular search engines. It is tested on data conforming to

the Open Geospatial Consortium (OGC) Web Feature

Service (WFS) standard,1 although the common design and

interoperability of agents mean that this can be expanded to

allow for other data formats and search operations.

The example implements and coordinates agents, based

on a common model, to find: (1) spatial features in a WFS

by name and/or location; (2) regions by name; and (3) bus

stop point locations relative to region(s). From the user’s

This paper was revised from the paper initially presented in FOSS4G

Seoul 2015 Conference.

& Elizabeth-Kate Gulland

e.gulland@curtin.edu.au

1 Department of Spatial Sciences, Curtin University, Kent

Street, Bentley, WA 6102, Australia

2 Cooperative Research Centre for Spatial Information

(CRCSI), Melbourne, VIC, Australia 1 http://www.opengeospatial.org/standards/wfs.

123

Spat. Inf. Res. (2016) 24:191–202

DOI 10.1007/s41324-016-0020-3

http://www.opengeospatial.org/standards/wfs
http://crossmark.crossref.org/dialog/?doi=10.1007/s41324-016-0020-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41324-016-0020-3&domain=pdf

perspective, the workflow leading from a natural language

text input to the display of results is hidden; they enter a

text query into the web application, which then makes use

of the agents to find and display a solution.

In Sect. 2 we provide background to the search problem

and the use of online agents to solve complex tasks. We

discuss the approach and methodology for our case study

example in Sect. 3 and results in Sect. 4. Discussion and

conclusions about our findings are in Sects. 5 and 6.

2 Background

Current online information retrieval (IR) tools typically

incorporate flexibility into user interfaces via specialist

input forms, that can add specific filters to a search oper-

ation, such as choice of spatial location, temporal range,

codes or identifiers, or problem-specific categories like

author name or government department. This can provide

more sophisticated search tools, but may limit applicability

to a narrower purpose or group of users. Simplifying the

interface to a single generic text input requires more

complex processing to interpret natural language text

queries and manage potential disparity between what the

user asks for and what the data or metadata provides.

Our framework for contextual online searches makes

use of multiple software agents which can be accessed as

web services, and hence distributed across different

machines. Agents can be designed to carry out specialised

tasks, such as spatial searches for geographic features

within datasets defined using differing formats. Individual

agents can also take advantage of other resources such as

the semantic web, with its definitions of relationships

between resources and terminology.

2.1 Agents

Software agents are computer programs that can commu-

nicate with other agents, machines and/or users to solve a

task. Web services are one way to facilitate communication

between distributed agents which may be housed on dif-

ferent machines. An agent can use communication stan-

dards such as the RESTful framework (Representational

state transfer) as an access point to a web service; for

example, a DescribeFeatureType request can be sent to a

WFS service to describe a particular spatial dataset (‘‘fea-

ture type’’).

Individual agents can be designed to solve problems

such as translating between a user’s text query and mes-

sages to send to web service(s) to answer that query,

accounting for implementation details such as syntax dif-

ferences between service versions [1, 2]. Complex tasks

typically require the interaction of multiple agents and, as a

result, systems allowing interaction between agents and

services have been developed in a number of contexts,

including geospatial [3–5].

Coordination of agents is complex in a multi-agent

system, particularly as agents can be developed indepen-

dently and hosted separately. One approach is to design

agents by focusing on how to interact with them, rather

than their internal mechanisms [6]. The specific problem of

service discovery—finding relevant agents to access—is

outside the scope of this paper, but discovery agents

making use of the framework described in this paper could

be incorporated into future search systems.

2.2 Natural language queries

Searches for data based on a natural language text query

are complicated by factors including multiple interpreta-

tions of terms within the query, depending upon context.

For example, a query such as ‘‘stations in Perth’’ could

mean police stations or train stations, and could refer to

Perth in Western Australia or Scotland, amongst other

possibilities.

For a flexible search tool to be applicable across a range

of contexts and user types, it should be able to take

advantage of multiple strategies. It would need to distin-

guish between contexts, search strategies, data sources, and

types of results. Using multiple search agents, where each

can apply a more limited range of strategies and search a

specific subset of data, is an approach to include this

flexibility whilst managing the complexity involved.

The semantic web facilitates machine-to-machine com-

munication by defining relationships between entities,

which may be defined differently across different systems.

Entities can describe anything including people, online

agents, named locations, or terms in a dictionary and are

typically semantically linked using ontologies, which

define triples such as [‘‘bus stop’’, ‘‘is-a-type-of’’, ‘‘sta-

tion’’]. Related terminology can be directly relevant to

spatial queries—a semantic triple like [‘‘Perth’’, ‘‘is-in-the-

state-of’’, ‘‘Western Australia’’] could inform an agent

processing the ‘‘stations in Perth’’ query such that a dataset

described as ‘‘public transport in Western Australia’’ could

be marked as potentially relevant, though the dataset and

query have no terms in common, even if the agent has no

spatial capabilities to check within boundary polygons.

Semantic search tools have been developed to make use

of a wide variety of resources, including web pages, pre-

defined ontologies, Wikipedia [7], Google [8], and context-

specific resources such as in the biomedical field [9]. Some

search tools combine semantic web and offline search

techniques [10]. Recent research has investigated the

combination of the semantic web with geospatial search

tools [4, 11].

192 E.-K. Gulland et al.

123

2.3 Spatial searches

Traditional web searches are applied to indexed documents

and cannot delve into the deep web, which includes data

accessible via online forms or web services such as WFS

[12, 13]. Geographic search engines are designed to search

for online data that are relevant to a text query and spatial

location.

WFS data was selected for the case-study as it is a

common format for providing web access to spatial fea-

tures and their data attributes [5], and WFS data from

multiple providers has been used across different applica-

tions such as disaster management [14], health [15], and

general-purpose Spatial Data Infrastructures (SDI) [16].

The WFS standard format allows for data use across dif-

ferent technical systems and, although its queries are not

easily designed by a lay-person without external help, it

can be part of a larger system, for instance by connecting

with online semantic tools [17].

Standard spatial and service formats facilitate automated

discovery of new online data sources to search, using a

variety of automation techniques including ontologies [11]

and web crawlers [18]. Although service discovery is

beyond the scope of this paper, the agents being developed

and tested are provided as online services such that they

can theoretically be found by tools like these, and service

discovery agents could also be designed to take advantage

of the proposed framework.

WFS and other spatial service standards define query

parameters such as bounding regions, often making use of

other standards such as Geographic Markup Language

(GML). Each standard has numerous options and syntax

can differ across versions and implementations. A level of

expert knowledge is necessary to manipulate these settings

directly, so it is more feasible to produce requests to a data

service programmatically via a user interface or software

agent. To enable reuse of standard services without cou-

pling them to specific use-cases, extra details about the

services are required. One strategy to manage this approach

is to record semantic information about the services

themselves [5].

2.3.1 Spatial data service example: WFS

Standard web services for accessing spatial data include

OGC standards such as WFS. A simple, attribute-matching

query for a WFS data source is shown in Table 1, with an

extract from its associated output in Table 2. The request

syntax and available options of a WFS depend upon the

service itself and its version. Note in Table 2 that the

bounding box syntax for individual features differs from

the overall dataset reference system. These variations

complicate the manual or, more commonly, machine to

machine communication required for flexible access to the

data service.

Adding a spatial filter to a WFS request increases its com-

plexity and requires details such as geometry attribute name,

and spatial reference system. A flexible WFS agent needs to be

able to discover details such as these without direction from a

user. Table 3 shows an example of a more complex spatial

operation using GML that is not available in all WFS.

2.4 Orchestration of data search agents

Manual coordination of multiple services to answer a

specific question is a complex process. An example manual

workflow to find bus stops within a suburb via WFS data

sources is:

1. Find a data service that contains information about

suburbs.

2. Enter a WFS query (Table 1) to find suburbs with

names that match the target name.

3. Extract polygon geometry information from returned

records (Table 2).

3:1. If necessary, transform the polygon feature(s) to

the second source’s spatial reference system.

3:2. If necessary, create a buffer around the poly-

gon feature for a ‘‘nearby’’ search.

4. Convert polygon(s) into a filter format (e.g. GML) that

the bus stop WFS can interpret.

Table 1 WFS (version 1.1)

request to find features by name

Distributed agents for online spatial searches 193

123

5. Find a second WFS data source holding bus stop

information.

6. Enter a WFS query (Table 3) with the new filter to

retrieve bus stop features.

7. Extract desired property value(s) and geometries from

any returned records and display them.

The case study described in this paper focusses on

linking results from known agents rather than data service

discovery (steps 1 and 5 in the manual workflow above).

However, the design is extensible to allow for future

enhancements such as service discovery and parallel pro-

cessing. With the data services pre-set, the case study

automates the workflow above, hiding processing detail

from the user so that they need only enter an initial text

query.

Extracting records from within a web service is an

example of a deep search operation, and search agents have

been designed to automate searches for geometry and

textual features from spatial data services. Encapsulating

format-specific requirements such as WFS syntax into

agents allows for communication between agents that use

more general parameters.

A benefit of multiple search agents is that the same

request parameters can be sent to specialist agents that can

process data in alternative formats, such as OGC standards,

spreadsheets, or databases. They can also be designed to

interpret queries based on terminology specific to a par-

ticular knowledge domain, allowing for parallel searches

across different contexts.

3 Approach

The aim of the case study was to reduce a multi-step

process to a single user action: entering a text query.

Compare this with the manual, multi-step workflow

described in Sect. 2.4.

The proposed framework was tested with a case study

using agents to search for public transportation sites in

Western Australian suburbs. All models and the coordi-

nating web application were developed in the Django web

Table 2 Extract of results from

WFS request (Table 1)

194 E.-K. Gulland et al.

123

application framework. Figure 1 outlines the overall pro-

cess followed by the case study, with individual search

agents shown in Fig. 2 and detailed in Sect. 3.2.

The search coordinator is a web application that extracts

a text query from an input box and parses this parameter to

extract a region name, feature type, and spatial operator.

Two text patterns are catered for:

A. \feature type[\operator[\region name[‘‘stations

near Mount Lawley’’

B. \region name[\feature type[‘‘Mount Lawley

stations’’

Feature types are compared against a list of known

types—in the case study, these include terms such as ‘‘bus

stop’’ and ‘‘station’’. Unknown types cause a warning to be

displayed, although the default feature types are still

searched.

Currently recognised operators are near (any of [near,

nearby, near to, close to]) and within (any of [in, within,

inside]). The second pattern is turned into a sequence of

possible names, for example [‘‘Mount’’, ‘‘Mount Lawley’’,

‘‘Mount Lawley stations’’]. Queries of this type are

assumed to be within searches. Each possible region name

is passed to a boundary search agent (item 1 in Fig. 1)

which searches for one or more matching geometric

regions that can be used in later stages of the search pro-

cess. If no regions are found, for instance if the query input

is invalid or the boundary agent service fails, the search

may proceed without this spatial filter, as described in later

sections.

This approach of extracting labels for different options

lends itself to ontologies, where operator names extracted

from the query could be linked to the relevant agents to

use. Names with similar meanings such as ‘‘nearby’’ and

‘‘close to’’ could also be connected to each other with

ontologies.

3.1 Orchestration

A web application was developed to provide a user inter-

face, coordinate individual agents’ actions, and display the

final results. In essence, it acts as a mediator agent

orchestrating queries to, and results from, other agents. As

it cannot be assumed that all agent types return geometries

or even individual records, any results returned to the

coordinating web application were ignored if they con-

tained no records or no geometries.

After initial parsing of the user’s textual query, the

region name(s) are sent as a name parameter to the first

type of agent, specific to boundary regions (Fig. 1-1). This

agent looks at information from its own source(s) to find

attributes that are likely to hold a region name, for example

any (case-insensitive) attribute name partially matching

‘‘name’’, ‘‘ID’’ or ‘‘label’’. The boundary agent passes

relevant parameters on to its source, a WFS agent (Fig. 1-

2), which builds a WFS request to find features that match

(or partially match) the region name, and formats the WFS

response into its own list of results (Fig. 1-3).

Provided that at least one valid region was returned by

the boundary agent (Fig. 1-4), it is included as a boundary

parameter to be sent to another agent for finding features

relative to a region. For a ‘‘within’’ operation, a public

transportation agent is used (Fig. 1-5A). This defines its

own WFS agent sources to build requests, this time with a

Table 3 WFS (version 1.0)

request to find point features

within a region

http://.../geoserver/transport/ows?service=WFS
&request=GetFeature&version=1.0.0
&maxFeatures=200&outputFormat=application/json
&typeName=transport:Stops
&filter=<Filter
 xmlns:gml="http://www.opengis.org/gml">
 <Within><PropertyName>the_geom</PropertyName>
 <gml:MultiPolygon srsName="EPSG:4283">
 <gml:polygonMember><gml:Polygon>
 <gml:outerBoundaryIs><gml:LinearRing>
 <gml:coordinates>115.867820512,-31.9533984945
 115.867814048,-31.95334971
 115.867764352,-31.9529839465
 ... 115.867820512,-31.9533984945
 </gml:coordinates>
 </gml:LinearRing></gml:outerBoundaryIs>
 </gml:Polygon></gml:polygonMember>
 </gml:MultiPolygon></Within></Filter>

Distributed agents for online spatial searches 195

123

spatial filter, similarly to the previous stage. For a

‘‘nearby’’ operation, a nearby agent is sent the boundary

region as a target parameter, and a URL is sent to define the

source of features to be searched (Fig. 1-5B). Any records

returned by step 5 are returned to the coordinator (Fig. 1-

6).

Where spatial features are retrieved, a map is produced

using the Leaflet2 JavaScript library with marker clusters,3

and a scrollable text area added to list selected attributes

from the returned features, as seen in Fig. 3. Attributes are

also displayed on the map when the mouse rolls over a

point feature, as shown in the zoomed-in area in Fig. 3.

In the demonstration web application, all results are

displayed. However, the format of agents’ query results

allows for alternative visualisations, as discussed in

Sect. 5. If the target feature type (such as bus stop or sta-

tion) is not recognised or no region is found, a warning is

shown (Fig. 4).

3.2 Search agents

The request format for an agent type is consistent, irre-

spective of internal variations such as the version and

capabilities of its data source. Similarly, agent responses

are returned in a consistent format. Each response always

includes the request parameters, the date it was invoked,

the service type, and a list of results, which may be empty.

If errors occur during the agent’s search, error messages are

also listed. Each entry in the result list contains the source

URL and where available, a list of individual records. Each

record, where available, is labelled and can also contain

other data such as location (‘‘geometry’’) and attributes

listed by name.

An agent can be accessed programmatically or via a

RESTful web interface. Request parameters include re-

quest, query (the initial query text) and other parameters

depending on the agent’s purpose and context, such as

bbox, boundary, and name (Table 4). New agent types can

add additional input parameters. The implemented agents

return JSON (JavaScript Object Notation) output although

the design is extendable to allow more formats in the

future.

Fig. 1 Processing steps between search agents in the case study implementation

2 http://leafletjs.com/.
3 https://github.com/Leaflet/Leaflet.markercluster.

196 E.-K. Gulland et al.

123

http://leafletjs.com/
https://github.com/Leaflet/Leaflet.markercluster

A DataAgent model was designed as a generic search

agent, a template for all other search agents to build upon

(Fig. 2). As a minimal requirement, every agent model

defines its type (such as ‘‘WFS’’ or ‘‘boundary’’), name,

service web address, and read-only list of data sources.

Each agent defines at least three actions: process (accepting

a dictionary of query parameters), getCapabilities, and

addSource.

A DataAgentSource model was designed to allow

any agent to record links to one or more other agents as

data sources. Each agent can define 0, 1 or more sour-

ces, and can itself be the source of one or more other

agents.

As shown in Fig. 2, four specialised search agents were

designed as Django models, subclassed from DataAgent:

• WFSAgent: to handle a Web Feature Service layer. This

agent builds a WFS query based upon input parameters

and its source service’s capabilities.

• BoundaryAgent: to retrieve boundary region records

from one or more sources.

• PublicTransportAgent: to extract a subset of bus stop

features from one or more sources within a boundary

region.

• NearbyAgent: to extract spatial features near a provided

geometry.

An agent will respond to a query with output including

date, request and list of results. Optional information in the

response can include likelihood weights of results and/or

records, with or without geometry detail. An example

response is shown in Table 5.

3.2.1 WFSAgent

Internally, the WFSAgent uses WFS requests such as

GetCapabilities and DescribeFeatureType to discover its

source’s version, capabilities, and details about its feature

type (dataset) and attributes. This allows it to check for

capabilities including spatial operators before attempting to

apply them. The agent also looks for names of attributes

likely to contain a geometry field or a label. In the latter

case, partial matches were sought to any of [‘‘name’’, ‘‘id’’,

‘‘label’’]—in the suburb data source, for instance, a match

was found to an attribute called ‘‘SSC_NAME’’. It uses this

information to build a valid WFS request for records.

A typical process within a WFSAgent will follow a

sequence such as:

1. Check that the WFS is currently active and available

online.

2. Get the WFS’s capabilities for the preferred version via

a GetCapabilities request.

3. Get the FeatureType (layer) name to use from the

WFS.

4. If the query parameters include ‘‘name’’:

a. Get the most likely attribute name in the WFS with

a DescribeFeatureType request—the first partial

match to any of [‘‘label’’, ‘‘name’’, ‘‘id’’].

b. If the WFS capabilities include partial matches,

create a filter with wildcards, otherwise create an

exact match filter.

5. If the query parameters include ‘‘boundary’’:

Fig. 2 Data agents: classes (rectangles) and instances (ellipses)

Distributed agents for online spatial searches 197

123

Fig. 3 Search results, shown as clustered map features and list of names

Fig. 4 Search results for unknown region (left) or target type (right)

198 E.-K. Gulland et al.

123

a. Get the most likely attribute name for geometry

information in the WFS with a DescribeFea-

tureType request.

b. Create a spatial filter for the preferred WFS

version.

6. If the query parameters include ‘‘bbox’’:

a. Create a bounding box filter.

b. As WFS will not allow both a bbox and spatial

filter in the same query, remove the bbox filter (or

create a combined spatial filter) if a spatial filter is

also present.

7. Combine filters 4–6 as appropriate into a single

GetFeature request and send it to the WFS.

8. Get any records (and/or error messages) and add into

the expected DataAgent response format.

Three instances of WFSAgent were created (Fig. 2), one

for each of three online services: (a) Perth suburbs;

(b) Perth bus stops; and (c) public waste management sites.

A GeoServer instance was set up to host the first two WFS

layers, which were created from public spatial data layers:

Western Australian bus stops from Transperth,4 and 2011

state suburbs from the Australian Bureau of Statistics.5 A

public online WFS for Australian waste management point

sites6 was also selected as a proxy for bus stop locations, as

it contained point data in the same location as the suburb

data.

An example RESTful request to a WFSAgent for fea-

ture(s) with names including ‘‘Perth’’ would produce a

WFS request such as shown in Table 1, with results as

shown in Table 2. The syntax produced could differ

depending upon its WFS’s version and capabilities.

Table 4 A selection of agent

input parameters
RESTful query parameter Purpose Example value

Request Action getCapabilities, search

Query User query string Bus stops in Perth

outputFormat Format of results from agent JSON (default)

Name Record (partial) name Perth

bbox Bounding box to search within -43.65, 113.15, -10.68, 153.64

Boundary Text definition of a polygon A GeoJSON or GML string

Table 5 Response extract from

a BoundaryAgent

4 http://www.transperth.wa.gov.au/About/Spatial-Data-Access.
5 http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.

55.003July\%202011?OpenDocument.
6 http://www.ga.gov.au/gis/services/topography/National_Waste_

Management_Facilities/MapServer/WFSServer.

Distributed agents for online spatial searches 199

123

http://www.transperth.wa.gov.au/About/Spatial-Data-Access
http://www.abs.gov.au/AUSSTATS/abs%40.nsf/DetailsPage/1270.0.55.003July%5c%25202011%3fOpenDocument
http://www.abs.gov.au/AUSSTATS/abs%40.nsf/DetailsPage/1270.0.55.003July%5c%25202011%3fOpenDocument
http://www.ga.gov.au/gis/services/topography/National_Waste_Management_Facilities/MapServer/WFSServer
http://www.ga.gov.au/gis/services/topography/National_Waste_Management_Facilities/MapServer/WFSServer

3.2.2 BoundaryAgent

The BoundaryAgent model defines one or more source

agents using the DataAgentSource model. In the case

study, a WFSAgent linking to the suburb service was

defined as a single source (Fig. 2).

An example of a RESTful request parameter string sent

to a boundary agent is ?request=search&query=

bus stops in Perth&name=Perth, which would

send parameters including the name ‘Perth’ to its source

agent for processing, and then return a response as shown

in Table 5.

Although the data source was pre-set in this case, con-

sistent request parameters and output formats allow for new

agents to be added at a later stage as alternative data sources.

3.2.3 PublicTransportAgent

Like BoundaryAgent, this agent records the specific agents

it uses as sources of data. In this case, it uses two

WFSAgents, linked to the Transperth and waste manage-

ment services (Fig. 2).

This agent passes queries on to its WFS source(s),

including a ‘‘boundary’’ or ‘‘bbox’’ parameter containing a

region described as text, such as GeoJSON format. The

agent searches for features purely within spatial filters

rather than attribute values.

3.2.4 NearbyAgent

The NearbyAgent does not internally record the source it

uses to find data. Instead, it uses parameters for a com-

parison polygon as text, and the web address of a source

agent. In the case study, the Transperth service is used as

the source.

This agent accepts a ‘‘target’’ parameter of a spatial

feature in text format, and a ‘‘source’’ parameter containing

the URL of a spatial data service. It also optionally accepts

‘‘distance’’ and ‘‘units’’ inputs to determine how near to

search to the target. A default distance (100 m) is used if

these inputs are not specified.

This agent uses the ‘‘source’’ parameter to look for a

previously saved spatial search agent, or creates one if

none is found. In this proof-of-concept, a WFSAgent is

used as a source. The NearbyAgent then creates a buffered

region from the input target and passes this information on

to its source.

Each NearbyAgent can define its own default distance

and units so that agents can be set up for use in different

scenarios, such as a larger distance in a rural setting than in

a dense housing area. This would facilitate the use of user

feedback and context in the future.

4 Results

Manual workflows were tested to extract spatial features

from the feature services described in Sect. 3 for WFS

versions 1.0.0, 1.1.0 and 2.0.0. Text attribute filters were

tested for matches to exact, partial, and non-existent suburb

and bus stop names. The case study tool was tested with

queries that included exact, partial, case-insensitive or

misspelled suburb names, or that missed a suburb name

entirely. It was also tested with known feature types (such

as bus stops and stations) and unrecognised feature types.

Testing of the case study web application showed that it

could find suburbs after a partial or case-insensitive name

match. In contrast, a manual WFS request for ‘‘subiaco’’

found no matching polygon features, even when the

PropertyIsLike filter was used instead of a direct equality

comparison, because the name attribute expected a capital

letter: ‘‘Subiaco’’.

All features returned from a spatial search agent inclu-

ded a label attribute, even if there was no attribute called

‘‘label’’ in the original WFS data records.

Where an agent was unable to interpret a request or

found no matching results, it returned an empty list, which

was ignored by the coordinator displaying results. As well

as invalid region names or feature types as discussed in

Sect. 3.1, this can be caused by a problem or limitation

within the data service itself, such as a temporary loss of

access. The waste management service WFS, which can

only output in XML format and has limited spatial filter

capabilities, did not return any points to the PublicTrans-

portAgent that utilised it. However, the coordinating agent

still returned features from its other source—the Trans-

perth WFS. This demonstrated robustness in the overall

design.

5 Discussion

Automating the creation of WFS parameters from gen-

eric query parameters within WFSAgent was complicated

by differences between versions and implementations,

but returning empty datasets where problems arose

allowed agents to continue searching alternative sources.

Encapsulating syntax requirements into a WFSAgent

allowed for specialised search agents like the

BoundaryAgent and PublicTransportAgent to focus on

relevant actions without needing to consider quirks of

different data sources. These agents pass a ‘‘process’’

signal to their sources, so extra agents and more diverse

agent types could be added to their source lists without

needing further alteration.

200 E.-K. Gulland et al.

123

The case study application could be extended to add

interaction by taking advantage of optional features defined

in the data agent response format. For instance, the format

allows agents to specify the likelihood of a result set and/or

individual record with optional ‘‘weight’’ values. An

orchestrator could take advantage of this and other meta-

data within agents’ result sets to provide feedback to users

such as ranking and provenance of records. Any applica-

tion or agent using this information would need to check

for the existence of optional values before utilising them.

In the next stage, additional agent(s) will be imple-

mented to further test coordination of agents. The coordi-

nating agent would need to be extended to cater for

distributed agents, by allowing it to await responses from

agents concurrently processing search parameters. As

agents are designed to return an empty set upon failure or

lack of results, a coordinator can send out responses to all

known agents, rather than pre-determining which ones to

access. An exception, as demonstrated by BoundaryAgent

in the case study, is where a sequence of actions is nec-

essary. In this case, the BoundaryAgent had to be accessed

first in order to find boundary parameters to send to other

search agents.

An agent currently under development focusses upon

expanding a query with semantically related terms, which

may include related terms from different knowledge

domains. This will allow for future expansion into

ranking of results and contextual display, such as show-

ing results within facets [19] defined by the results’ or

agents’ domains. In combination with ranking of results

within and between facets, this would assist users to

focus in on datasets from topics they are particularly

interested in.

The common framework for search agents facilitate

extension and creation of coordinators to interact with

future agents. These agents may include features beyond

those shown in the case study demonstration, such as ser-

vice discovery of data sources; weighted results that can be

ranked by the strength of their relationship to a query; or

temporal filters.

6 Conclusions

This paper has described a design for search agents that can

be coordinated to solve complex search problems based on

a textual query. A case study was developed to test its use

with a spatial query problem requiring multiple processing

stages and data sources. This initial test showed promise

for simplifying a user’s workflow for finding spatial data by

using a combination of search agents. Embedding spe-

cialised syntax and requirements within agents reduced the

required level of expert knowledge for users of a simple

query interface, who would otherwise need to manually

solve a multi-stage problem based on online spatial data

and service formats.

Acknowledgments The research reported in this paper was supported

by the Australian Primary Health Care Research Institute (APHCRI),

which was supported by a grant from the Australian Government

Department of Health. The information and opinions contained in it do

not necessarily reflect the views or policy of the Australian Primary

Health Care Research Institute or the Australian Government Depart-

ment of Health. The Cooperative Research Centre for Spatial Infor-

mation, whose activities were funded by the Australian Commonwealth

Cooperative Research Centres Programme, has supported this work.

References

1. Huang, W., & Webster, D. (2004). Enabling context-aware agents

to understand semantic resources on the WWW and the semantic

web. In 2004 IEEE/WIC/ACM international conference on web

intelligence (WI ‘04). IEEE Computer Society.

2. Zhao, T., Zhang, C., Wei, M., & Peng, Z.-R. (2008). Ontology-

based geospatial data query and integration. In Cova, T. J., et al.

(Eds.) Geographic information science: 5th international con-

ference, GIScience 2008, Park City, UT, USA, September 23–26,

2008, Proceedings (pp. 370–392). Springer: Berlin, Heidelberg.

3. Yue, P., Di, L., Yang, W., Yu, G., & Zhao, P. (2007). Semantics-

based automatic composition of geospatial Web service chains.

Computers & Geosciences, 33(5), 649–665.

4. Zhao, P., Foerster, T., & Yue, P. (2012). The geoprocessing web.

Computers & Geosciences, 47, 3–12.

5. Tian, Y., & Huang, M. (2012). Enhance discovery and retrieval of

geospatial data using SOA and Semantic Web technologies. Ex-

pert Systems with Applications, 39(16), 12522–12535.

6. Viroli, M., Ricci, A., & Omicini, A. (2006). Operating instruc-

tions for intelligent agent coordination. Knowledge Engineering

Review, 21(1), 49–69.

7. Gabrilovich, E., & Markovitch, S. (2009). Wikipedia-based

semantic interpretation for natural language processing. Journal

of Artificial Intelligence Research, 34, 443–498.

8. Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The google similarity

distance. IEEE Transactions on Knowledge and Data Engineer-

ing, 19(3), 370–383.

9. Rybinski, M., & Aldana-montes, J. F. (2014). Calculating

semantic relatedness for biomedical use in a knowledge-poor

environment. BMC Bioinformatics, 15(Suppl 14), S2.

10. Dong, H., Hussain, F.K., & Chang, E. (2008). A survey in

semantic search technologies. In Second IEEE international

conference on digital ecosystems and technologies. Phitsanulok,

Thailand: IEEE.

11. Bogdanović, M., Stanimirović, A., & Stoimenov, L. (2015).

Methodology for geospatial data source discovery in ontology-

driven geo-information integration architectures. Web Semantics:

Science, Services and Agents on the World Wide Web, 32, 1–15.

12. Chun, S. A., & Warner, J. (2008). Semantic annotation and

search for deep web services. In Tenth IEEE conference on E-

commerce technology and the 5th IEEE conference on enterprise

computing, E-commerce and E-services (pp. 389–395). IEEE:

Washington, DC, USA.

13. Madhavan, J., Afanasiev, L., Antova, L. & Halevy, A. (2009).

Harnessing the deep web: Present and future. ArXiv.

14. Zhang, C., Zhao, T., & Li, W. (2013). Towards improving query

performance of web feature services (WFS) for disaster response.

ISPRS International Journal of Geo-Information, 2(1), 67–81.

Distributed agents for online spatial searches 201

123

15. Moncrieff, S., West, G. A. W., Cosford, J., Mullan, N., & Jardine,

A. (2014). An open source, server-side framework for analytical

web mapping and its application to health. International Journal

of Digital Earth, 7(4), 294–315.

16. Rautenbach, V., Coetzee, S., & Iwaniak, A. (2013). Orchestrating

OGC web services to produce thematic maps in a spatial infor-

mation infrastructure. Computers, Environment and Urban Sys-

tems, 37, 107–120.

17. Zhang, C., Zhao, T., Li, W., & Osleeb, J. P. (2010). Towards

logic-based geospatial feature discovery and integration using

web feature service and geospatial semantic web. International

Journal of Geographical Information Science, 24(6), 903–923.

18. Bone, C., Ager, A., Bunzel, K., & Tierney, L. (2014). A geospatial

search engine for discovering multiformat geospatial data across

the Web. International Journal of Digital Earth, 9(1), 47–62.

19. Adams, B., & McKenzie, G. (2013). Inferring thematic places

from spatially referenced natural language descriptions. In D.

Z. Sui, S. Elwood, & M. F. Goodchild, (Eds.) Crowdsourcing

geographic knowledge: Volunteered geographic information

(VGI) in theory and practice (pp. 201–221). Springer: Dordrecht.

202 E.-K. Gulland et al.

123

	Distributed agents for online spatial searches
	Abstract
	Introduction
	Background
	Agents
	Natural language queries
	Spatial searches
	Spatial data service example: WFS

	Orchestration of data search agents

	Approach
	Orchestration
	Search agents
	WFSAgent
	BoundaryAgent
	PublicTransportAgent
	NearbyAgent

	Results
	Discussion
	Conclusions
	Acknowledgments
	References

