
Vol.:(0123456789)

International Journal of Intelligent Robotics and Applications
https://doi.org/10.1007/s41315-024-00376-5

REGULAR PAPER

Comparison of lidar semantic segmentation performance
on the structured SemanticKITTI and off‑road RELLIS‑3D datasets

Mason McVicker1 · Lauren Ervin1 · Yongzhi Yang1 · Kenneth G. Ricks1

Received: 16 January 2024 / Accepted: 9 August 2024
© The Author(s) 2024

Abstract
Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban envi-
ronments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new
dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new
era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically
for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environ-
ment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a
commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We
discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance,
inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths
and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for
real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial
for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides
simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https:// github. com/
UA- Lidar- Segme ntati on- Resea rch.

Keywords Semantic segmentation · Lidar · Off-road · Dataset · SemanticKITTI · RELLIS-3D

1 Introduction

Perception is a fundamental part of life. Vision allows
animals and insects to navigate, traverse unknown areas,
and avoid obstacles. In many ways, robots are the same.
Advances in perception technology and algorithms have ena-
bled improvements in multiple fields. They have improved
the accuracy and safety of self-driving cars on the roads
and autonomous ground vehicles (AGVs) off-road. Off-road

navigation has distinct scene awareness requirements, such
as elevation mapping and negative obstacle detection to
distinguish between traversable and un-traversable regions.
In the automotive field, these advances have provided
greater safety for drivers and pedestrians and have enabled
the elderly and disabled greater independence. AGVs help
people carry out time-sensitive and physically demanding
search and rescue operations more effectively and with less
risk to human life, reduce the risks associated with heat and
sun exposure by automating lawn mowing, and reduce casu-
alties due to undetected and unexploded ordinances through
autonomous humanitarian demining operations, among
other benefits (Wang 2021; Wigness et al. 2019; Kopacek
2004; Kushwaha et al. 2016; Nagatani et al. 2013; Murphy
2014).

The sensors used are central to these applications. Cam-
era, radar, ultrasonic, and lidar sensors are commonly used,
and each has distinct advantages and disadvantages. Lidar
works by sending a series of pulses of light at a specific
frequency and observing the reflection off of the target.

 * Mason McVicker
 mmcvicker@crimson.ua.edu

 Lauren Ervin
 lefaris@crimson.ua.edu

 Yongzhi Yang
 yyang108@crimson.ua.edu

 Kenneth G. Ricks
 kricks@eng.ua.edu

1 Department of Electrical and Computer Engineering,
University of Alabama, Tuscaloosa, AL 35487, USA

https://github.com/UA-Lidar-Segmentation-Research
https://github.com/UA-Lidar-Segmentation-Research
http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-024-00376-5&domain=pdf

 M. McVicker et al.

The time it takes the light to return and the amount of light
reflected are sensed, and a distance is calculated. This dis-
tance is used to generate a point in 3D, relative to the sen-
sor. Several emitters and detectors are stacked vertically and
spun in a circle to provide a high density three-dimensional
scan of the area surrounding the sensor, commonly known
as a point cloud. Like radar and ultrasonic sensors, lidar is
an active sensor that emits the light it needs to observe the
world. Because of this, it operates equally well under all
lighting conditions. Lidar also has long detection ranges and
high measurement accuracy (Wang 2021).

Changes in viewpoint dramatically affect the appearance
of an object (Li et al. 2020). For example, when passing a
tanker truck, lidar scans of the front and rear are very dif-
ferent (Eastepp et al. 2022). The front is a traditional truck
cab, while the rear is round and cylindrical. This variation
makes hand-crafting a set of rules or features to interpret dif-
ferent lidar scans of even a single object difficult. Semantic
segmentation, along with object detection, classification, and
localization, forms the foundation for autonomous vehicles
(Li et al. 2020). Detection and classification can be extracted
from the output of a semantic segmentation algorithm, and
localization is an inherent property of lidar data. To help
progress the state of autonomous vehicles and AGVs, we
will focus this work on evaluating semantic segmentation
algorithms.

In order to learn rules and features, machine learning
algorithms require large amounts of labeled data. Labeled
data includes raw point clouds provided by the sensor and
a set of annotations that specify to which class each of the
points in the point cloud belongs. Because the algorithm
learns directly from the labeled data, it is important that the
labels are accurate and consistent. Large-scale datasets such
as SemanticKITTI (Behley et al. 2019), the Waymo Open
Dataset (Sun et al. 2020), nuScenes (Caesar et al. 2020) and
others (Geyer et al. 2020; Roynard et al. 2018; Fong et al.
2021; Huang et al. 2020) contain manually labeled data
collected by driving around cities with sensors mounted to
the vehicle. They provide a solution to the requirement for
high-quality labeled data with publicly available datasets for
researchers to download and use. Since this data is available,
various research groups have created algorithms designed
for them (Aksoy et al. 2019; Yan et al. 2022; Hu et al. 2020;
Zhu et al. 2021; Lai et al. 2023; Tang et al. 2020; Liu et al.
2019; Kong et al. 2023), furthering research progress.

All of the datasets and algorithms mentioned above are
designed for on-road driving in a city. Because of the inher-
ent structure of cities, such as flat roads, vertical buildings,
and other man-made objects, we will call this a “struc-
tured” environment, and datasets containing data collected
in this environment will be called “structured” datasets.
In contrast to the structure of the man-made world is the
lack of structure of the natural world, which we will call

an “unstructured” environment and the datasets collected
here “unstructured” datasets because of the lack of regu-
larity in the structure of the environment. In unstructured
environments, there is generally no clearly traversable path
for AGVs to drive on, instead relying on sensing to deter-
mine where to drive. Only recently have datasets been pub-
lished for these unstructured environments. RUGD (Wig-
ness et al. 2019) and RELLIS-3D (Jiang et al. 2022) are
two new unstructured datasets. RUGD includes only camera
images and is therefore not directly applicable to this work,
but RELLIS-3D contains both camera images and lidar
point clouds. To our knowledge, no new machine learning
algorithms have been created for RELLIS-3D, and only
two algorithms have been evaluated on the dataset when
initially published. Again, these two algorithms were origi-
nally developed for structured data not commonly found in
the unstructured world present in the RELLIS-3D dataset.

Comparing the performance of different algorithms is
important for researchers and professionals to choose the
best option for their application. Several methods have been
created in an effort to do this. A well-known tool is the
Papers With Code (The latest in Machine Learning. https://
paper swith code. com/). The website, created by Meta AI,
contains more than 100,000 papers with published results
spanning more than 8500 datasets, including all of the data-
sets mentioned in the previous paragraphs. Some dataset
publishers also host leaderboards for the performance of
algorithms on their dataset. These include the Waymo Open
Dataset Leaderboard (Sun et al. 2020) and the SemanticK-
ITTI CodaLab competition page (Papers With Code—The
latest in Machine Learning. https:// paper swith code. com/).
These leaderboards provide useful information, but have
some flaws. The first flaw is that the hardware and amount
of training data is not standardized. Different hardware can
contribute significantly to the performance of the algorithm
(Li et al. 2017). Additionally, some algorithms claim to use
additional training data, while others do not. This benefits
algorithms that use extra training data, as more data gen-
erally improves performance. Furthermore, in the case of
the Papers With Code page, the results are self-reported.
Although the results are supervised by a volunteer group,
there are likely to be inconsistencies as the time required to
verify and validate the results of each paper is prohibitive.

Contributions: In order to eliminate the quantity of train-
ing data as a variable and to gain an understanding of how
algorithms designed for structured environments work in
the unstructured world, we compare the performance of sev-
eral state-of-the-art lidar semantic segmentation algorithms
on SemanticKITTI, a structured dataset, and RELLIS-3D,
an unstructured dataset. Training and evaluation are per-
formed on identical hardware across networks and datasets,
eliminating hardware as a potential performance parame-
ter. Both datasets use the same labeling scheme, providing

https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

consistency in data reading methods and minimizing the
code changes needed to run algorithms on each dataset. We
compare four different algorithms; KPConv (Thomas et al.
2019), SalsaNext (Cortinhal et al. 2020), Cylinder3D (Zhu
et al. 2021), and SphereFormer (Lai et al. 2023).

2 Related works

2.1 Datasets

Multimodal datasets targeting various objects often use
some combination of camera, lidar, radar, Global Position-
ing System (GPS), and Inertial Measurement Unit (IMU)
sensors to collect correlated data. Even within similar raw
data, there are different labeling schemes including bound-
ing boxes, semantic labels, and vehicle pose. Additionally,
the focus of these datasets can be classified as on-road, off-
road, indoor, or objects. These datasets are frequently used
for semantic segmentation, scene completion, pose tracking,
object tracking, and object classification. We focus on on-
and off-road autonomous driving lidar datasets with the goal
of performing semantic segmentation.

The Waymo Open Dataset (Sun et al. 2020), SELMA
(Testolina et al. 2023), SemanticKITTI (Behley et al. 2019),
and others (Geyer et al. 2020; Caesar et al. 2020; Huang
et al. 2020) contain data from vehicles driving in cities, all
with lidar data from a roof mounted spinning lidar sensor,
and most contain other sensor and positioning data. RUGD
(Wigness et al. 2019) and RELLIS-3D (Jiang et al. 2022)
are recorded by small AGVs in outdoor environments. Both
contain camera images, and RELLIS-3D also contains lidar
data. As this work uses the SemanticKITTI and RELLIS-3D
datasets extensively, we will discuss them in greater detail.

2.1.1 SemanticKITTI

The SemanticKITTI dataset is based on the KITTI dataset
(Geiger et al. 2012). KITTI used sensors mounted on a vehi-
cle to record 22 sequences of data including images and lidar
scans. Each sequence is a separate drive around the city of
Karlsruhe, Germany and contains a list of the timestamps of
the camera and lidar scans with the 3D pose of the scan. This
dataset can be used for stereo, optical flow, visual odometry,
simultaneous localization and mapping (SLAM), and 3D
object detection. Approximately seven years later, a different
research team compiled the SemanticKITTI dataset to pro-
vide semantic labels for the lidar scans in all 22 sequences.
In total, there are over 40,000 scans with more than 4.5 bil-
lion points that are all labeled with class annotations. There
are 19 training classes represented in the dataset including
road, sidewalk, parking, other-ground, building, car, truck,
bicycle, motorcycle, other-vehicle, vegetation, trunk, terrain,

person, bicyclist, motorcyclist, fence, pole, and traffic sign.
There is also other-structure and other-object classes that
are omitted for evaluation. Of the 22 sequences of scans, 10
are dedicated to the training set, totaling 23,201 scans, with
one sequence for validation and the remaining 11 for testing,
totaling 20,351 scans (Fig. 1).

2.1.2 RELLIS‑3D

With inspiration from SemanticKITTI and RUGD, the REL-
LIS-3D dataset was developed. This dataset contains cam-
era images, lidar scans, and robot pose. It was collected by
driving an AGV around the Rellis campus of Texas A &M
University and contains 13,556 lidar scans and 6235 camera
images, divided across 5 sequences. Twenty classes were
annotated, including sky, grass, tree, bush, concrete, mud,
person, puddle, rubble, barrier, log, fence, vehicle, object,
pole, water, asphalt, building, and dirt. Approximately 80%
of the lidar points are contained in the classes of grass, tree,
and bushes, showing a large imbalance in the dataset. The
training set for this dataset contains 7800 scans with subse-
quences from four of the sequences. There are 2413 scans in
the validation set, comprising subsequences from two of the
sequences. Finally, there are 3343 scans in the test set con-
taining subsequences from three of the sequences. They state
the splits have been done this way to create a large training
set with a representative testing and validation set (Fig. 2).

2.2 Algorithms/networks

As there are no specific networks designed for semantic
segmentation of lidar point clouds in unstructured environ-
ments, algorithms and literature related to general point
cloud segmentation and structured environment segmenta-
tion are investigated. The algorithms were selected for three
main reasons:

1. They all have publicly available pytorch implementa-
tions;

Fig. 1 A labeled scene from the SemanticKITTI dataset (colors indi-
cate different classes of objects)

 M. McVicker et al.

2. They had the highest mIOU scores on the SemanticK-
ITTI dataset at the beginning of this project in August
2023;

3. Each algorithm had a unique architecture that distin-
guished it from the others.

2.2.1 KPConv

KPConv (Thomas et al. 2019) expands the popular con-
volutional neural network (CNN) to 3D point clouds by
using the kernel directly in 3D space rather than first
converting from a point cloud to a range image like (Kong
et al. 2023; Aksoy et al. 2019; Cortinhal et al. 2020). Most
CNN implementations rely on grids of data, such as the
pixel structure of a camera image. A convolutional ker-
nel operates on this grid, collecting information from the
image through convolution, which is then used in segmen-
tation or classification. KPConv introduces the Kernel
Point Convolution, called KPConv, which is a new point
convolution operator where kernel points are defined in 3
dimensions as points. Points in the target point cloud are
then correlated to the points in the convolution.

This novel approach was the model with the highest
ranking on the SemanticKITTI leaderboard on Papers
With Code for approximately a year, achieving a mean
intersection-over-union (mIOU) score of 58.8 (Behley
et al. 2019), only supplanted by the next network on our
list, SalsaNext. KPConv was also reported in the REL-
LIS-3D paper with an mIOU of 19.97 Jiang et al. (2022).

2.2.2 SalsaNext

SalsaNext (Cortinhal et al. 2020) is the next iteration of
SalsaNet (Aksoy et al. 2019). Both of these networks use
a projection-based method, where the points are projected
back onto a cylinder around the lidar and turned into a 5D
range-view image that is processed like a camera image.
SalsaNext uses an encoder-decoder architecture where the
range-view image has several levels of convolution with
various kernel sizes, dilation rates, and batch normalization
until it reaches a minimal representation of the data. The
convolution is then reversed to revert to the original image
size. Each point will also have 20 dimensions, equal to the
number of classes, with the most activated of these dimen-
sions being the output class.

SalsaNext differs from SalsaNet in two major ways, using
a pixel-shuffle layer instead of a traditional deconvolution,
and using an uncertainty estimation approach to account for
the noise inherent to lidar sensors. The pixel-shuffle layer
takes the extra dimensions in the channels and redistributes
them to the height and width spatial dimensions. This has
the effect of allowing more of the channel representation at
the center layer of the architecture to contain more informa-
tion about the spatial relationships in the data while still pre-
serving the compression of the encoder-decoder architecture.
The uncertainty estimation replaces the output predictions
with probability distributions based on propagating sen-
sor noise through the network. They also propagate weight
uncertainty through a Bayesian Neural Network (BNN) to
capture irreducible uncertainty in the data.

Using this uncertainty measurement and the pixel-shuffle
layer allowed SalsaNext to achieve state-of-the-art perfor-
mance on the SemanticKITTI dataset, achieving an mIOU of
59.5 and an mIOU score on the RELLIS-3D dataset of 43.07
(Jiang et al. 2022). KPConv and SalsaNext were the two
networks used for the lidar data in the RELLIS-3D paper.

2.2.3 Cylinder3D

Cylinder3D (Zhu et al. 2021), like KPConv, does not rely
on projection of the 3D point cloud into a 2D image the way
that SalsaNet, SalsaNext, and others do. It also avoids parti-
tioning the world into square voxels, instead partitioning into
cylindrical coordinates, and utilizes asymmetrical residual
blocks. Cylindrical coordinate partitioning is performed
by first converting the points into cylindrical coordinates,
namely (�, �, z) rather than the traditional (x, y, z). In parallel,
the point cloud is fed through a series of multi-layer percep-
trons (MLPs) to gather point-wise features. These two steps
are combined to create a set of cylindrical features through
cylindrical partitioning, represented in Fig. 3, which are fed
through an encoder-decoder network with asymmetrical
residual blocks. The asymmetrical residual blocks have two

Fig. 2 A labeled scene from the RELLIS-3D dataset

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

branches that each do a convolution along the � and � axes,
with � following � on one side and � following � on the other.
The two branches are concatenated before the downsam-
pling convolution in the encoder and after the deconvolu-
tion is concatenated with the features from the other side
of the decoder. The asymmetry enhances the robustness of
the algorithm.

Using these innovations, Cylinder3D was able to achieve
state-of-the-art performance with a reported mIOU of 67.8
on SemanticKITTI. As the network was published after the
RELLIS-3D dataset and to the best of our knowledge no one
else has run this network on the RELLIS-3D data, there is
no available data for comparison.

2.2.4 SphereFormer

Recently there has been an explosion of new networks
(Kong et al. 2023; Guo et al. 2021) using the Transformer
(Vaswani et al. 2023) architecture. SphereFormer (Lai et al.
2023) applies the popular transformer architecture to 3D
point clouds. To do this, they use the U-Net (Ronneberger
et al. 2015) backbone and SparseConv (Graham Maaten
2017; Graham et al. 2017) as a baseline model, similar to
Cylinder3D. They added a radial window partition and expo-
nential splitting of the r dimension, the distance from the
sensor, denoted � in the Cylinder3D section. This divides the
3D space into angular segmentations in � and � . These seg-
mentations are then segmented by range in an exponential
mapping. This makes the bins closer to the sensor smaller,
and the bins farther away bigger, shown in Fig. 3. Because
lidar sensors have a higher point density close to the sensor,
this helps to capture a similar number of points in each bin.

The SphereFormer model was able to achieve a state-
of-the-art mIOU of 74.8 on the SemanticKITTI dataset. To
our knowledge, the model has not yet been evaluated on the
RELLIS-3D dataset.

3 Methodology

3.1 Hardware

Training was performed on a computer executing on Ubuntu
20.04 with an Intel i9-9960X CPU, 64 GB of DDR4 RAM,
and two NVIDIA Quadro RTX 8000 GPUs with 48 GB of
VRAM per card. These GPUs are bridged together utilizing
NVIDIA’s NVLINK Bridge, enabling the GPUs to share
the VRAM present on each card. As a result, the training
process had 96 GB of VRAM available. To minimize ther-
mal throttling, which could negatively affect training perfor-
mance, case fans and a CPU cooler were used. The training
hardware is better than some of the original hardware used
for training the four considered networks. Rather than trying
to match all the original training hardware from each of the
published networks, our training hardware sets a baseline on
which all four networks can be evaluated. Thus, hardware
is not considered to be a parameter for comparison in this
work.

3.2 Software infrastructure

In an effort to simplify the environment setup, data prepara-
tion, and training process, we have invested into a robust
software environment. This includes docker containers, data
format preparation scripts, and a unified training process for

Fig. 3 Cylindrical partitioning
and spherical radial window

 M. McVicker et al.

all four networks and both datasets. This was accomplished
primarily with Docker and bash scripts. Details for the indi-
vidual parts of the software infrastructure are included in
this section.

3.2.1 Docker containers

To simplify the process of installing different sets of depend-
encies, to streamline the training process, and to manage
repeatable environment setups, we created a docker con-
tainer for each network. Each container is generated from a
dockerfile which contains a list of commands used to set up
the software environment, including installing dependencies
and running setup scripts. The dockerfile also sets the work-
ing directory to the location with the network code.

To build the docker container with the desired settings, a
complicated “docker build” command must be executed with
the correct parameters. To simplify this process, we wrote
a bash script that builds the container with the appropriate
options. To use the newly created software environment, a
terminal is opened in the docker container using a “docker
run” command. Like the “docker build” command, this has
a complicated set of parameters to ensure that the correct
options have been set. We wrote another bash script which
handles the rest of the setup and executes the docker run
command. The general environment infrastructure is shown
below in Fig. 4.

With the use of both scripts, the environment setup is
simplified to a small set of commands. This eliminates the
time-consuming tasks of setting up software environments
and installing compatible libraries and software packages.
The setup is also portable to multiple different PCs, so all
training and evaluations are repeatable on similar hardware.

Research (Felter et al. 2015) has shown that there is
“negligible overhead for CPU and memory performance”
when using docker. Additionally, the NVIDIA libraries used

within the docker environment have direct access to the GPU
hardware. As such, we are confident that using docker con-
tainers to host the software environment has not caused a
degradation of performance in the model regarding accuracy
or inference runtime. Any possible overhead would remain
consistent across all four models and both datasets.

3.2.2 Train validation test split

SemanticKITTI and RELLIS-3D have different numbers
of sequences and a different distribution of scans within
those sequences. In an effort to compare the two datasets as
directly as possible, we split the data in a similar manner for
both. RELLIS-3D contains fewer sequences and fewer scans
than SemanticKITTI, so we will use its train, validation, and
test splits as a baseline. We will then match the number of
scans for the SemanticKITTI split by intentionally capping
the total data used to 7800 scans. We will also match the dis-
tribution of scans within sequences to the best of our ability.

The training, validation, and testing split distribution of
sequences and scans within each sequence for the RELLIS-
3D dataset is shown in Table 1. The first column contains
an enumeration of the five sequences in the dataset. The
“Training” column contains the start and end scans of each
sequence that were added to the training set. For example,
from sequence 0, scan number 307, 308, ..., 1705, inclusive,
were added to the training set. The “Validation” and “Test-
ing” columns show similar data. At the bottom of the table
is the total number of scans for each of the three sets.

We chose the same split for SemanticKITTI, with Seman-
ticKITTI sequences matched to the RELLIS-3D sequence
with the most similar number of scans, as shown in the
right column of Table 1. We were unable to match the num-
ber exactly on RELLIS-3D sequence 4, so we augmented
SemanticKITTI sequence 9 with 468 scans from sequence 3.
This split was done without prior knowledge of the composi-
tion of the contents of any of the sequences to ensure that
the SemanticKITTI dataset did not receive more favorable
conditions than RELLIS-3D.

3.2.3 Algorithm preparation

Each algorithm required minor changes from the published
implementation for compatibility with RELLIS-3D. We add
a “rellis.yaml” file where needed to describe the dataset.
Like the “semantic-kitti.yaml” file, this describes the class
structure of the dataset and the train, validation, and test
split. Additional changes specific to each network are out-
lined below.

SalsaNext In SalsaNext, there are calculations that use
the depth of a point. The SemanticKITTI dataset uses a
Velodyne sensor that omits points with no return, while the
RELLIS-3D dataset uses an Ouster sensor that sets all fields Fig. 4 Environment architecture

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

of points with no return to 0. Due to this, the SalsaNext
algorithm encounters a divide-by-zero error when training
on the RELLIS-3D dataset. To counteract this issue, we
have followed the example of the authors of the RELLIS-
3D paper and introduced an additional operation on points
that have 0 depth, instead setting it to 1e−4 shown below in
Algorithm 1. Additionally, the field of view parameter was
changed to match the Ouster.

Algorithm 1 Spherical projection

Require: Raw point cloud

Ensure: Performs spherical projection on point cloud

1: Set FoV

2: Retrieve X,Y,Z points

3: Get depth of all points

4: if depth == 0 then
5: depth = 1e-4

6: end if
7: Yaw = -arctan2(Y,X)

8: Pitch = arcsin(Z
depth)

9: Get projections in image coordinates

10: Scale to image size using angular resolution

Cylinder3D The cylindrical partition used in Cylinder3D
has bounds set by a parameter in the config files. For Seman-
ticKITTI, these were set from −4 to +2 m in the Z direc-
tion in order to bound 99%+ of the points in the scan (Zhu
et al. 2021). When switching to the RELLIS-3D dataset, we
expanded the Z bound from −4 to +4 m in order to capture
the same percentage of points collected from the Ouster.

SphereFormer The training config files for SphereFormer
have been changed to use two GPUs instead of four. The
SphereFormer paper (Lai et al. 2023) presents training
using four GeForce GTX 3090 GPUs, for a total of 96 GB.
Although our hardware is not identical, we have matched
the total amount of VRAM available with our two NVIDIA
Quadro RTX 8000 GPUs.

3.3 Training and evaluation process

The first step of the training process is to build and run the
docker container. Next, one of the two utility training scripts,
for SemanticKITTI or RELLIS-3D, is used to train the net-
work. The output of the training process is displayed on the
terminal and saved to a file. We save the model including
weights for the best validation mIOU score for evaluation.
The mIOU is defined as

where TP is true positive, FP is false positive, FN is false
negative, and C is the number of classes. The maximum
mIOU score is 1, representing a perfect prediction, but we
present mIOU scores scaled by percent. This comparison
of ground truth and prediction is made to estimate accuracy
and evaluate network performance. The inference is assessed
by a separate evaluation script for each network from within
the respective docker container. Inference time is defined as

where ts refers to the time right before the prediction process
starts, te is recorded directly after the execution, tinference is the
average inference time, and N is the number of predictions
performed. After inference is performed on each point cloud,
the script saves the predicted labels. A separate program
from the semantic-kitti-api is used to evaluate the mIOU
scores. Using an external method of determining the mIOU
score ensures that there is no variance in the method of com-
puting score and that the score is computed over all points in

IOU =
TP

TP + FP + FN
,

mIOU =
1

C

C
∑

i=1

IOU(i)

tinference =
1

N

N
∑

i=1

te(i) − ts(i)

Table 1 Sequence distribution
for RELLIS-3D dataset

RELLIS-3D Training Validation Testing SemanticKITTI

0 Start 307 1706 0 0
End 1705 2849 306

1 Start – 1047 0 5
End – 2318 1046

2 Start 0 – 2158 2
End 2157 – 4146

3 Start 0 – – 8
End 2183

4 Start 0 0 – – 9
End 2058 1591
Start – 0 – – 3
End – 467

Total 7800 2413 3343

 M. McVicker et al.

the scan. We use the “evaluate_semantics.py”python script
running on the laptop computer with no code changes. The
labeled data and predicted labels are provided to the script
with the dataset configuration file. This script computes an
overall mIOU score along with the mIOU scores for each
class. The overall score for each algorithm on each data-
set, as well as the individual class performance is provided
in Sect. 4. The evaluation scrips also save the system time
before and after the inference call and then compute the
average inference time for all of the test set. This is also
reported in Sect. 4.

4 Results

4.1 SemanticKITTI quantitative performance

Given the significantly smaller amount of training data used
for this experiment than the published results for each of
the four networks tested, we expect worse results for the
SemanticKITTI dataset. Table 2 shows this to be true for all
networks; KPConv is 9.4% mIOU worse than the published
value, the closest of the four, and SphereFormer is 16.7 %
mIOU worse, the farthest from the published value. Sal-
saNext and Cylinder3D fall in the middle at 8.6% and 8.7%
worse, respectively.

We believe KPConv is the closest to the published perfor-
mance in part because it was not trained with extra training
data, as shown on the Papers With Code competition entry.
SalsaNext was also not trained with extra training data, and
is the next closest to the published results. This shows the
importance of a large training set for the overall performance
of a machine learning model.

Neither the SphereFormer Papers With Code competition
entry nor published paper mention what kind or how much
extra training data was used. We suspect that the exponential
splitting of the range dimension and the self attention mech-
anisms in SphereFormer may require more data to work as
effectively as possible, while the deformable convolution in
KPConv does not require as much data, as it deforms to the
data at hand in each scan. Despite this, SphereFormer still
performed 8.7% better than KPConv with the same data.

Cylinder3D was the best performer on our test with an
mIOU of 59.1. We suspect that the asymmetrical residual
block from Cylinder3D requires less data to train effectively
than the self-attention mechanism used in SphereFormer.
From the published results, we see that with more data, the
self-attention performs better, but from our results, we see
that with less data, the asymmetrical residual block performs
better.

The class results shown in Table 3 give more insight into
the above discussion. In each column, the algorithm that
performs best is shown in bold, and the worst is italicized.
SphereFormer performed the best in 9 out of 19 classes, but
only Person and Motorcyclist were significantly better than
Cylinder3D, which was the best in five of the remaining
classes. Cylinder3D did significantly better at Other-Vehicle
and Bicycle, and slightly better at the other classes. Overall,
Cylinder3D and SphereFormer are comparable. KPConv did
the best at five other classes. SalsaNext performed poorly
across the board, proving the worst in 13 classes. This may
be partially compensated for by the run-time speed of Sal-
saNext for some applications.

4.2 RELLIS‑3D quantitative performance

Table 4 shows the general performance of each network
on RELLIS-3D and Table 5 shows the performance of
the network on each class in the RELLIS-3D dataset. In
each column, the algorithm that performs best is shown in

Table 2 Our SemanticKITTI mIOU results compared with published
results

Network Published Ours Change (%)

KPConv 58.8 49.4 − 9.4
SalsaNext 59.5 50.9 − 8.6
Cylinder3D 67.8 59.1 − 8.7
SphereFormer 74.8 58.1 − 16.7

Table 3 SemanticKITTI class mIOU results where Cyl3D = Cylin-
der3D and SphFor = SphereFormer

Class KPConv SalsaNext Cyl3D SphFor

Car 94.69 88.5 95.79 94.56
Bicycle 19.8 25.7 37.02 27.49
Motorcycle 27.37 29.8 55.42 54.98
Truck 4.23 0 0.55 0.04
Other-vehicle 23.86 23.8 41.24 12.05
Person 25.78 39.7 47.9 58.43
Bicyclist 56.87 76.4 84.19 88.85
Motorcyclist 0 0 1.6 10.46
Road 94.78 94.6 96.53 96.86
Parking 15.23 61.0 69.73 71.57
Sidewalk 85.83 84.7 87.66 88.12
Other-ground 1.4 0 0.38 0.5
Building 92.59 83.5 90.73 90.62
Fence 68.39 61.8 69.15 70.21
Vegetation 86.22 80.8 86.32 86.66
Trunk 65.68 58.0 73.92 72.44
Terrain 68.71 51.7 60.69 60.03
Pole 60.83 48.6 59.28 54.63
Traffic-sign 46.71 59.3 65.49 66.13

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

bold, and the worst is italicized. Notable is the mIOU for
the Water class. Upon visual inspection, we were unable
to find any Water points in the test set. The authors of the
RELLIS-3D paper omitted other classes from the lidar
portion of the dataset that contained very few points, but
left the Water class, as it is not traversable by AGVs. In
order for this class to perform the intended function of
segmenting un-traversable areas, the presence of Water
points would need to be increased.

Certain classes such as Log, Fence, Puddle, Mud, and
Rubble performed poorly across all of the networks as
shown in Table 5. These have some of the lowest numbers
of points in the dataset. Barrier, Vehicle, and Pole also
have low numbers of points; however, these three classes
have more distinctive shapes than the others and therefore
performed better. All barriers in the dataset are angular
traffic barriers with flat faces, which contrasts sharply
with the organic shapes of the natural classes. Similarly,
poles are vertical and have a distinct cylindrical shape
with few surrounding points.

4.3 RELLIS‑3D qualitative performance

In this section, we present several algorithm outputs for
visual comparison.

Each picture contains five scans in the same orien-
tation. From left to right and top to bottom, there are:
labeled training data, KPConv, SalsaNext, Cylinder3D,
and SphereFormer outputs. Figure 5 shows a scan in which
Cylinder3D was able to successfully segment the vehicle
(yellow) when none of the other algorithms were. KPConv
also segmented the person incorrectly, annotating them as
Bush. In the labeled scan, the people on the left are labeled
half Person and half Grass, and the person near the center
has several Void points.

In Fig. 6, the grass field is predicted correctly by all
algorithms except KPConv, which added Bush and Rubble.
All except KPConv also predicted Bush, Barrier, Person,
Tree, and Concrete well. KPConv classified the person as
Bush, the Barrier as half Bush and half Barrier, and the
Concrete as a mixture of Grass, Fence, and Vehicle.

The qualitative analysis of these algorithms confirms
the trend seen in Table 5. The classes we see that per-
formed well numerically also performed well visually. The
Vehicle points seen in Fig. 5 are a prime example of this.
All algorithms except Cylinder3D performed poorly on the
Vehicle class, and all outputs except Cylinder3D showed
no Vehicle points on the vehicle. Cylinder3D, however,
performed well numerically and is confirmed as all of the
points are labeled correctly in the scan.

4.4 Comparison of SemanticKITTI and RELLIS‑3D
performance

All four networks performed worse on the RELLIS-3D
dataset than they did on SemanticKITTI, shown in Table 6.
The difference between the two is between 13.0% and
24.2% mIOU. We expected this might happen due to the
difficulties segmenting unstructured data, class imbalance,
and issues present in the RELLIS-3D dataset, discussed
below.

Table 4 Our RELLIS-3D mIOU results compared with published
results

Network Published Ours Change (%)

KPConv 19.97 25.21 +5.2
SalsaNext 43.07 34.25 − 8.82
Cylinder3D – 46.07 –
SphereFormer – 42.19 –

Table 5 RELLIS-3D class mIOU results where Cyl3D = cylinder3D
and SphFor = SphereFormer

Class KPConv SalsaNext Cyl3D SphFor

Grass 60.4 64.16 66.58 66.48
Tree 73.8 67.52 77.72 79.48
Pole 51.8 44.27 70.57 56.37
Water 0 0 0 0
Vehicle 2.9 17.59 60.16 22.37
Log 0 0.94 0 8.1
Person 69.9 82.26 86.67 83.72
Fence 0.9 1.97 8.88 9.86
Bush 69.4 68.4 73.06 71.71
Concrete 8.1 53.26 80.67 84.22
Barrier 13.8 45.12 82.93 76.8
Puddle 1.9 24.88 23.54 9.24
Mud 0.1 8.97 13.97 17.48
Rubble 0 0.13 0.23 4.81

Table 6 Comparison of our SemanticKITTI and RELLIS-3D mIOU
results

Network SemanticKITTI RELLIS-3D Change (%)

KPConv 49.4 25.2 −24.2
SalsaNext 50.9 34.2 −16.7
Cylinder3D 59.1 46.1 −13.0
SphereFormer 58.1 42.2 −15.9

 M. McVicker et al.

Fig. 5 Sequence 1 scan 130

Fig. 6 Sequence 2 scan 3108

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

4.4.1 Difficulties in segmenting unstructured data

Structured Environments generally contain lots of sharp
angles and distinct boundaries. It is easy, for example, to
tell where pavement ends and a building begins. It it much
harder to determine the boundaries between classes in an
unstructured environment. Some examples of classes that are
difficult for both the human labeler and the trained network
to distinguish include, but are not limited to, the following.
The difference between what should be considered Tree and
what should be considered Bush can be unclear. A large
bush could be considered a small tree, and vice-versa. A
grassy field with small bushes, spaced such that the AGV
cannot pass but the lidar sensor can still see the underlying
grass, also presents a difficult scenario. The human labeler
is forced to decide what should be classified as Grass and
what should be classified as Bush. In this scenario, we were
unable to determine the differences between Grass and Bush.
In the RELLIS-3D dataset, we see scans where the ground
under and surrounding the Bush was labeled Grass, and
other scans where it was labeled Bush. As human labelers
were unable to consistently determine the differences and
boundaries between the classes, we expect the trained algo-
rithm to have similar difficulties.

We believe that the inherent difficulty in segmenting
unstructured data contributes to the poor performance of
each network on RELLIS-3D when compared to SemanticK-
ITTI. However, we are unable to quantify exactly what effect
the inherent difficulty of segmenting unstructured environ-
ments has on the overall performance of each network.

4.4.2 Class imbalance

A known issue with the RELLIS-3D dataset is class imbal-
ance. There is a four-order-of-magnitude difference in the
number of points belonging to the most and least represented
class. There are ten times more points in each of the Grass,
Tree, and Bush classes than any other, and ten times fewer
points in the Pole class than any other. Interestingly, the pole
class was one of the better performing classes in the dataset.
We believe that this is due to the geometry and positioning
of the Pole class in the dataset. Poles are generally straight
and are not close to any other objects.

SemanticKITTI also has a large disparity of four orders
of magnitude between the most represented and least rep-
resented classes, with four classes with similarly high num-
bers of points and three classes with very low numbers of
points. This is similar to the distribution of points in REL-
LIS-3D. Because both datasets contain a similar distribution
of points, any effects of class imbalance would be repli-
cated across both datasets. Indeed, we see that on average,
across both datasets, classes with more points have higher
mIOU scores than classes with fewer points. This shows the

importance of having a balanced dataset for the ability to
detect all classes well. Because the disparity of class repre-
sentation is replicated across datasets, we believe that class
imbalance is not a significant contributor to the lower per-
formance of the four algorithms on the RELLIS-3D dataset
compared to the SemanticKITTI dataset.

4.4.3 Problems with RELLIS‑3D labeled data

When analyzing the data from the output of the networks
and the labeled data, we found several instances of inconsist-
encies in the labeled data from RELLIS-3D. In a significant
number of scans throughout the dataset, there is a square of
points in the center of the scan that have been labeled Void.
There are other problems present throughout the RELLIS-
3D dataset, including mislabels and switching labels. Dif-
ferent parts of large objects such as a person or large tree are
regularly classified as more than one label in the same scan,
i.e. a person’s upper body is labeled as person and the lower
body is labeled as grass. Sets of consecutive scans also have
large groupings of points that swap back and forth between
different labels, lacking consistency.

We would like to point out the inconsistency as a possi-
ble contributor to the poor performance of the networks on
RELLIS-3D compared to their performance on SemanticK-
ITTI. If the labels are inconsistent, it will weaken the ability
for the network to learn which features belong to which class
and lower the confidence of the network’s predictions. In the
worst case, the network could fail to distinguish between
classes altogether. Additionally, since the inconsistencies
belong to the published test set, the evaluation of points
will be incorrect for any points that are labeled incorrectly.
In a scenario of inconsistency with flipping labels, a label
may swap from one class to another for several scans. If the
network predictions do not swap with the inconsistent labels,
those predictions will be counted as incorrect even though
they are more consistent and presumably correct, lowering
the mIOU score, due to poor labeling. It is impossible to
know how many correctly predicted points are considered
incorrect due to inaccurate labels. This inconsistency in
labeling reduces the robustness and reliability of the dataset.
These problems are discussed further and multiple examples
are provided in the “Appendix”.

4.5 Inference time results

Inference was performed on a laptop executing on Ubuntu
20.04 with an Intel i7-10750 H CPU, 16 GB of DDR4
RAM, and an external NVIDIA RTX A5000 GPU with
24 GB of VRAM. Table 7 shows inference time results for
each algorithm which measures network prediction effi-
ciency. The Ouster and Velodyne sensors used to collect
the RELLIS-3D and SemanticKITTI datasets generally

 M. McVicker et al.

output data at 10Hz. This means that an algorithm needs
to execute in under 100ms to be considered real-time
when running inference on every frame.

Cylinder3D had the highest mIOU score, but took the
longest for inference; nearly 100 ms. SphereFormer was
slightly faster, but not significantly. Both of these net-
works may be able to execute in real time, but would
likely require powerful hardware and significant power
consumption to do so.

SalsaNext was specifically designed to run in real time
(Cortinhal et al. 2020). In our testing, it achieves a runt-
ime more than five times faster than Cylinder3D, and
almost twice as fast as the next fastest, KPConv. Sacri-
fices had to be made in raw mIOU performance, but the
speed could compensate for this in some applications.
When segmenting the most represented classes of Grass,
Tree, Person, and Bush, SalsaNext had an mIOU score
that was not significantly lower than the other algorithms.
If the application does not require accurate segmenta-
tion of the less represented classes, such as an application
using the segmentation to determine what areas are or are
not traversable, SalsaNext would be a good choice, as it
would save computation time and power for other tasks.

KPConv had a runtime of 29.97 ms. This is somewhat
slower than SalsaNext, but still competitive compared to
Cylinder3D and SphereFormer. As discussed in Sect. 5.4,
we had to increase the size of the inference radius signifi-
cantly to get KPConv to compute the entire point cloud.
The run-time presented in this thesis was measured with a
50 m radius sphere, the largest that could fit in the 24 GB
of VRAM in our laptop evaluation hardware. With the
potential method of dividing the scan into 4 m radius
spheres, as discussed in Sect. 5.4, the accuracy may
improve, but the runtime would likely increase drastically.
To cover the same area as a single sphere of radius 50 m,
at least 1900 spheres of radius of 4 m would be needed.
Running inference on a sphere of radius of 4 m took on
average 14.42 ms. multiplying this by the minimum of
1900 spheres needed to cover the same area, we find a
hypothetical time of more than 27,000 ms, or almost half
of a minute, to run inference on a single scan.

5 Network analysis

In this section, we analyze the four algorithms evaluated
in this work, presented in descending mIOU score on the
RELLIS-3D dataset: Cylinder3D, SphereFormer, SalsaNext,
and KPConv. We examine strengths and weaknesses of the
algorithms and provide an analysis of the performance.

5.1 Cylinder3D

Cylinder3D had the highest mIOU score in the remaining
eight classes and the highest overall score. Performance on
the Pole, Vehicle, and Barrier classes is particularly impres-
sive. The structure of each of these classes and the Person
class, on which Cylinder3D also has the highest score, fits
well with the design of the asymmetrical residual block in
the Cylinder3D network. This residual block powers the con-
volutional kernel and allows the algorithm to focus more
strongly on points in the immediate neighborhood of an
object. Each of these classes has a distinct shape that is not
surrounded by other points. On the rest of the classes except
Log and Rubble, Cylinder3D performed well. Cylinder3D is
the best overall algorithm we tested, although it has weak-
nesses in detecting certain types of objects.

5.2 SphereFormer

SphereFormer was the second best performing algorithm,
with the highest score for several under-represented classes
such as Log, Fence, Mud, and Rubble. Although Sphere-
Former performed better than the other networks on these
classes, they still had poor performance and could benefit
from a greater representation in the dataset. On more com-
mon classes like Grass, Tree, Person, and Bush, Sphere-
Former performed well with an mIOU score only slightly
lower than the best.

Self-attention and exponential splitting enabled Sphere-
Former to achieve good overall performance. Self-attention
allowed the algorithm to focus on similar point structures
from across the whole scan (Matteazzi et al. 2024). Expo-
nential splitting allowed for more distributed points to be
considered by the convolution kernel at the same time. We
performed an ablation study by removing the exponential
splitting function from the network and retraining for 50
epochs using the same method as described in Sect. 3.3.
Evaluating the modified model gave an overall decrease in
mIOU score of 14.01%. Every class also had a decrease in
performance, except Person with a 1.5% gain. All instances
of Person in the dataset are located close to the sensor.
Because of this, there is no benefit to having larger, more
distributed kernels for classes, like Person, that are always

Table 7 Inference time results Network Inference
time (ms)

KPConv 29.97
SalsaNext 17.83
Cylinder3D 99.92
SphereFormer 94.01

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

clustered around the sensor. This shows that exponential
splitting improves performance on classes with distributed
points, while negatively impacting classes with points biased
to the center.

5.3 SalsaNext

SalsaNext did not have the highest mIOU score for any of the
classes and had the worst score for Tree, Pole, and Bush. On
these three classes, it was only 6%, 7%, and 1% worse than
KPConv. It also performed very poorly on the Log, Fence,
and Barrier classes. SalsaNext removed the strided convolu-
tion SalsaNet used for downsampling and instead replaced
it with average pooling. The creators of SalsaNext hypoth-
esized that learning at that level was not needed and wanted
to reduce the number of trainable parameters to increase the
network’s speed. Other works have identified that imple-
menting strided convolution over pooling for downsampling
can lead to a more expressive model that boosts accuracy
(Springenberg et al. 2015). The classes SalsaNext performed
the worst on were ones with small features indicating that
the average pooling downsampling may be impacting the
performance.

On most of the other classes, SalsaNext had good per-
formance, closer to the high mIOU scores of SphereFormer
and Cylinder3D than the low scores of KPConv. Although
not the best at any one class or overall, SalsaNext achieves
its goal of fast runtime, as shown in Sect. 4.5. The trade-
off between raw mIOU score and inference time makes
SalsaNext a strong contender for the best choice in many
applications.

5.4 KPConv

KPConv consistently performed poorly. This could be an
artifact of the evaluation method, as we were unable to find
a good evaluation script. The way that KPConv was trained
and evaluated by default was for each iteration to randomly
sample a point from within the entire dataset. A convolu-
tional kernel is applied to a 4 m radius sphere surrounding
that point. During training, the algorithm learned based on
the points within the 4 m sphere. According to the author
in a GitHub issue (https:// github. com/ Hugue sTHOM AS/
KPConv- PyTor ch/ issues/ 191), this was done to allow the
algorithm to fit within a reasonable amount of GPU memory.
Indeed, we saw this issue when testing, as larger radii used
more GPU memory.

For evaluation, we tried two different approaches and
suggest a possible third approach. The first approach was
to simply run the evaluation script included in the KPConv
GitHub repository with its default parameters. This approach
runs 100 epochs of testing and compiles all predicted points
throughout the evaluation process. It takes several hours to

complete, and even with 10,000 4 m radius spheres sampled
per epoch and 100 epochs, it still did not sample every point
in the dataset, resulting in a large number of black Void
points in scans.

The second approach, which we used to calculate the
results presented in Table 4, was to evaluate the entire point
cloud at once by changing the radius of the convolution ker-
nel sphere to 50 m. This captured the entire point cloud in
one step and avoided missing large sections due to random
sampling. Every point in an individual scan was labeled in
one inference iteration.

Using these two approaches, mIOU scores ranged from
17 to 43. This variance in mIOU values was directly attribut-
able to the random sampling of the algorithm, the size of the
convolutional sphere, and the overall number of points con-
sidered in the evaluation. We admit that changing the sphere
size is a flawed approach, but we believe that it is the best
option. When using a machine learning algorithm to perform
semantic segmentation, it is most useful to receive a predic-
tion of the whole image or scene, rather than a small select
portion. Therefore, the most useful evaluation is one that
infers over all data in a single scan. Another possible evalu-
ation method might be to divide the entire point cloud into
4 m spheres such that every point is contained in a sphere.
This would enable evaluation in a more similar manner to
the training process, but it would be computationally imprac-
tical for real-time execution, as discussed in Sect. 4.5.

6 Conclusion

Each of the four algorithms evaluated, KPConv, SalsaNext,
Cylinder3D, and SphereFormer had a lower mIOU score on
the RELLIS-3D dataset than the SemanticKITTI dataset. We
believe this is due to a variety of factors. The largest factor
could be inconsistencies in the labels. In a small sampling of
the dataset, 71% of scans had at least some points that were
obviously labeled incorrectly. This directly affects evalua-
tion, as correctly predicted points evaluated against incorrect
labels will artificially decrease the mIOU score. Incorrect
and inconsistent labels will also affect the training of the
algorithms, but it is impossible to predict the exact impacts
without relabeling the entire dataset.

The next factor in the lower score when compared to
SemanticKITTI is the inherent difficulty of segmenting
unstructured environments. It was impossible for us to
determine the boundaries between some classes in the raw
data. This difficulty extends to the labeling procedure and
to network inference.

Finally, class imbalance was also a factor in the perfor-
mance of each algorithm on RELLIS-3D, with the classes
that were better represented performing better on average
than the ones with fewer points. All algorithms had difficulty

https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191
https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191

 M. McVicker et al.

when running inference on under-represented classes such
as Rubble, Log, Fence, and Mud. This imbalance was repli-
cated in the SemanticKITTI dataset, however. Any decrease
in performance due to class imbalance should be replicated
across both datasets. More points of under-represented
classes are needed to improve the performance of these
algorithms on both datasets.

This research shows some of the strengths and weak-
nesses of each of the four networks on an unstructured data-
set. SphereFormer and Cylinder3D both worked very well
for most classes, with Cylinder3D performing slightly bet-
ter overall. SphereFormer was the best at SemanticKITTI,
when it was provided with more data, while Cylinder3D did
slightly better with the more limited dataset of RELLIS-
3D. SalsaNext has a fast inference time and is acceptable
at detecting most classes well represented in the dataset.
KPConv had poor results due to difficulties in running infer-
ence, but may be useful in limited scenarios.

Qualitatively, we showed that most of the networks, espe-
cially Cylinder3D and SphereFormer, were able to general-
ize and perform well on common classes. Shockingly, the
predictions from these algorithms are more consistent than
the human-generated labels. Segmenting traversable and

un-traversable classes remains a core challenge for automat-
ing exploration of unstructured environments with AGVs.

Appendix: RELLIS‑3D labeled data problems

To quantify the number of scans that have this square of
points labeled Void shown in Fig. 7, we randomly sampled
three sequences of 100 scans from the dataset. Of the 300
scans sampled, the square of Void points was present in 216
of them, or 72%. The center of each scan commonly con-
tains points that belong to the Person class, since there was a
driver and three other people following the AGV throughout
the data collection. These four people are present in every
scan, but are sometimes labeled Void, shown in Black, and
sometimes labeled Person when they are sufficiently far from
the sensor, and sometimes split between the two when on
the threshold. Additionally, other points around the AGV
are also labeled Void. These are commonly surrounded by
points labeled Grass or Bush. We suspect that the Void label
is inaccurate and an artifact of the labeling process.

There are several locations in the RELLIS-3D dataset
where the points in the same location flip labels in succes-
sive scans. Examples of this have been provided in Figs. 8,
9, and 10. Figure 8 shows a sequence of three consecutive
scans. The points in the top center of the scans are labeled
Grass, shown in dark green, on the left in scan 2468. A large
number of points swap to Bush in scan 2469, and then back
to Grass in scan 2470.

Figure 9 shows two consecutive scans that illustrate a
turning point. There is a sudden switch in the labeled class
of a large area of the scan. The upper right quarter of the
scan switches class from Bush to Grass in a single scan. In
the scans prior to this, the area in question is consistently
labeled Bush, although with some small inconsistency in

Fig. 7 Square of void (labeled
in black)

Fig. 8 Grass labels flipping class in Sequence 2

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

the boundary, like what was shown in Fig. 8. After the first
scan in Fig. 9, the points are consistently labeled Grass, as
shown in the second half of the screenshot.

These problems are shown again in Fig. 10, but with the
addition of Void and Tree to the classes in question. In the
first scan, the entire left half of the point cloud is labeled
Bush, shown in pink and there are some points in the top
right corner labeled Void, shown in black. In the second
scan, a large section of points have been labeled Grass,
shown in green and a smaller section labeled Tree, shown
in light green, and the location where the Void points were is
now labeled Concrete, shown in grey. The last figure shows
an isometric view of the second scan, but zoomed in. We
can see the person in the middle of the scan is labeled Void
while the person behind is labeled Person, shown in purple.
There are also points labeled Tree where there were not in
the previous scan.

To attempt to quantify the amount of scans that were
labeled incorrectly, we performed manual evaluation of
three randomly chosen sequences of 100 scans from the
dataset. For each of these sequences, we counted the num-
ber of obvious inconsistencies, such as groups of points
flipping between classes, like in Fig. 8, points in the mid-
dle of a class that were labeled as another, or the presence
of the square of Void points in the center of the scan,
as shown in Fig. 7 . We report these results in a binary

manner; either there are inconsistencies, or there are not.
In reality, there is a spectrum of inconsistent points. Some
scans had several dozen points that were obviously incor-
rect, either as a patch of points like the Void seen in the
top right corner or the Tree in Fig. 10. Others had larger
patches of incorrect points, like in Fig. 9.

Upon visual inspection, we found that 124 out of 300
scans had obvious inconsistencies, excluding the square of
Void at the center of the scan. 216 out of the same 300 scans
were also affected by the Void points. This is 41% and 72%
of scans, respectively. Some classes will be impacted by the
inconsistencies more than others. Mislabeled Vehicle points
will have a greater impact than mislabeled Grass points due
to the larger number of total points in the Grass class.

The numbers presented here are unlikely to be repre-
sentative of the entire dataset, but are meant to provide a
rough estimate of possible impact. Additionally, exact val-
ues for the numbers and percentages of incorrectly labeled
points are impossible to accurately determine without rela-
beling the scans and evaluating the difference. Due to the
difficulty in determining classes of points without a-priori
knowledge of the environment, as discussed in Sect. 4.4.1,
we will not attempt this, as our estimates of classes may
be as bad or worse than the existing labels. However, the
impact of incorrect labels cannot be ignored. For context,
following a similar evaluation methodology, we reviewed
hundreds of scans in the SemanticKITTI dataset without a
single instance of dynamically changing labels.

Acknowledgements We would like to acknowledge the Electrical and
Computer Engineering department at the University of Alabama for
their support.

Authors' contributions Conceptualization: M.M., L.E., Y.Y., and K.R.;
Data preparation: M.M. and L.E.; Methodology: M.M.; Formal analy-
sis and investigation: M.M., L.E., and Y.Y.; Writing - original draft
preparation: M.M. and L.E.; Writing - review and editing: M.M., L.E.,
Y.Y., and K.R.; Supervision: K.R.

Funding No funding was received to assist with the preparation of
this manuscript.

Data availibility No datasets were generated or analysed during the
current study.

Code availability All code is publicly available at https:// github. com/
UA- Lidar- Segme ntati on- Resea rch.

Declarations

Conflict of interest All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Ethics approval Not applicable.

Consent to participate Not applicable.

Fig. 9 Large section of points flips class in Sequence 2

Fig. 10 Inconsistent labels in several classes in sequence 2

https://github.com/UA-Lidar-Segmentation-Research
https://github.com/UA-Lidar-Segmentation-Research

 M. McVicker et al.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution-NonCommercial-NoDerivatives 4.0 International License, which
permits any non-commercial use, sharing, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this
article or parts of it. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permit-
ted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

Aksoy, E.E., Baci, S., Cavdar, S.: SalsaNet: Fast Road and Vehicle
Segmentation in LiDAR Point Clouds for Autonomous Driving.
arXiv (2019). https:// doi. org/ 10. 48550/ arXiv. 1909. 08291

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss,
C., Gall, J.: SemanticKITTI: a dataset for semantic scene under-
standing of LiDAR sequences. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 9296–9306. IEEE,
Seoul (2019). https:// doi. org/ 10. 1109/ ICCV. 2019. 00939

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q.,
Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.: nuScenes: A Mul-
timodal Dataset for Autonomous Driving. arXiv (2020). https://
doi. org/ 10. 48550/ arXiv. 1903. 11027

Cortinhal, T., Tzelepis, G., Erdal Aksoy, E.: SalsaNext: fast, uncer-
tainty-aware semantic segmentation of LiDAR point clouds. In:
Bebis, G., Yin, Z., Kim, E., Bender, J., Subr, K., Kwon, B.C.,
Zhao, J., Kalkofen, D., Baciu, G. (eds.) Advances in Visual Com-
puting. Lecture Notes in Computer Science, pp. 207–222. Springer,
Cham (2020). https:// doi. org/ 10. 1007/ 978-3- 030- 64559-5_ 16

Dimensionality, Potential-based sampling, input spheres and batch_
neighbors in Classification. Issue #191. HuguesTHOMAS/
KPConv-PyTorch. https:// github. com/ Hugue sTHOM AS/ KPConv-
PyTor ch/ issues/ 191

Eastepp, M., Faris, L., Ricks, K.: UA_l-DoTT: University of Alabama’s
large dataset of trains and trucks. Data in Brief 42, 108073 (2022).
https:// doi. org/ 10. 1016/j. dib. 2022. 108073

Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated perfor-
mance comparison of virtual machines and Linux containers. In:
2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 171–172 (2015). https:// doi.
org/ 10. 1109/ ISPASS. 2015. 70958 02

Fong, W.K., Mohan, R., Hurtado, J.V., Zhou, L., Caesar, H., Beijbom,
O., Valada, A.: Panoptic nuScenes: A Large-Scale Benchmark
for LiDAR Panoptic Segmentation and Tracking. arXiv (2021).
https:// doi. org/ 10. 48550/ arXiv. 2109. 03805

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite. In: 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 3354–3361
(2012). https:// doi. org/ 10. 1109/ CVPR. 2012. 62480 74

Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung,
A.S., Hauswald, L., Pham, V.H., Mühlegg, M., Dorn, S., Fernan-
dez, T., Jänicke, M., Mirashi, S., Savani, C., Sturm, M., Vorobiov,
O., Oelker, M., Garreis, S., Schuberth, P.: A2D2: Audi Autono-
mous Driving Dataset. arXiv (2020). https:// doi. org/ 10. 48550/
arXiv. 2004. 06320

Graham, B., Maaten, L.: Submanifold Sparse Convolutional Networks.
arXiv (2017). https:// doi. org/ 10. 48550/ arXiv. 1706. 01307

Graham, B., Engelcke, M., Maaten, L.: 3D Semantic Segmentation
with Submanifold Sparse Convolutional Networks. arXiv (2017).
https:// doi. org/ 10. 48550/ arXiv. 1711. 10275

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.:
PCT: point cloud transformer. Comput. Vis. Med. 7(2), 187–199
(2021). https:// doi. org/ 10. 1007/ s41095- 021- 0229-5

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N.,
Markham, A.: RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds, pp. 11105–11114. IEEE Computer Soci-
ety, Seattle (2020). https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 01112

Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The
ApolloScape open dataset for autonomous driving and its appli-
cation. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2702–
2719 (2020). https:// doi. org/ 10. 1109/ TPAMI. 2019. 29264 63

Jiang, P., Osteen, P., Wigness, M., Saripalli, S.: RELLIS-3D Dataset:
Data, Benchmarks and Analysis. arXiv (2022). https:// doi. org/ 10.
48550/ arXiv. 2011. 12954

Kong, L., Liu, Y., Chen, R., Ma, Y., Zhu, X., Li, Y., Hou, Y., Qiao, Y.,
Liu, Z.: Rethinking Range View Representation for LiDAR Seg-
mentation. arXiv (2023). https:// doi. org/ 10. 48550/ arXiv. 2303. 05367

Kopacek, P.: Robots for Humanitarian demining. In: Voicu, M. (ed.)
Advances in Automatic Control. The Springer International Series
in Engineering and Computer Science, pp. 159–172. Springer
(2004). https:// doi. org/ 10. 1007/ 978-1- 4419- 9184-3_ 11

Kushwaha, H., Sinha, J.P., Khura, T., Kushwaha, D., Ekka, U., Purush-
ottam, M., Singh, N.: Status and scope of robotics In Agriculture.
In: International Conference on Emerging Technologies in Agri-
cultural and Food Engineering, Kharagpur (2016)

Lai, X., Chen, Y., Lu, F., Liu, J., Jia, J.: Spherical Transformer for
LiDAR-based 3D Recognition. arXiv (2023). https:// doi. org/ 10.
48550/ arXiv. 2303. 12766

Li, J., Zhang, C., Cao, Q., Qi, C., Huang, J., Xie, C.: An experimental
study on deep learning based on different hardware configurations.
In: 2017 International Conference on Networking, Architecture,
and Storage (NAS), pp. 1–6. IEEE, Shenzhen (2017). https:// doi.
org/ 10. 1109/ NAS. 2017. 80268 43

Li, Y., Ma, L., Zhong, Z., Liu, F., Cao, D., Li, J., Chapman, M.A.: Deep
Learning for LiDAR Point Clouds in Autonomous Driving: A
Review. arXiv (2020). https:// doi. org/ 10. 48550/ arXiv. 2005. 09830

Liu, Z., Zhao, X., Huang, T., Hu, R., Zhou, Y., Bai, X.: TANet: Robust
3D Object Detection from Point Clouds with Triple Attention.
arXiv (2019). https:// doi. org/ 10. 48550/ arXiv. 1912. 05163

Matteazzi, A., Colling, P., Arnold, M., Tutsch, D.: A preprocessing and
Postprocessing Voxel-Based Method for Lidar Semantic Segmen-
tation Improvement in Long Distance, Germany (2024). https://
doi. org/ 10. 48550/ arXiv. 2405. 10046

Murphy, R.: Disaster Robotics. Intelligent Robotics and Autonomous
Agents. Mit Pr, USA (2014). https:// doi. org/ 10. 7551/ mitpr ess/
9407. 001. 0001

Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K.,
Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Fuku-
shima, M., Kawatsuma, S.: Emergency response to the nuclear
accident at the Fukushima Daiichi Nuclear Power Plants using
mobile rescue robots. J. Field Robot. 30(1), 44–63 (2013). https://
doi. org/ 10. 1002/ rob. 21439

Papers with Code—The latest in Machine Learning. https:// paper swith
code. com/

Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks
for Biomedical Image Segmentation. arXiv (2015). https:// doi. org/
10. 48550/ arXiv. 1505. 04597

Roynard, X., Deschaud, J.-E., Goulette, F.: Paris-Lille-3D: a large and
high-quality ground truth urban point cloud dataset for automatic
segmentation and classification. arXiv (2018). https:// doi. org/ 10.
48550/ arXiv. 1712. 00032

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.48550/arXiv.1909.08291
https://doi.org/10.1109/ICCV.2019.00939
https://doi.org/10.48550/arXiv.1903.11027
https://doi.org/10.48550/arXiv.1903.11027
https://doi.org/10.1007/978-3-030-64559-5_16
https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191
https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191
https://doi.org/10.1016/j.dib.2022.108073
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.48550/arXiv.2109.03805
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.48550/arXiv.2004.06320
https://doi.org/10.48550/arXiv.2004.06320
https://doi.org/10.48550/arXiv.1706.01307
https://doi.org/10.48550/arXiv.1711.10275
https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1109/CVPR42600.2020.01112
https://doi.org/10.1109/TPAMI.2019.2926463
https://doi.org/10.48550/arXiv.2011.12954
https://doi.org/10.48550/arXiv.2011.12954
https://doi.org/10.48550/arXiv.2303.05367
https://doi.org/10.1007/978-1-4419-9184-3_11
https://doi.org/10.48550/arXiv.2303.12766
https://doi.org/10.48550/arXiv.2303.12766
https://doi.org/10.1109/NAS.2017.8026843
https://doi.org/10.1109/NAS.2017.8026843
https://doi.org/10.48550/arXiv.2005.09830
https://doi.org/10.48550/arXiv.1912.05163
https://doi.org/10.48550/arXiv.2405.10046
https://doi.org/10.48550/arXiv.2405.10046
https://doi.org/10.7551/mitpress/9407.001.0001
https://doi.org/10.7551/mitpress/9407.001.0001
https://doi.org/10.1002/rob.21439
https://doi.org/10.1002/rob.21439
https://paperswithcode.com/
https://paperswithcode.com/
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1712.00032
https://doi.org/10.48550/arXiv.1712.00032

Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and…

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striv-
ing for Simplicity: The All Convolutional Net, Germany (2015).
https:// doi. org/ 10. 48550/ arXiv. 1412. 6806

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui,
P., Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han,
W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon,
M., Gao, A., Joshi, A., Zhao, S., Cheng, S., Zhang, Y., Shlens, J.,
Chen, Z., Anguelov, D.: Scalability in Perception for Autonomous
Driving: Waymo Open Dataset. arXiv (2020). https:// doi. org/ 10.
48550/ arXiv. 1912. 04838

Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Search-
ing Efficient 3D Architectures with Sparse Point-Voxel Convolu-
tion. arXiv (2020). https:// doi. org/ 10. 48550/ arXiv. 2007. 16100

Testolina, P., Barbato, F., Michieli, U., Giordani, M., Zanuttigh, P.,
Zorzi, M.: SELMA: SEmantic large-scale multimodal acquisitions
in variable weather, daytime and viewpoints. IEEE Trans. Intell.
Transp. Syst. 24(7), 7012–7024 (2023). https:// doi. org/ 10. 1109/
TITS. 2023. 32570 86

Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F.,
Guibas, L.: KPConv: flexible and deformable convolution for
point clouds. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6410–6419 (2019). https:// doi. org/
10. 1109/ ICCV. 2019. 00651

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. arXiv
(2023). https:// doi. org/ 10. 48550/ arXiv. 1706. 03762

Wang, P.: Research on comparison of LiDAR and camera in autono-
mous driving. J. Phys. Conf. Ser. 2093(1), 012032 (2021). https://
doi. org/ 10. 1088/ 1742- 6596/ 2093/1/ 012032

Wigness, M., Eum, S., Rogers, J.G., Han, D., Kwon, H.: A RUGD
dataset for autonomous navigation and visual perception in
unstructured outdoor environments. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
5000–5007. IEEE, Macau (2019). https:// doi. org/ 10. 1109/ IROS4
0897. 2019. 89682 83

Yan, X., Gao, J., Zheng, C., Zheng, C., Zhang, R., Cui, S., Li, Z.:
2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR
Point Clouds. arXiv (2022). https:// doi. org/ 10. 48550/ arXiv. 2207.
04397

Zhu, X., Zhou, H., Wang, T., Hong, F., Li, W., Ma, Y., Li, H., Yang,
R., Lin, D.: Cylindrical and Asymmetrical 3D Convolution Net-
works for LiDAR-based Perception. arXiv (2021). https:// doi. org/
10. 48550/ arXiv. 2109. 05441

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mason McVicker received his B.S.
in Computer Engineering and
M.S. in Electrical Engineering
from the University of Alabama
in 2021 and 2023 respectively.
His research interests include
mobile robotics, lidar process-
ing, deep learning, and autono-
mous navigation.

Lauren Ervin received her B.S. in
Electrical Engineering with a
Computer Option from The Uni-
versity of Alabama in 2020. She
is now pursuing a Ph.D. from the
same department. She is a 2022–
2025 NASA ASGC fellow, 2023
NSF BPart fellow, and 2024 NSF
iREDEFINE fellow. Her research
interests include mobile robotics
designed for space applications,
unstructured environment tra-
versal, computer vision, deep
learning, and dynamic modeling.

Yongzhi Yang received his B.S.
in Electrical Engineering from
Linyi University in 2015. He is
now pursuing a Ph.D. in Electri-
cal and Computer Engineering
from The University of Ala-
bama. His research interests
include deep learning, 3D image
processing, unstructured envi-
ronment autonomous navigation,
real-time negative obstacle
avoidance.

Dr. Kenneth G. Ricks received the
B.S. degree in Electrical Engi-
neering from the University of
Alabama, Tuscaloosa in 1989,
and the M.S. and Ph.D. degrees
from the University of Alabama
in Huntsville in 1997 and 2002,
respectively. From 1989–2002 he
worked at the National Aeronaut-
ics and Space Administration
(NASA) Marshall Space Flight
Center in Huntsville, Alabama.
Since 2002, Dr. Ricks has worked
in the Department of Electrical
and Computer Engineering at the
University of Alabama where he

is currently a Professor and the Interim Department Head. Dr. Ricks’
research interests include embedded systems, real-time computation,
computer architecture, robotics, autonomous navigation, and artificial
intelligence. He is a Senior Member of IEEE.

https://doi.org/10.48550/arXiv.1412.6806
https://doi.org/10.48550/arXiv.1912.04838
https://doi.org/10.48550/arXiv.1912.04838
https://doi.org/10.48550/arXiv.2007.16100
https://doi.org/10.1109/TITS.2023.3257086
https://doi.org/10.1109/TITS.2023.3257086
https://doi.org/10.1109/ICCV.2019.00651
https://doi.org/10.1109/ICCV.2019.00651
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1088/1742-6596/2093/1/012032
https://doi.org/10.1088/1742-6596/2093/1/012032
https://doi.org/10.1109/IROS40897.2019.8968283
https://doi.org/10.1109/IROS40897.2019.8968283
https://doi.org/10.48550/arXiv.2207.04397
https://doi.org/10.48550/arXiv.2207.04397
https://doi.org/10.48550/arXiv.2109.05441
https://doi.org/10.48550/arXiv.2109.05441

	Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and off-road RELLIS-3D datasets
	Abstract
	1 Introduction
	2 Related works
	2.1 Datasets
	2.1.1 SemanticKITTI
	2.1.2 RELLIS-3D

	2.2 Algorithmsnetworks
	2.2.1 KPConv
	2.2.2 SalsaNext
	2.2.3 Cylinder3D
	2.2.4 SphereFormer

	3 Methodology
	3.1 Hardware
	3.2 Software infrastructure
	3.2.1 Docker containers
	3.2.2 Train validation test split
	3.2.3 Algorithm preparation

	3.3 Training and evaluation process

	4 Results
	4.1 SemanticKITTI quantitative performance
	4.2 RELLIS-3D quantitative performance
	4.3 RELLIS-3D qualitative performance
	4.4 Comparison of SemanticKITTI and RELLIS-3D performance
	4.4.1 Difficulties in segmenting unstructured data
	4.4.2 Class imbalance
	4.4.3 Problems with RELLIS-3D labeled data

	4.5 Inference time results

	5 Network analysis
	5.1 Cylinder3D
	5.2 SphereFormer
	5.3 SalsaNext
	5.4 KPConv

	6 Conclusion
	Appendix: RELLIS-3D labeled data problems
	Acknowledgements
	References

