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Abstract
Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban envi-
ronments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new 
dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new 
era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically 
for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environ-
ment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a 
commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We 
discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance, 
inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths 
and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for 
real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial 
for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides 
simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https:// github. com/ 
UA- Lidar- Segme ntati on- Resea rch.
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1 Introduction

Perception is a fundamental part of life. Vision allows 
animals and insects to navigate, traverse unknown areas, 
and avoid obstacles. In many ways, robots are the same. 
Advances in perception technology and algorithms have ena-
bled improvements in multiple fields. They have improved 
the accuracy and safety of self-driving cars on the roads 
and autonomous ground vehicles (AGVs) off-road. Off-road 

navigation has distinct scene awareness requirements, such 
as elevation mapping and negative obstacle detection to 
distinguish between traversable and un-traversable regions. 
In the automotive field, these advances have provided 
greater safety for drivers and pedestrians and have enabled 
the elderly and disabled greater independence. AGVs help 
people carry out time-sensitive and physically demanding 
search and rescue operations more effectively and with less 
risk to human life, reduce the risks associated with heat and 
sun exposure by automating lawn mowing, and reduce casu-
alties due to undetected and unexploded ordinances through 
autonomous humanitarian demining operations, among 
other benefits (Wang 2021; Wigness et al. 2019; Kopacek 
2004; Kushwaha et al. 2016; Nagatani et al. 2013; Murphy 
2014).

The sensors used are central to these applications. Cam-
era, radar, ultrasonic, and lidar sensors are commonly used, 
and each has distinct advantages and disadvantages. Lidar 
works by sending a series of pulses of light at a specific 
frequency and observing the reflection off of the target. 
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The time it takes the light to return and the amount of light 
reflected are sensed, and a distance is calculated. This dis-
tance is used to generate a point in 3D, relative to the sen-
sor. Several emitters and detectors are stacked vertically and 
spun in a circle to provide a high density three-dimensional 
scan of the area surrounding the sensor, commonly known 
as a point cloud. Like radar and ultrasonic sensors, lidar is 
an active sensor that emits the light it needs to observe the 
world. Because of this, it operates equally well under all 
lighting conditions. Lidar also has long detection ranges and 
high measurement accuracy (Wang 2021).

Changes in viewpoint dramatically affect the appearance 
of an object (Li et al. 2020). For example, when passing a 
tanker truck, lidar scans of the front and rear are very dif-
ferent (Eastepp et al. 2022). The front is a traditional truck 
cab, while the rear is round and cylindrical. This variation 
makes hand-crafting a set of rules or features to interpret dif-
ferent lidar scans of even a single object difficult. Semantic 
segmentation, along with object detection, classification, and 
localization, forms the foundation for autonomous vehicles 
(Li et al. 2020). Detection and classification can be extracted 
from the output of a semantic segmentation algorithm, and 
localization is an inherent property of lidar data. To help 
progress the state of autonomous vehicles and AGVs, we 
will focus this work on evaluating semantic segmentation 
algorithms.

In order to learn rules and features, machine learning 
algorithms require large amounts of labeled data. Labeled 
data includes raw point clouds provided by the sensor and 
a set of annotations that specify to which class each of the 
points in the point cloud belongs. Because the algorithm 
learns directly from the labeled data, it is important that the 
labels are accurate and consistent. Large-scale datasets such 
as SemanticKITTI (Behley et al. 2019), the Waymo Open 
Dataset (Sun et al. 2020), nuScenes (Caesar et al. 2020) and 
others (Geyer et al. 2020; Roynard et al. 2018; Fong et al. 
2021; Huang et al. 2020) contain manually labeled data 
collected by driving around cities with sensors mounted to 
the vehicle. They provide a solution to the requirement for 
high-quality labeled data with publicly available datasets for 
researchers to download and use. Since this data is available, 
various research groups have created algorithms designed 
for them (Aksoy et al. 2019; Yan et al. 2022; Hu et al. 2020; 
Zhu et al. 2021; Lai et al. 2023; Tang et al. 2020; Liu et al. 
2019; Kong et al. 2023), furthering research progress.

All of the datasets and algorithms mentioned above are 
designed for on-road driving in a city. Because of the inher-
ent structure of cities, such as flat roads, vertical buildings, 
and other man-made objects, we will call this a “struc-
tured” environment, and datasets containing data collected 
in this environment will be called “structured” datasets. 
In contrast to the structure of the man-made world is the 
lack of structure of the natural world, which we will call 

an “unstructured” environment and the datasets collected 
here “unstructured” datasets because of the lack of regu-
larity in the structure of the environment. In unstructured 
environments, there is generally no clearly traversable path 
for AGVs to drive on, instead relying on sensing to deter-
mine where to drive. Only recently have datasets been pub-
lished for these unstructured environments. RUGD (Wig-
ness et al. 2019) and RELLIS-3D (Jiang et al. 2022) are 
two new unstructured datasets. RUGD includes only camera 
images and is therefore not directly applicable to this work, 
but RELLIS-3D contains both camera images and lidar 
point clouds. To our knowledge, no new machine learning 
algorithms have been created for RELLIS-3D, and only 
two algorithms have been evaluated on the dataset when 
initially published. Again, these two algorithms were origi-
nally developed for structured data not commonly found in 
the unstructured world present in the RELLIS-3D dataset.

Comparing the performance of different algorithms is 
important for researchers and professionals to choose the 
best option for their application. Several methods have been 
created in an effort to do this. A well-known tool is the 
Papers With Code (The latest in Machine Learning. https:// 
paper swith code. com/). The website, created by Meta AI, 
contains more than 100,000 papers with published results 
spanning more than 8500 datasets, including all of the data-
sets mentioned in the previous paragraphs. Some dataset 
publishers also host leaderboards for the performance of 
algorithms on their dataset. These include the Waymo Open 
Dataset Leaderboard (Sun et al. 2020) and the SemanticK-
ITTI CodaLab competition page (Papers With Code—The 
latest in Machine Learning. https:// paper swith code. com/). 
These leaderboards provide useful information, but have 
some flaws. The first flaw is that the hardware and amount 
of training data is not standardized. Different hardware can 
contribute significantly to the performance of the algorithm 
(Li et al. 2017). Additionally, some algorithms claim to use 
additional training data, while others do not. This benefits 
algorithms that use extra training data, as more data gen-
erally improves performance. Furthermore, in the case of 
the Papers With Code page, the results are self-reported. 
Although the results are supervised by a volunteer group, 
there are likely to be inconsistencies as the time required to 
verify and validate the results of each paper is prohibitive.

Contributions: In order to eliminate the quantity of train-
ing data as a variable and to gain an understanding of how 
algorithms designed for structured environments work in 
the unstructured world, we compare the performance of sev-
eral state-of-the-art lidar semantic segmentation algorithms 
on SemanticKITTI, a structured dataset, and RELLIS-3D, 
an unstructured dataset. Training and evaluation are per-
formed on identical hardware across networks and datasets, 
eliminating hardware as a potential performance parame-
ter. Both datasets use the same labeling scheme, providing 

https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
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consistency in data reading methods and minimizing the 
code changes needed to run algorithms on each dataset. We 
compare four different algorithms; KPConv (Thomas et al. 
2019), SalsaNext (Cortinhal et al. 2020), Cylinder3D (Zhu 
et al. 2021), and SphereFormer (Lai et al. 2023).

2  Related works

2.1  Datasets

Multimodal datasets targeting various objects often use 
some combination of camera, lidar, radar, Global Position-
ing System (GPS), and Inertial Measurement Unit (IMU) 
sensors to collect correlated data. Even within similar raw 
data, there are different labeling schemes including bound-
ing boxes, semantic labels, and vehicle pose. Additionally, 
the focus of these datasets can be classified as on-road, off-
road, indoor, or objects. These datasets are frequently used 
for semantic segmentation, scene completion, pose tracking, 
object tracking, and object classification. We focus on on- 
and off-road autonomous driving lidar datasets with the goal 
of performing semantic segmentation.

The Waymo Open Dataset (Sun et al. 2020), SELMA 
(Testolina et al. 2023), SemanticKITTI (Behley et al. 2019), 
and others (Geyer et al. 2020; Caesar et al. 2020; Huang 
et al. 2020) contain data from vehicles driving in cities, all 
with lidar data from a roof mounted spinning lidar sensor, 
and most contain other sensor and positioning data. RUGD 
(Wigness et al. 2019) and RELLIS-3D (Jiang et al. 2022) 
are recorded by small AGVs in outdoor environments. Both 
contain camera images, and RELLIS-3D also contains lidar 
data. As this work uses the SemanticKITTI and RELLIS-3D 
datasets extensively, we will discuss them in greater detail.

2.1.1  SemanticKITTI

The SemanticKITTI dataset is based on the KITTI dataset 
(Geiger et al. 2012). KITTI used sensors mounted on a vehi-
cle to record 22 sequences of data including images and lidar 
scans. Each sequence is a separate drive around the city of 
Karlsruhe, Germany and contains a list of the timestamps of 
the camera and lidar scans with the 3D pose of the scan. This 
dataset can be used for stereo, optical flow, visual odometry, 
simultaneous localization and mapping (SLAM), and 3D 
object detection. Approximately seven years later, a different 
research team compiled the SemanticKITTI dataset to pro-
vide semantic labels for the lidar scans in all 22 sequences. 
In total, there are over 40,000 scans with more than 4.5 bil-
lion points that are all labeled with class annotations. There 
are 19 training classes represented in the dataset including 
road, sidewalk, parking, other-ground, building, car, truck, 
bicycle, motorcycle, other-vehicle, vegetation, trunk, terrain, 

person, bicyclist, motorcyclist, fence, pole, and traffic sign. 
There is also other-structure and other-object classes that 
are omitted for evaluation. Of the 22 sequences of scans, 10 
are dedicated to the training set, totaling 23,201 scans, with 
one sequence for validation and the remaining 11 for testing, 
totaling 20,351 scans (Fig. 1).

2.1.2  RELLIS‑3D

With inspiration from SemanticKITTI and RUGD, the REL-
LIS-3D dataset was developed. This dataset contains cam-
era images, lidar scans, and robot pose. It was collected by 
driving an AGV around the Rellis campus of Texas A &M 
University and contains 13,556 lidar scans and 6235 camera 
images, divided across 5 sequences. Twenty classes were 
annotated, including sky, grass, tree, bush, concrete, mud, 
person, puddle, rubble, barrier, log, fence, vehicle, object, 
pole, water, asphalt, building, and dirt. Approximately 80% 
of the lidar points are contained in the classes of grass, tree, 
and bushes, showing a large imbalance in the dataset. The 
training set for this dataset contains 7800 scans with subse-
quences from four of the sequences. There are 2413 scans in 
the validation set, comprising subsequences from two of the 
sequences. Finally, there are 3343 scans in the test set con-
taining subsequences from three of the sequences. They state 
the splits have been done this way to create a large training 
set with a representative testing and validation set (Fig. 2).

2.2  Algorithms/networks

As there are no specific networks designed for semantic 
segmentation of lidar point clouds in unstructured environ-
ments, algorithms and literature related to general point 
cloud segmentation and structured environment segmenta-
tion are investigated. The algorithms were selected for three 
main reasons: 

1. They all have publicly available pytorch implementa-
tions;

Fig. 1  A labeled scene from the SemanticKITTI dataset (colors indi-
cate different classes of objects)



 M. McVicker et al.

2. They had the highest mIOU scores on the SemanticK-
ITTI dataset at the beginning of this project in August 
2023;

3. Each algorithm had a unique architecture that distin-
guished it from the others.

2.2.1  KPConv

KPConv (Thomas et al. 2019) expands the popular con-
volutional neural network (CNN) to 3D point clouds by 
using the kernel directly in 3D space rather than first 
converting from a point cloud to a range image like (Kong 
et al. 2023; Aksoy et al. 2019; Cortinhal et al. 2020). Most 
CNN implementations rely on grids of data, such as the 
pixel structure of a camera image. A convolutional ker-
nel operates on this grid, collecting information from the 
image through convolution, which is then used in segmen-
tation or classification. KPConv introduces the Kernel 
Point Convolution, called KPConv, which is a new point 
convolution operator where kernel points are defined in 3 
dimensions as points. Points in the target point cloud are 
then correlated to the points in the convolution.

This novel approach was the model with the highest 
ranking on the SemanticKITTI leaderboard on Papers 
With Code for approximately a year, achieving a mean 
intersection-over-union (mIOU) score of 58.8 (Behley 
et al. 2019), only supplanted by the next network on our 
list, SalsaNext. KPConv was also reported in the REL-
LIS-3D paper with an mIOU of 19.97 Jiang et al. (2022).

2.2.2  SalsaNext

SalsaNext (Cortinhal et al. 2020) is the next iteration of 
SalsaNet (Aksoy et al. 2019). Both of these networks use 
a projection-based method, where the points are projected 
back onto a cylinder around the lidar and turned into a 5D 
range-view image that is processed like a camera image. 
SalsaNext uses an encoder-decoder architecture where the 
range-view image has several levels of convolution with 
various kernel sizes, dilation rates, and batch normalization 
until it reaches a minimal representation of the data. The 
convolution is then reversed to revert to the original image 
size. Each point will also have 20 dimensions, equal to the 
number of classes, with the most activated of these dimen-
sions being the output class.

SalsaNext differs from SalsaNet in two major ways, using 
a pixel-shuffle layer instead of a traditional deconvolution, 
and using an uncertainty estimation approach to account for 
the noise inherent to lidar sensors. The pixel-shuffle layer 
takes the extra dimensions in the channels and redistributes 
them to the height and width spatial dimensions. This has 
the effect of allowing more of the channel representation at 
the center layer of the architecture to contain more informa-
tion about the spatial relationships in the data while still pre-
serving the compression of the encoder-decoder architecture. 
The uncertainty estimation replaces the output predictions 
with probability distributions based on propagating sen-
sor noise through the network. They also propagate weight 
uncertainty through a Bayesian Neural Network (BNN) to 
capture irreducible uncertainty in the data.

Using this uncertainty measurement and the pixel-shuffle 
layer allowed SalsaNext to achieve state-of-the-art perfor-
mance on the SemanticKITTI dataset, achieving an mIOU of 
59.5 and an mIOU score on the RELLIS-3D dataset of 43.07 
(Jiang et al. 2022). KPConv and SalsaNext were the two 
networks used for the lidar data in the RELLIS-3D paper.

2.2.3  Cylinder3D

Cylinder3D (Zhu et al. 2021), like KPConv, does not rely 
on projection of the 3D point cloud into a 2D image the way 
that SalsaNet, SalsaNext, and others do. It also avoids parti-
tioning the world into square voxels, instead partitioning into 
cylindrical coordinates, and utilizes asymmetrical residual 
blocks. Cylindrical coordinate partitioning is performed 
by first converting the points into cylindrical coordinates, 
namely (�, �, z) rather than the traditional (x, y, z). In parallel, 
the point cloud is fed through a series of multi-layer percep-
trons (MLPs) to gather point-wise features. These two steps 
are combined to create a set of cylindrical features through 
cylindrical partitioning, represented in Fig. 3, which are fed 
through an encoder-decoder network with asymmetrical 
residual blocks. The asymmetrical residual blocks have two 

Fig. 2  A labeled scene from the RELLIS-3D dataset
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branches that each do a convolution along the � and � axes, 
with � following � on one side and � following � on the other. 
The two branches are concatenated before the downsam-
pling convolution in the encoder and after the deconvolu-
tion is concatenated with the features from the other side 
of the decoder. The asymmetry enhances the robustness of 
the algorithm.

Using these innovations, Cylinder3D was able to achieve 
state-of-the-art performance with a reported mIOU of 67.8 
on SemanticKITTI. As the network was published after the 
RELLIS-3D dataset and to the best of our knowledge no one 
else has run this network on the RELLIS-3D data, there is 
no available data for comparison.

2.2.4  SphereFormer

Recently there has been an explosion of new networks 
(Kong et al. 2023; Guo et al. 2021) using the Transformer 
(Vaswani et al. 2023) architecture. SphereFormer (Lai et al. 
2023) applies the popular transformer architecture to 3D 
point clouds. To do this, they use the U-Net (Ronneberger 
et al. 2015) backbone and SparseConv (Graham Maaten 
2017; Graham et al. 2017) as a baseline model, similar to 
Cylinder3D. They added a radial window partition and expo-
nential splitting of the r dimension, the distance from the 
sensor, denoted � in the Cylinder3D section. This divides the 
3D space into angular segmentations in � and � . These seg-
mentations are then segmented by range in an exponential 
mapping. This makes the bins closer to the sensor smaller, 
and the bins farther away bigger, shown in Fig. 3. Because 
lidar sensors have a higher point density close to the sensor, 
this helps to capture a similar number of points in each bin.

The SphereFormer model was able to achieve a state-
of-the-art mIOU of 74.8 on the SemanticKITTI dataset. To 
our knowledge, the model has not yet been evaluated on the 
RELLIS-3D dataset.

3  Methodology

3.1  Hardware

Training was performed on a computer executing on Ubuntu 
20.04 with an Intel i9-9960X CPU, 64 GB of DDR4 RAM, 
and two NVIDIA Quadro RTX 8000 GPUs with 48 GB of 
VRAM per card. These GPUs are bridged together utilizing 
NVIDIA’s NVLINK Bridge, enabling the GPUs to share 
the VRAM present on each card. As a result, the training 
process had 96 GB of VRAM available. To minimize ther-
mal throttling, which could negatively affect training perfor-
mance, case fans and a CPU cooler were used. The training 
hardware is better than some of the original hardware used 
for training the four considered networks. Rather than trying 
to match all the original training hardware from each of the 
published networks, our training hardware sets a baseline on 
which all four networks can be evaluated. Thus, hardware 
is not considered to be a parameter for comparison in this 
work.

3.2  Software infrastructure

In an effort to simplify the environment setup, data prepara-
tion, and training process, we have invested into a robust 
software environment. This includes docker containers, data 
format preparation scripts, and a unified training process for 

Fig. 3  Cylindrical partitioning 
and spherical radial window
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all four networks and both datasets. This was accomplished 
primarily with Docker and bash scripts. Details for the indi-
vidual parts of the software infrastructure are included in 
this section.

3.2.1  Docker containers

To simplify the process of installing different sets of depend-
encies, to streamline the training process, and to manage 
repeatable environment setups, we created a docker con-
tainer for each network. Each container is generated from a 
dockerfile which contains a list of commands used to set up 
the software environment, including installing dependencies 
and running setup scripts. The dockerfile also sets the work-
ing directory to the location with the network code.

To build the docker container with the desired settings, a 
complicated “docker build” command must be executed with 
the correct parameters. To simplify this process, we wrote 
a bash script that builds the container with the appropriate 
options. To use the newly created software environment, a 
terminal is opened in the docker container using a “docker 
run” command. Like the “docker build” command, this has 
a complicated set of parameters to ensure that the correct 
options have been set. We wrote another bash script which 
handles the rest of the setup and executes the docker run 
command. The general environment infrastructure is shown 
below in Fig. 4.

With the use of both scripts, the environment setup is 
simplified to a small set of commands. This eliminates the 
time-consuming tasks of setting up software environments 
and installing compatible libraries and software packages. 
The setup is also portable to multiple different PCs, so all 
training and evaluations are repeatable on similar hardware.

Research (Felter et al. 2015) has shown that there is 
“negligible overhead for CPU and memory performance” 
when using docker. Additionally, the NVIDIA libraries used 

within the docker environment have direct access to the GPU 
hardware. As such, we are confident that using docker con-
tainers to host the software environment has not caused a 
degradation of performance in the model regarding accuracy 
or inference runtime. Any possible overhead would remain 
consistent across all four models and both datasets.

3.2.2  Train validation test split

SemanticKITTI and RELLIS-3D have different numbers 
of sequences and a different distribution of scans within 
those sequences. In an effort to compare the two datasets as 
directly as possible, we split the data in a similar manner for 
both. RELLIS-3D contains fewer sequences and fewer scans 
than SemanticKITTI, so we will use its train, validation, and 
test splits as a baseline. We will then match the number of 
scans for the SemanticKITTI split by intentionally capping 
the total data used to 7800 scans. We will also match the dis-
tribution of scans within sequences to the best of our ability.

The training, validation, and testing split distribution of 
sequences and scans within each sequence for the RELLIS-
3D dataset is shown in Table 1. The first column contains 
an enumeration of the five sequences in the dataset. The 
“Training” column contains the start and end scans of each 
sequence that were added to the training set. For example, 
from sequence 0, scan number 307, 308, ..., 1705, inclusive, 
were added to the training set. The “Validation” and “Test-
ing” columns show similar data. At the bottom of the table 
is the total number of scans for each of the three sets.

We chose the same split for SemanticKITTI, with Seman-
ticKITTI sequences matched to the RELLIS-3D sequence 
with the most similar number of scans, as shown in the 
right column of Table 1. We were unable to match the num-
ber exactly on RELLIS-3D sequence 4, so we augmented 
SemanticKITTI sequence 9 with 468 scans from sequence 3. 
This split was done without prior knowledge of the composi-
tion of the contents of any of the sequences to ensure that 
the SemanticKITTI dataset did not receive more favorable 
conditions than RELLIS-3D.

3.2.3  Algorithm preparation

Each algorithm required minor changes from the published 
implementation for compatibility with RELLIS-3D. We add 
a “rellis.yaml” file where needed to describe the dataset. 
Like the “semantic-kitti.yaml” file, this describes the class 
structure of the dataset and the train, validation, and test 
split. Additional changes specific to each network are out-
lined below.

SalsaNext In SalsaNext, there are calculations that use 
the depth of a point. The SemanticKITTI dataset uses a 
Velodyne sensor that omits points with no return, while the 
RELLIS-3D dataset uses an Ouster sensor that sets all fields Fig. 4  Environment architecture
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of points with no return to 0. Due to this, the SalsaNext 
algorithm encounters a divide-by-zero error when training 
on the RELLIS-3D dataset. To counteract this issue, we 
have followed the example of the authors of the RELLIS-
3D paper and introduced an additional operation on points 
that have 0 depth, instead setting it to 1e−4 shown below in 
Algorithm 1. Additionally, the field of view parameter was 
changed to match the Ouster.

Algorithm 1  Spherical projection

Require: Raw point cloud

Ensure: Performs spherical projection on point cloud

1: Set FoV

2: Retrieve X,Y,Z points

3: Get depth of all points

4: if depth == 0 then
5: depth = 1e-4

6: end if
7: Yaw = -arctan2(Y,X)

8: Pitch = arcsin( Z
depth )

9: Get projections in image coordinates

10: Scale to image size using angular resolution

Cylinder3D The cylindrical partition used in Cylinder3D 
has bounds set by a parameter in the config files. For Seman-
ticKITTI, these were set from −4 to +2 m in the Z direc-
tion in order to bound 99%+ of the points in the scan (Zhu 
et al. 2021). When switching to the RELLIS-3D dataset, we 
expanded the Z bound from −4 to +4 m in order to capture 
the same percentage of points collected from the Ouster.

SphereFormer The training config files for SphereFormer 
have been changed to use two GPUs instead of four. The 
SphereFormer paper (Lai et  al. 2023) presents training 
using four GeForce GTX 3090 GPUs, for a total of 96 GB. 
Although our hardware is not identical, we have matched 
the total amount of VRAM available with our two NVIDIA 
Quadro RTX 8000 GPUs.

3.3  Training and evaluation process

The first step of the training process is to build and run the 
docker container. Next, one of the two utility training scripts, 
for SemanticKITTI or RELLIS-3D, is used to train the net-
work. The output of the training process is displayed on the 
terminal and saved to a file. We save the model including 
weights for the best validation mIOU score for evaluation. 
The mIOU is defined as

where TP is true positive, FP is false positive, FN is false 
negative, and C is the number of classes. The maximum 
mIOU score is 1, representing a perfect prediction, but we 
present mIOU scores scaled by percent. This comparison 
of ground truth and prediction is made to estimate accuracy 
and evaluate network performance. The inference is assessed 
by a separate evaluation script for each network from within 
the respective docker container. Inference time is defined as

where ts refers to the time right before the prediction process 
starts, te is recorded directly after the execution, tinference is the 
average inference time, and N is the number of predictions 
performed. After inference is performed on each point cloud, 
the script saves the predicted labels. A separate program 
from the semantic-kitti-api is used to evaluate the mIOU 
scores. Using an external method of determining the mIOU 
score ensures that there is no variance in the method of com-
puting score and that the score is computed over all points in 

IOU =
TP

TP + FP + FN
,

mIOU =
1

C

C
∑

i=1

IOU(i)

tinference =
1

N

N
∑

i=1

te(i) − ts(i)

Table 1  Sequence distribution 
for RELLIS-3D dataset

RELLIS-3D Training Validation Testing SemanticKITTI

0 Start 307 1706 0 0
End 1705 2849 306

1 Start – 1047 0 5
End – 2318 1046

2 Start 0 – 2158 2
End 2157 – 4146

3 Start 0 – – 8
End 2183

4 Start 0 0 – – 9
End 2058 1591
Start – 0 – – 3
End – 467

Total 7800 2413 3343
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the scan. We use the “evaluate_semantics.py”python script 
running on the laptop computer with no code changes. The 
labeled data and predicted labels are provided to the script 
with the dataset configuration file. This script computes an 
overall mIOU score along with the mIOU scores for each 
class. The overall score for each algorithm on each data-
set, as well as the individual class performance is provided 
in Sect. 4. The evaluation scrips also save the system time 
before and after the inference call and then compute the 
average inference time for all of the test set. This is also 
reported in Sect. 4.

4  Results

4.1  SemanticKITTI quantitative performance

Given the significantly smaller amount of training data used 
for this experiment than the published results for each of 
the four networks tested, we expect worse results for the 
SemanticKITTI dataset. Table 2 shows this to be true for all 
networks; KPConv is 9.4% mIOU worse than the published 
value, the closest of the four, and SphereFormer is 16.7 % 
mIOU worse, the farthest from the published value. Sal-
saNext and Cylinder3D fall in the middle at 8.6% and 8.7% 
worse, respectively.

We believe KPConv is the closest to the published perfor-
mance in part because it was not trained with extra training 
data, as shown on the Papers With Code competition entry. 
SalsaNext was also not trained with extra training data, and 
is the next closest to the published results. This shows the 
importance of a large training set for the overall performance 
of a machine learning model.

Neither the SphereFormer Papers With Code competition 
entry nor published paper mention what kind or how much 
extra training data was used. We suspect that the exponential 
splitting of the range dimension and the self attention mech-
anisms in SphereFormer may require more data to work as 
effectively as possible, while the deformable convolution in 
KPConv does not require as much data, as it deforms to the 
data at hand in each scan. Despite this, SphereFormer still 
performed 8.7% better than KPConv with the same data.

Cylinder3D was the best performer on our test with an 
mIOU of 59.1. We suspect that the asymmetrical residual 
block from Cylinder3D requires less data to train effectively 
than the self-attention mechanism used in SphereFormer. 
From the published results, we see that with more data, the 
self-attention performs better, but from our results, we see 
that with less data, the asymmetrical residual block performs 
better.

The class results shown in Table 3 give more insight into 
the above discussion. In each column, the algorithm that 
performs best is shown in bold, and the worst is italicized. 
SphereFormer performed the best in 9 out of 19 classes, but 
only Person and Motorcyclist were significantly better than 
Cylinder3D, which was the best in five of the remaining 
classes. Cylinder3D did significantly better at Other-Vehicle 
and Bicycle, and slightly better at the other classes. Overall, 
Cylinder3D and SphereFormer are comparable. KPConv did 
the best at five other classes. SalsaNext performed poorly 
across the board, proving the worst in 13 classes. This may 
be partially compensated for by the run-time speed of Sal-
saNext for some applications.

4.2  RELLIS‑3D quantitative performance

Table 4 shows the general performance of each network 
on RELLIS-3D and Table 5 shows the performance of 
the network on each class in the RELLIS-3D dataset. In 
each column, the algorithm that performs best is shown in 

Table 2  Our SemanticKITTI mIOU results compared with published 
results

Network Published Ours Change (%)

KPConv 58.8 49.4 − 9.4
SalsaNext 59.5 50.9 − 8.6
Cylinder3D 67.8 59.1 − 8.7
SphereFormer 74.8 58.1 − 16.7

Table 3  SemanticKITTI class mIOU results where Cyl3D = Cylin-
der3D and SphFor = SphereFormer

Class KPConv SalsaNext Cyl3D SphFor

Car 94.69 88.5 95.79 94.56
Bicycle 19.8 25.7 37.02 27.49
Motorcycle 27.37 29.8 55.42 54.98
Truck 4.23 0 0.55 0.04
Other-vehicle 23.86 23.8 41.24 12.05
Person 25.78 39.7 47.9 58.43
Bicyclist 56.87 76.4 84.19 88.85
Motorcyclist 0 0 1.6 10.46
Road 94.78 94.6 96.53 96.86
Parking 15.23 61.0 69.73 71.57
Sidewalk 85.83 84.7 87.66 88.12
Other-ground 1.4 0 0.38 0.5
Building 92.59 83.5 90.73 90.62
Fence 68.39 61.8 69.15 70.21
Vegetation 86.22 80.8 86.32 86.66
Trunk 65.68 58.0 73.92 72.44
Terrain 68.71 51.7 60.69 60.03
Pole 60.83 48.6 59.28 54.63
Traffic-sign 46.71 59.3 65.49 66.13
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bold, and the worst is italicized. Notable is the mIOU for 
the Water class. Upon visual inspection, we were unable 
to find any Water points in the test set. The authors of the 
RELLIS-3D paper omitted other classes from the lidar 
portion of the dataset that contained very few points, but 
left the Water class, as it is not traversable by AGVs. In 
order for this class to perform the intended function of 
segmenting un-traversable areas, the presence of Water 
points would need to be increased.

Certain classes such as Log, Fence, Puddle, Mud, and 
Rubble performed poorly across all of the networks as 
shown in Table 5. These have some of the lowest numbers 
of points in the dataset. Barrier, Vehicle, and Pole also 
have low numbers of points; however, these three classes 
have more distinctive shapes than the others and therefore 
performed better. All barriers in the dataset are angular 
traffic barriers with flat faces, which contrasts sharply 
with the organic shapes of the natural classes. Similarly, 
poles are vertical and have a distinct cylindrical shape 
with few surrounding points.

4.3  RELLIS‑3D qualitative performance

In this section, we present several algorithm outputs for 
visual comparison.

Each picture contains five scans in the same orien-
tation. From left to right and top to bottom, there are: 
labeled training data, KPConv, SalsaNext, Cylinder3D, 
and SphereFormer outputs. Figure 5 shows a scan in which 
Cylinder3D was able to successfully segment the vehicle 
(yellow) when none of the other algorithms were. KPConv 
also segmented the person incorrectly, annotating them as 
Bush. In the labeled scan, the people on the left are labeled 
half Person and half Grass, and the person near the center 
has several Void points.

In Fig. 6, the grass field is predicted correctly by all 
algorithms except KPConv, which added Bush and Rubble. 
All except KPConv also predicted Bush, Barrier, Person, 
Tree, and Concrete well. KPConv classified the person as 
Bush, the Barrier as half Bush and half Barrier, and the 
Concrete as a mixture of Grass, Fence, and Vehicle.

The qualitative analysis of these algorithms confirms 
the trend seen in Table 5. The classes we see that per-
formed well numerically also performed well visually. The 
Vehicle points seen in Fig. 5 are a prime example of this. 
All algorithms except Cylinder3D performed poorly on the 
Vehicle class, and all outputs except Cylinder3D showed 
no Vehicle points on the vehicle. Cylinder3D, however, 
performed well numerically and is confirmed as all of the 
points are labeled correctly in the scan.

4.4  Comparison of SemanticKITTI and RELLIS‑3D 
performance

All four networks performed worse on the RELLIS-3D 
dataset than they did on SemanticKITTI, shown in Table 6. 
The difference between the two is between 13.0% and 
24.2% mIOU. We expected this might happen due to the 
difficulties segmenting unstructured data, class imbalance, 
and issues present in the RELLIS-3D dataset, discussed 
below.

Table 4  Our RELLIS-3D mIOU results compared with published 
results

Network Published Ours Change (%)

KPConv 19.97 25.21 +5.2
SalsaNext 43.07 34.25 − 8.82
Cylinder3D – 46.07 –
SphereFormer – 42.19 –

Table 5  RELLIS-3D class mIOU results where Cyl3D = cylinder3D 
and SphFor = SphereFormer

Class KPConv SalsaNext Cyl3D SphFor

Grass 60.4 64.16 66.58 66.48
Tree 73.8 67.52 77.72 79.48
Pole 51.8 44.27 70.57 56.37
Water 0 0 0 0
Vehicle 2.9 17.59 60.16 22.37
Log 0 0.94 0 8.1
Person 69.9 82.26 86.67 83.72
Fence 0.9 1.97 8.88 9.86
Bush 69.4 68.4 73.06 71.71
Concrete 8.1 53.26 80.67 84.22
Barrier 13.8 45.12 82.93 76.8
Puddle 1.9 24.88 23.54 9.24
Mud 0.1 8.97 13.97 17.48
Rubble 0 0.13 0.23 4.81

Table 6  Comparison of our SemanticKITTI and RELLIS-3D mIOU 
results

Network SemanticKITTI RELLIS-3D Change (%)

KPConv 49.4 25.2 −24.2
SalsaNext 50.9 34.2 −16.7
Cylinder3D 59.1 46.1 −13.0
SphereFormer 58.1 42.2 −15.9
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Fig. 5  Sequence 1 scan 130

Fig. 6  Sequence 2 scan 3108
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4.4.1  Difficulties in segmenting unstructured data

Structured Environments generally contain lots of sharp 
angles and distinct boundaries. It is easy, for example, to 
tell where pavement ends and a building begins. It it much 
harder to determine the boundaries between classes in an 
unstructured environment. Some examples of classes that are 
difficult for both the human labeler and the trained network 
to distinguish include, but are not limited to, the following. 
The difference between what should be considered Tree and 
what should be considered Bush can be unclear. A large 
bush could be considered a small tree, and vice-versa. A 
grassy field with small bushes, spaced such that the AGV 
cannot pass but the lidar sensor can still see the underlying 
grass, also presents a difficult scenario. The human labeler 
is forced to decide what should be classified as Grass and 
what should be classified as Bush. In this scenario, we were 
unable to determine the differences between Grass and Bush. 
In the RELLIS-3D dataset, we see scans where the ground 
under and surrounding the Bush was labeled Grass, and 
other scans where it was labeled Bush. As human labelers 
were unable to consistently determine the differences and 
boundaries between the classes, we expect the trained algo-
rithm to have similar difficulties.

We believe that the inherent difficulty in segmenting 
unstructured data contributes to the poor performance of 
each network on RELLIS-3D when compared to SemanticK-
ITTI. However, we are unable to quantify exactly what effect 
the inherent difficulty of segmenting unstructured environ-
ments has on the overall performance of each network.

4.4.2  Class imbalance

A known issue with the RELLIS-3D dataset is class imbal-
ance. There is a four-order-of-magnitude difference in the 
number of points belonging to the most and least represented 
class. There are ten times more points in each of the Grass, 
Tree, and Bush classes than any other, and ten times fewer 
points in the Pole class than any other. Interestingly, the pole 
class was one of the better performing classes in the dataset. 
We believe that this is due to the geometry and positioning 
of the Pole class in the dataset. Poles are generally straight 
and are not close to any other objects.

SemanticKITTI also has a large disparity of four orders 
of magnitude between the most represented and least rep-
resented classes, with four classes with similarly high num-
bers of points and three classes with very low numbers of 
points. This is similar to the distribution of points in REL-
LIS-3D. Because both datasets contain a similar distribution 
of points, any effects of class imbalance would be repli-
cated across both datasets. Indeed, we see that on average, 
across both datasets, classes with more points have higher 
mIOU scores than classes with fewer points. This shows the 

importance of having a balanced dataset for the ability to 
detect all classes well. Because the disparity of class repre-
sentation is replicated across datasets, we believe that class 
imbalance is not a significant contributor to the lower per-
formance of the four algorithms on the RELLIS-3D dataset 
compared to the SemanticKITTI dataset.

4.4.3  Problems with RELLIS‑3D labeled data

When analyzing the data from the output of the networks 
and the labeled data, we found several instances of inconsist-
encies in the labeled data from RELLIS-3D. In a significant 
number of scans throughout the dataset, there is a square of 
points in the center of the scan that have been labeled Void. 
There are other problems present throughout the RELLIS-
3D dataset, including mislabels and switching labels. Dif-
ferent parts of large objects such as a person or large tree are 
regularly classified as more than one label in the same scan, 
i.e. a person’s upper body is labeled as person and the lower 
body is labeled as grass. Sets of consecutive scans also have 
large groupings of points that swap back and forth between 
different labels, lacking consistency.

We would like to point out the inconsistency as a possi-
ble contributor to the poor performance of the networks on 
RELLIS-3D compared to their performance on SemanticK-
ITTI. If the labels are inconsistent, it will weaken the ability 
for the network to learn which features belong to which class 
and lower the confidence of the network’s predictions. In the 
worst case, the network could fail to distinguish between 
classes altogether. Additionally, since the inconsistencies 
belong to the published test set, the evaluation of points 
will be incorrect for any points that are labeled incorrectly. 
In a scenario of inconsistency with flipping labels, a label 
may swap from one class to another for several scans. If the 
network predictions do not swap with the inconsistent labels, 
those predictions will be counted as incorrect even though 
they are more consistent and presumably correct, lowering 
the mIOU score, due to poor labeling. It is impossible to 
know how many correctly predicted points are considered 
incorrect due to inaccurate labels. This inconsistency in 
labeling reduces the robustness and reliability of the dataset. 
These problems are discussed further and multiple examples 
are provided in the “Appendix”.

4.5  Inference time results

Inference was performed on a laptop executing on Ubuntu 
20.04 with an Intel i7-10750 H CPU, 16 GB of DDR4 
RAM, and an external NVIDIA RTX A5000 GPU with 
24 GB of VRAM. Table 7 shows inference time results for 
each algorithm which measures network prediction effi-
ciency. The Ouster and Velodyne sensors used to collect 
the RELLIS-3D and SemanticKITTI datasets generally 
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output data at 10Hz. This means that an algorithm needs 
to execute in under 100ms to be considered real-time 
when running inference on every frame.

Cylinder3D had the highest mIOU score, but took the 
longest for inference; nearly 100 ms. SphereFormer was 
slightly faster, but not significantly. Both of these net-
works may be able to execute in real time, but would 
likely require powerful hardware and significant power 
consumption to do so.

SalsaNext was specifically designed to run in real time 
(Cortinhal et al. 2020). In our testing, it achieves a runt-
ime more than five times faster than Cylinder3D, and 
almost twice as fast as the next fastest, KPConv. Sacri-
fices had to be made in raw mIOU performance, but the 
speed could compensate for this in some applications. 
When segmenting the most represented classes of Grass, 
Tree, Person, and Bush, SalsaNext had an mIOU score 
that was not significantly lower than the other algorithms. 
If the application does not require accurate segmenta-
tion of the less represented classes, such as an application 
using the segmentation to determine what areas are or are 
not traversable, SalsaNext would be a good choice, as it 
would save computation time and power for other tasks.

KPConv had a runtime of 29.97 ms. This is somewhat 
slower than SalsaNext, but still competitive compared to 
Cylinder3D and SphereFormer. As discussed in Sect. 5.4, 
we had to increase the size of the inference radius signifi-
cantly to get KPConv to compute the entire point cloud. 
The run-time presented in this thesis was measured with a 
50 m radius sphere, the largest that could fit in the 24 GB 
of VRAM in our laptop evaluation hardware. With the 
potential method of dividing the scan into 4 m radius 
spheres, as discussed in Sect.  5.4, the accuracy may 
improve, but the runtime would likely increase drastically. 
To cover the same area as a single sphere of radius 50 m, 
at least 1900 spheres of radius of 4 m would be needed. 
Running inference on a sphere of radius of 4 m took on 
average 14.42 ms. multiplying this by the minimum of 
1900 spheres needed to cover the same area, we find a 
hypothetical time of more than 27,000 ms, or almost half 
of a minute, to run inference on a single scan.

5  Network analysis

In this section, we analyze the four algorithms evaluated 
in this work, presented in descending mIOU score on the 
RELLIS-3D dataset: Cylinder3D, SphereFormer, SalsaNext, 
and KPConv. We examine strengths and weaknesses of the 
algorithms and provide an analysis of the performance.

5.1  Cylinder3D

Cylinder3D had the highest mIOU score in the remaining 
eight classes and the highest overall score. Performance on 
the Pole, Vehicle, and Barrier classes is particularly impres-
sive. The structure of each of these classes and the Person 
class, on which Cylinder3D also has the highest score, fits 
well with the design of the asymmetrical residual block in 
the Cylinder3D network. This residual block powers the con-
volutional kernel and allows the algorithm to focus more 
strongly on points in the immediate neighborhood of an 
object. Each of these classes has a distinct shape that is not 
surrounded by other points. On the rest of the classes except 
Log and Rubble, Cylinder3D performed well. Cylinder3D is 
the best overall algorithm we tested, although it has weak-
nesses in detecting certain types of objects.

5.2  SphereFormer

SphereFormer was the second best performing algorithm, 
with the highest score for several under-represented classes 
such as Log, Fence, Mud, and Rubble. Although Sphere-
Former performed better than the other networks on these 
classes, they still had poor performance and could benefit 
from a greater representation in the dataset. On more com-
mon classes like Grass, Tree, Person, and Bush, Sphere-
Former performed well with an mIOU score only slightly 
lower than the best.

Self-attention and exponential splitting enabled Sphere-
Former to achieve good overall performance. Self-attention 
allowed the algorithm to focus on similar point structures 
from across the whole scan (Matteazzi et al. 2024). Expo-
nential splitting allowed for more distributed points to be 
considered by the convolution kernel at the same time. We 
performed an ablation study by removing the exponential 
splitting function from the network and retraining for 50 
epochs using the same method as described in Sect. 3.3. 
Evaluating the modified model gave an overall decrease in 
mIOU score of 14.01%. Every class also had a decrease in 
performance, except Person with a 1.5% gain. All instances 
of Person in the dataset are located close to the sensor. 
Because of this, there is no benefit to having larger, more 
distributed kernels for classes, like Person, that are always 

Table 7  Inference time results Network Inference 
time (ms)

KPConv 29.97
SalsaNext 17.83
Cylinder3D 99.92
SphereFormer 94.01
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clustered around the sensor. This shows that exponential 
splitting improves performance on classes with distributed 
points, while negatively impacting classes with points biased 
to the center.

5.3  SalsaNext

SalsaNext did not have the highest mIOU score for any of the 
classes and had the worst score for Tree, Pole, and Bush. On 
these three classes, it was only 6%, 7%, and 1% worse than 
KPConv. It also performed very poorly on the Log, Fence, 
and Barrier classes. SalsaNext removed the strided convolu-
tion SalsaNet used for downsampling and instead replaced 
it with average pooling. The creators of SalsaNext hypoth-
esized that learning at that level was not needed and wanted 
to reduce the number of trainable parameters to increase the 
network’s speed. Other works have identified that imple-
menting strided convolution over pooling for downsampling 
can lead to a more expressive model that boosts accuracy 
(Springenberg et al. 2015). The classes SalsaNext performed 
the worst on were ones with small features indicating that 
the average pooling downsampling may be impacting the 
performance.

On most of the other classes, SalsaNext had good per-
formance, closer to the high mIOU scores of SphereFormer 
and Cylinder3D than the low scores of KPConv. Although 
not the best at any one class or overall, SalsaNext achieves 
its goal of fast runtime, as shown in Sect. 4.5. The trade-
off between raw mIOU score and inference time makes 
SalsaNext a strong contender for the best choice in many 
applications.

5.4  KPConv

KPConv consistently performed poorly. This could be an 
artifact of the evaluation method, as we were unable to find 
a good evaluation script. The way that KPConv was trained 
and evaluated by default was for each iteration to randomly 
sample a point from within the entire dataset. A convolu-
tional kernel is applied to a 4 m radius sphere surrounding 
that point. During training, the algorithm learned based on 
the points within the 4 m sphere. According to the author 
in a GitHub issue (https:// github. com/ Hugue sTHOM AS/ 
KPConv- PyTor ch/ issues/ 191), this was done to allow the 
algorithm to fit within a reasonable amount of GPU memory. 
Indeed, we saw this issue when testing, as larger radii used 
more GPU memory.

For evaluation, we tried two different approaches and 
suggest a possible third approach. The first approach was 
to simply run the evaluation script included in the KPConv 
GitHub repository with its default parameters. This approach 
runs 100 epochs of testing and compiles all predicted points 
throughout the evaluation process. It takes several hours to 

complete, and even with 10,000 4 m radius spheres sampled 
per epoch and 100 epochs, it still did not sample every point 
in the dataset, resulting in a large number of black Void 
points in scans.

The second approach, which we used to calculate the 
results presented in Table 4, was to evaluate the entire point 
cloud at once by changing the radius of the convolution ker-
nel sphere to 50 m. This captured the entire point cloud in 
one step and avoided missing large sections due to random 
sampling. Every point in an individual scan was labeled in 
one inference iteration.

Using these two approaches, mIOU scores ranged from 
17 to 43. This variance in mIOU values was directly attribut-
able to the random sampling of the algorithm, the size of the 
convolutional sphere, and the overall number of points con-
sidered in the evaluation. We admit that changing the sphere 
size is a flawed approach, but we believe that it is the best 
option. When using a machine learning algorithm to perform 
semantic segmentation, it is most useful to receive a predic-
tion of the whole image or scene, rather than a small select 
portion. Therefore, the most useful evaluation is one that 
infers over all data in a single scan. Another possible evalu-
ation method might be to divide the entire point cloud into 
4 m spheres such that every point is contained in a sphere. 
This would enable evaluation in a more similar manner to 
the training process, but it would be computationally imprac-
tical for real-time execution, as discussed in Sect. 4.5.

6  Conclusion

Each of the four algorithms evaluated, KPConv, SalsaNext, 
Cylinder3D, and SphereFormer had a lower mIOU score on 
the RELLIS-3D dataset than the SemanticKITTI dataset. We 
believe this is due to a variety of factors. The largest factor 
could be inconsistencies in the labels. In a small sampling of 
the dataset, 71% of scans had at least some points that were 
obviously labeled incorrectly. This directly affects evalua-
tion, as correctly predicted points evaluated against incorrect 
labels will artificially decrease the mIOU score. Incorrect 
and inconsistent labels will also affect the training of the 
algorithms, but it is impossible to predict the exact impacts 
without relabeling the entire dataset.

The next factor in the lower score when compared to 
SemanticKITTI is the inherent difficulty of segmenting 
unstructured environments. It was impossible for us to 
determine the boundaries between some classes in the raw 
data. This difficulty extends to the labeling procedure and 
to network inference.

Finally, class imbalance was also a factor in the perfor-
mance of each algorithm on RELLIS-3D, with the classes 
that were better represented performing better on average 
than the ones with fewer points. All algorithms had difficulty 

https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191
https://github.com/HuguesTHOMAS/KPConv-PyTorch/issues/191
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when running inference on under-represented classes such 
as Rubble, Log, Fence, and Mud. This imbalance was repli-
cated in the SemanticKITTI dataset, however. Any decrease 
in performance due to class imbalance should be replicated 
across both datasets. More points of under-represented 
classes are needed to improve the performance of these 
algorithms on both datasets.

This research shows some of the strengths and weak-
nesses of each of the four networks on an unstructured data-
set. SphereFormer and Cylinder3D both worked very well 
for most classes, with Cylinder3D performing slightly bet-
ter overall. SphereFormer was the best at SemanticKITTI, 
when it was provided with more data, while Cylinder3D did 
slightly better with the more limited dataset of RELLIS-
3D. SalsaNext has a fast inference time and is acceptable 
at detecting most classes well represented in the dataset. 
KPConv had poor results due to difficulties in running infer-
ence, but may be useful in limited scenarios.

Qualitatively, we showed that most of the networks, espe-
cially Cylinder3D and SphereFormer, were able to general-
ize and perform well on common classes. Shockingly, the 
predictions from these algorithms are more consistent than 
the human-generated labels. Segmenting traversable and 

un-traversable classes remains a core challenge for automat-
ing exploration of unstructured environments with AGVs.

Appendix: RELLIS‑3D labeled data problems

To quantify the number of scans that have this square of 
points labeled Void shown in Fig. 7, we randomly sampled 
three sequences of 100 scans from the dataset. Of the 300 
scans sampled, the square of Void points was present in 216 
of them, or 72%. The center of each scan commonly con-
tains points that belong to the Person class, since there was a 
driver and three other people following the AGV throughout 
the data collection. These four people are present in every 
scan, but are sometimes labeled Void, shown in Black, and 
sometimes labeled Person when they are sufficiently far from 
the sensor, and sometimes split between the two when on 
the threshold. Additionally, other points around the AGV 
are also labeled Void. These are commonly surrounded by 
points labeled Grass or Bush. We suspect that the Void label 
is inaccurate and an artifact of the labeling process.

There are several locations in the RELLIS-3D dataset 
where the points in the same location flip labels in succes-
sive scans. Examples of this have been provided in Figs. 8, 
9, and 10. Figure 8 shows a sequence of three consecutive 
scans. The points in the top center of the scans are labeled 
Grass, shown in dark green, on the left in scan 2468. A large 
number of points swap to Bush in scan 2469, and then back 
to Grass in scan 2470.

Figure 9 shows two consecutive scans that illustrate a 
turning point. There is a sudden switch in the labeled class 
of a large area of the scan. The upper right quarter of the 
scan switches class from Bush to Grass in a single scan. In 
the scans prior to this, the area in question is consistently 
labeled Bush, although with some small inconsistency in 

Fig. 7  Square of void (labeled 
in black)

Fig. 8  Grass labels flipping class in Sequence 2
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the boundary, like what was shown in Fig. 8. After the first 
scan in Fig. 9, the points are consistently labeled Grass, as 
shown in the second half of the screenshot.

These problems are shown again in Fig. 10, but with the 
addition of Void and Tree to the classes in question. In the 
first scan, the entire left half of the point cloud is labeled 
Bush, shown in pink and there are some points in the top 
right corner labeled Void, shown in black. In the second 
scan, a large section of points have been labeled Grass, 
shown in green and a smaller section labeled Tree, shown 
in light green, and the location where the Void points were is 
now labeled Concrete, shown in grey. The last figure shows 
an isometric view of the second scan, but zoomed in. We 
can see the person in the middle of the scan is labeled Void 
while the person behind is labeled Person, shown in purple. 
There are also points labeled Tree where there were not in 
the previous scan.

To attempt to quantify the amount of scans that were 
labeled incorrectly, we performed manual evaluation of 
three randomly chosen sequences of 100 scans from the 
dataset. For each of these sequences, we counted the num-
ber of obvious inconsistencies, such as groups of points 
flipping between classes, like in Fig. 8, points in the mid-
dle of a class that were labeled as another, or the presence 
of the square of Void points in the center of the scan, 
as shown in Fig. 7 . We report these results in a binary 

manner; either there are inconsistencies, or there are not. 
In reality, there is a spectrum of inconsistent points. Some 
scans had several dozen points that were obviously incor-
rect, either as a patch of points like the Void seen in the 
top right corner or the Tree in Fig. 10. Others had larger 
patches of incorrect points, like in Fig. 9.

Upon visual inspection, we found that 124 out of 300 
scans had obvious inconsistencies, excluding the square of 
Void at the center of the scan. 216 out of the same 300 scans 
were also affected by the Void points. This is 41% and 72% 
of scans, respectively. Some classes will be impacted by the 
inconsistencies more than others. Mislabeled Vehicle points 
will have a greater impact than mislabeled Grass points due 
to the larger number of total points in the Grass class.

The numbers presented here are unlikely to be repre-
sentative of the entire dataset, but are meant to provide a 
rough estimate of possible impact. Additionally, exact val-
ues for the numbers and percentages of incorrectly labeled 
points are impossible to accurately determine without rela-
beling the scans and evaluating the difference. Due to the 
difficulty in determining classes of points without a-priori 
knowledge of the environment, as discussed in Sect. 4.4.1, 
we will not attempt this, as our estimates of classes may 
be as bad or worse than the existing labels. However, the 
impact of incorrect labels cannot be ignored. For context, 
following a similar evaluation methodology, we reviewed 
hundreds of scans in the SemanticKITTI dataset without a 
single instance of dynamically changing labels.
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