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Abstract
The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton 
robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based sup-
port vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed 
for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, 
employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy 
of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped 
with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experi-
ments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The 
experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. 
Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting 
(AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate 
that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accu-
racy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.

Keywords Lower limb exoskeleton · Gait phase · Plantar pressure measurement system · Support vector machine · Radius-
margin error · Particle swarm optimization

1 Introduction

Lower limb exoskeleton robot is the human–robot collabo-
rative intelligent system that can enhance the flexibility of 
human lower limbs by wearing external devices on limbs 
(Ma and Liao 2017; Choi et al. 2022; Jung et al. 2015; 
Ma et al. 2019). They have significant applications in the 
fields of rehabilitation assistance, load-bearing assistance, 
and exercise enhancement (Ma et al. 2019; Lee et al. 2021; 
Asokan and Vigneshwar 209). With the development of the 
technology of the assistant exoskeleton, it has taken many 

advantages to human life. As an integrated human–machine 
system, exoskeletons need to timely perceive the motion 
status of both humans and machines, as well as identify 
the intentions of human motion to achieve human–machine 
coordination. Human–machine interaction is crucial for 
improving the comfort and safety of wearing the exoskel-
eton. To ensure flexible human–machine interaction, lower 
limb exoskeletons are expected to perform motion-switching 
control based on the wearer’s motion state (Tanghe et al. 
2020; Taborri et al. 2016; Vu et al. 2020). Therefore, accu-
rate gait detection is essential for controlling exoskeleton 
robots as it synchronizes the assistive force of wearable 
robots with user movements. The sensor system, which is 
the basis of gait feature measurement, can be classified into 
non-wearable and wearable sensors. Opto-electronic system, 
as the standard in gait analysis, has high precision and reli-
ability in classification results (Taborri et al. 2016; Vu et al. 
2020). However, it can only be conducted indoors due to 
its spatial constraints. Similarly, force measurement plat-
forms and ultrasonic sensors are limited for the same reason. 
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Wearable sensors, such as electromyogram (EMG) sensors 
(Asokan and Vigneshwar 209; Tanghe et al. 2020; Zhou 
et al. 2021), inertia measurement units (IMU) (Bijalwan 
et al. 2021; Lou et al. 2019; Bruinsma and Carloni 2021), 
and plantar pressure sensors, have been widely applied to 
measure gait features. By fusing the EMG data with two 
types of data from inertial measurement, Liu et al. (2021) 
enhanced a muscle synergy-inspired method of locomo-
tion mode identification. IMUs were used to achieve pat-
tern identification of different human joints and joint angle 
prediction (Semwal et al. 2022; Sung et al. 2021). IMUs 
and foot gait analysis system were combined for recognizing 
human movement gait phase (Song et al. 2022). However, 
EMG-based system is complex in data acquisition and pro-
cessing steps (Ding et al. 2018). The IMUs indirectly iden-
tify gait phases based on characteristic points of periodic 
inertial signals. Additionally, subjects may feel uncomfort-
able during the gait collection due to the lengthy setup time 
and burdensome of the sensor system. As the most widely 
used information, plantar pressure can directly obtain cer-
tain physiological information of the human body to ana-
lyze the gait status. Attal et al. (2018)used a pair of pres-
sure sensor arrays worn in shoes to extract important gait 
parameters like pressure profile, number of steps, etc. Zhang 
et al. (2022) used the plantar pressure signal measured by 
a pressure sensor array for human balance evaluation. Fur-
thermore, when lower limb lesions occur, the distribution 
of plantar pressure will undergo corresponding changes. 
Therefore, the plantar pressure that reflects certain physio-
logical or pathological information of the human body holds 
significant scientific and practical value in the lower limb 
exoskeleton. In addition, wearable intelligent insoles can 
monitor changes in walking speed during various activities, 
enhancing individual comfort and improving the safety of 
exoskeleton robot assistance. The human gait measurement 
system requires the gait phase detection algorithm to provide 
stable and smooth locomotion. Recently, some techniques 
based on machine learning algorithms have been adopted for 
gait detection (Semwal et al. 2023). In Attal et al. (2018), an 
unsupervised classification method called multiple regres-
sion hidden markov model (MRHMM) for six gait phases 
detection is proposed without any prior knowledge. Inte-
grated sparse autoencoder (SAE), bidirectional long short-
term memory (BiLSTM), and deep neural network in Zhang 
et al. (2022), the SBLSTM model is built to identify four 
phases during normal walking. Lee et al. (2021) adopted 
the long short-term memory (LSTM) method and used two 
IMUs and heel FSR sensors for continuous gait phase esti-
mation. The experimental results showed that the method 
had good performance in gait phase classification. However, 
it could only identify two phases and failed to achieve pre-
cise control under more conditions. As an efficient classifier, 
supporting vector machine is expected to have advantages 

over existing learning algorithms such as multi-layer per-
ceptron, nearest neighbor, and neural network. In Zeng et al. 
(2021), the SVM and BP neural networks are combined to 
achieve high accuracy in gait phase detection. The above 
recognition algorithms achieve a good experimental result 
under the normal walking state. However, they overlooked 
the impact of the walking speed and external environmental 
factors, which could potentially reduce the stability and gen-
eralization capability of gait phase recognition.

To deal with the above issues, a lightweight, dura-
ble, wireless, and soft material-based smart insole is 
designed for an accurate and cost-effective gait analy-
sis system. Additionally, this paper develops a novel 
radius-margin-based SVM model with the particle swarm 
optimization(PSO) called PSO-FSVM for gait phase rec-
ognition under different conditions. Smart insole based 
on flexible and elastic sensors is designed to measure and 
analyze human gait features. The FSVM method is uti-
lized to enhance the accuracy of the SVM by maximizing 
margin information and minimizing radius information in 
feature transformation space. Considering that gait phase 
detection is a nonlinear problem, and the input of the gait 
detection model is multi-dimensional, the kernel princi-
ple component analysis is incorporated, and the gait data 
is mapped to a new feature space. The PSO algorithm 
is adopted to optimize the parameters c and � in FSVM 
model. Using the flexible sensor system, gait phase detec-
tion experiments were conducted indoors and outdoors, 
and the proposed method was validated. The experimental 
results were compared with other methods to prove the 
accuracy and effectiveness of this approach.

2  Wearable gait acquision system

2.1  Division of human gait phase

Walking is the most basic form of human movement and gait 
is a characteristic of human behavior. Human walking is a 
process of repeated movement of both feet. A gait cycle dur-
ing walking is usually defined as the process from one heel 
touching the ground to the other heel touching the ground 
again. Typically, a gait cycle is divided into different stages. 
According to the support of the foot to the human body, a 
gait cycle can be divided into the support phase and the 
swing phase. The gait analysis shows that the stance phase 
always contacts the ground during walking, accounting for 
about 60% of the gait cycle, and the swing phase accounts 
for about 40% Kang et al. (2020). Through biomechanical 
analysis and actual detection of human lower limbs, the gait 
cycle is divided into five phases (take the right foot as an 
example) as shown in Fig. 1.
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1. Loading response (phase 1): the period begins from the 
right foot contacts the ground and ends when the left toe 
is off the ground.

2. Mid-stance (phase 2): the period begins from the left 
foot leaves the ground, and the right leg enters the sin-
gle-leg support stage and ends when the right heel is off 
the ground.

3. Terminal stance (phase 3): the period begins from the 
end of the right mid-stance and ends when the left foot 
contacts the ground.

4. Pre-swing (phase 4): the period begins from the left foot 
contacts the ground and ends when the right toe is off 
the ground.

5. Swing (phase 5): the period begins from the right foot 
leaves the ground and ends when the right heel contacts 
the ground again.

2.2  Wearable smart flexible insoles

The sensing system designed in this paper is the plantar 
pressure insole based on flexible elastic sensors. The plan-
tar pressure sensing system, as shown in Fig. 2, consists 

of a plantar pressure detection module, a microcontroller 
control module, a signal processing and conversion module, 
a communication module, and an upper computer module. 
The overall plantar pressure sensing system is controlled by 
the STM32F103C8T6 microprocessor. The specific working 
process involves using flexible and elastic pressure sensors 
to perceive the interaction force between human feet and 
the ground during different walking states. Then, the meas-
ured capacitance signal is processed and sent to the control 
module. Subsequently, the signal is transmitted to the upper 
computer through the communication module for real-time 
display and storage of pressure data. Finally, the collected 
data is further analyzed to determine the different gait states 
of the human body.

2.2.1  Flexible elastic pressure insole and its structural 
distribution

The flexible sensor is the capacitive sensor based on a sand-
wich structure, as shown in Table 1. Flexible capacitive pres-
sure sensors detect pressure by changing the capacitance 
value after applying pressure and exhibit high sensitivity in 
detecting small pressures. The existing research (Cho et al. 
2021) showed that the peak of plantar pressure of normal 
people in a static standing state mainly occurs in the meta-
tarsal region. During gait analysis, the state of foot-ground 
contact in each gait phase will affect the position of the peak 
pressure which determines the range of the pressure sensor.

By analyzing the relationship between plantar pressure 
and gait phases, this study designed a plantar pressure meas-
urement module consisting of nine elastic pressure sensors. 
The distribution of these pressure sensors is illustrated in 
Fig. 3. During human walking, the interaction between the 
foot and the ground is perceived by the flexible and elastic 
pressure sensors.

2.3   Gait data collection

2.3.1  Training dataset

To obtain the training dataset, we conducted a series of tasks 
under different conditions. The gait cycle data of three sub-
jects with 165 ± 5 cm height and an age range of 24±3 years 
is divided into three groups of samples. The experimental 

Fig. 1  Five gait phases division

Fig. 2  System block diagram

Table 1  Specifications of elastic 
sensor

Index Parameter

Force range 0–150 N
Thickness 3.2 mm
Static capacitance 15–23 pF
Zero drifte 1.5%
Hysteresis 2.22%
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data of each participant was a group of samples, and each 
group included the gait phase data of the left and right 
feet. As shown in Fig. 4, participants wore plantar pressure 
insoles, and the data acquisition circuit and power supply 
were fixed at the ankle.

Task 1: The three participants first adapted to the tread-
mill indoors by walking at a low speed for two minutes, then 
walked for three minutes at a speed of 2.5 km/h. To prevent 
the influence of fatigue, participants rested for three minutes. 
All participants walked at the same speed on the treadmill, 
with walking speeds of 3.0 km/h, 3.5 km/h and 4.0 km/h, 
respectively. To minimize external interference, participants 
repeated the experiment five times at each speed, and the 
datasets of three trials for each subject are used for training 
while the other two are used for testing.

Taking the gait curve of the right foot of subject 1 as an 
example. Figure 5 shows the ground reaction force on the 
treadmill with the speed of 3.0 km/h. it can be observed 
that the plantar pressure exhibits periodic variation when the 
human body walks on the treadmill at 3.0 km/h. According 

to Cho et al. (2021), the plantar region can be mainly divided 
into four areas: the toe region, the metatarsal region, the arch 
region, and the heel region. As shown in Fig. 5, it indicates 
that the changes in pressure during human walking mainly 
come from the toe, metatarsal, and heel regions.

Task 2: Three participants wore gait pressure sensors and 
walked at slow, moderate, fast, and variable speeds on the 
flat outdoor surface. Before the experiment, each subject 
was instructed to perform ten trials of walking at their most 
comfortable speed. The average speed from these ten tri-
als was calculated and recorded as the moderate speed. The 
subject’s slow walking speed is defined as half of their mod-
erate walking speed, and the fast walking speed is defined 
as the subject walking at a constant speed of 1.2 times their 
moderate speed. After experimental testing, the moderate 
speed of the three subjects is 3.98 km/h, 4.45 km/h, and 4.8 
km/h, respectively. Each participant walked for two minutes 
and then rested for two minutes. Each participant repeated 
these four conditions five times. The datasets of three trials 
for each subject are used for training while the other two are 
used for testing.

The designed pressure-sensing insoles exhibit signifi-
cant distinctions under different load weights. Addition-
ally, Figs. 6 and  7 also show the sensing information from 
subject 2 while walking outdoors. It can be seen that under 
variable walking speed, the pressure on the soles of the 
human foot significantly increases. Moreover, the number 

Fig. 3  Development of a pressure sensor-based insole system. (a): 
distribution of nine flexible and elastic sensors; (b): plantar pressure 
acquisition by a measurement unit

Fig. 4  Wearing diagram of the pressure measurement system

Fig. 5  Pressure of right insole on the treadmill (3.0km/h)

Fig. 6  Pressure of right insole in the outdoor (slow)
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of gait cycles under slow walking conditions is less than 
that under variable speed walking conditions. The gait 
pressure of the human body exhibits a stable cyclic varia-
tion at slow walking speed, and the plantar pressure in dif-
ferent regions shows a consistent changing trend compared 
to a variable speed walking state. The pressure in different 
regions varies, with peak values sometimes exceeding 200 
N and at other times dropping below 120 N. However, 
when participants walk slowly, the peak pressure under 
the heel is less than 160 N.

Overall, the data in the gait regions exhibit periodic 
variations, and the pressure in different areas demonstrates 
a "quasi-pulse" pattern of the foot postures, showing a 
smooth process from entering to leaving the ground con-
tact state. This indicates that a person’s walking gait is 
relatively stable. From the pressure levels in each region, 
it can be observed that the pressure in the heel region is 
greater than that in the metatarsal region while the pres-
sure in the metatarsal region outweights the forefoot 
region’s. In addition, the pressure in the forefoot region 
is larger than that in the arch region. Due to the arched 

structure of the foot, some regions do not make direct con-
tact with the ground, resulting in the smallest pressure in 
the arch region. The pressure distribution between differ-
ent regions in both cases indicates the adaptability of the 
human body to different environments.

2.3.2  Signal processing and feature extraction

The gait phase recognition process is illustrated in Fig. 8. 
The data is processed by extracting the required data 
from the datasets and dropping unnecessary columns. 
To smooth the signal, the moving average filter (MAF) is 
applied. The plantar pressure data includes pressure infor-
mation from nine sensors located in the toes, metatarsals, 
arch, and soles of both left and right feet. To minimize the 
influence between different sensors, the plantar region is 
divided into four areas: the toe area, the metatarsal area, 
the arch area, and the heel area. Aggregate the data from 
different regions to obtain pressure information for each 
region, and use MAF to filter the pressure data of both 
feet. To reduce the impact of outliers and noise in sensor 
data during the walking process, normalization is applied 
to simplify the complexity of the data. Additionally, it can 
ensure that the data is within a consistent scale, which is 
beneficial to multiple gait phase recognition. Time-domain 
based approach for feature extraction from plantar pres-
sure data is adopted to characterize the subject’s gait pat-
tern. The sliding window is set to 100ms and the standard 
deviation and mean of the four regions for both left and 
right feet within the sliding window, as well as the sum 
of plantar pressure, are calculated as inputs to the model. 
These extracted features reveal information in the pres-
sure data.

Fig. 7  Pressure of right insole in the outdoor (variable)

Fig. 8  System chart of gait phase recognition
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3  Human gait detection and recognition 
algorithm

3.1  Principle analysis of SVM and optimization 
with PSO

With the appropriate selection of feature vectors and data 
dimensions, SVM can find a decision boundary as wide as 
possible. However, in this work, the input dataset of GRF 
is highly nonlinear. The basic idea is to map data from 
input space into a high-dimensional feature space through 
nonlinear mapping to avoid the curse of dimension and 
maximize the separation between classes. Given a set of 
data data = (x1, y1), (x2, y2), ..(xm, ym) , with xi ∈ Rm and 
yi ∈ (−1, 1) , the SVM will construct a boundary that can 
be formulated as

By introducing the slack variable �i = (�1, �2, �3, ..., �m) , the 
basic SVM model can be formulated as

Gaussian radial basis function (RBF) is chosen to deal with 
the nonlinear problem. The function can be expressed as

where � is the weight and b is the bias, respectively, C  is a 
penalty parameter, and m denotes the number of slack vari-
ables, Φ(xi)represents the high-dimensional feature spaces, 
� is defined to control RBF kernel width. So as to obtain 
satisfactory results, setting parameters C and � mentioned 
above is essential.

3.2  Human gait recognition model based 
on PSO‑FSVM

Although the model in (2) takes into consideration the 
maximization of the margin, it ignores the radius which 
has an impact on the generalization error bounds of SVM. 
Besides, the feature dimension of the input SVM is multi-
dimensional, which will increase the cost of computing 
time and reduce the system in real-time. Considering 
the radius error of feature space, Wu et al. (2018) pro-
posed a new radius-margin-based SVM model aiming 
to jointly learn SVM together with the feature transfor-
mation by minimizing the radius-margin ratio, called 
FSVM. With the approximation formula of feature space, 

(1)f (x) = �
Tx + b = 0

(2)
min
�,b,�

1

2
�
T
� + C

m
∑

i=1

�i

s.t.yi[�
T
⋅Φ(xi) + b] ≥ 1 − �i

�i ≥ 0

(3)K(xi, xj) = exp(−�(∥ xi − xj∥
2))

a linear transformation matrix A and the radius informa-
tion were introduced. The radius R is bounded by R̄ , i.e., 
1

2
R̄ ≤ R ≤ R̄ , R̄ represents the largest Euclidean distance 

between the training sets and the mean vector in the trans-
formation space, i.e., R̄ = maxi ∥ Axi − Ax̄∥2

2 . Let the 
matrix M = ATA . Instead of featuring weighting, FSVM 
can simultaneously learn the feature transformation and 
classifier. The plantar pressure data collected in this study 
is nonlinear and indivisible. It is known that kernel SVM 
can be utilized to handle the nonlinear classification prob-
lem. Inspired by the characteristic of kernel SVM, kernel 
principal component analysis was adopted and the kernel 
FSVM was proposed, which maps linear FSVM into the 
kernel PCA space (Wu et al. 2018). The feature selection 
model in multidimensional kernel principal component 
analysis can be expressed as follows

where WT = [�1,�2, ...,�D0] represents the eigenval-
ues of dimensional eigenvectors, �i is the slack variable, 
Sk =

∑n

i=1
�ikki

T , ki = W
TΦ(xi) . It is noted that the solution 

efficiency and accuracy of the SVM model not only depend 
on general error bounds but also are affected by the param-
eter settings. PSO is used to deal with complex multimodal 
problems and Marini and Walczak (2015) showed that PSO 
has attained good performance in parameter optimization, 
such as easy convergence, simple structure, and good fitness. 
Considering both general error bounds and parameter opti-
mization, we adopt the PSO algorithm to optimize param-
eters C and � of the FSVM classifier. The PSO algorithm 
with the updating process of particle speed and position is 
formulated as follows

where � is the inertial weight, c1 and c2 is the acceleration 
constant, k is the number of iterations, X is the particle posi-
tion, r1 and r2 are randomly selected in the [0,1] interval. 
After optimization of parameters, we obtained the SVM 
classifier, the formula (4) can be reformulated as

Since the formula is convex and differentiable regarding 
M ≻ 0 , the gradient-projection method is employed to 
update M.

(4)

min
�,b,𝜉,M

1

2
�
TM−1

� + C
n
∑

i=1

𝜉i + 𝜌tr(MSk)

s.t.yi
�

�
T
⋅ ki + b

�

≥ 1 − 𝜉i, i = 1, 2,… ,N

𝜉i ≥ 0,∀i

M ≻ 0

(5)Vk
iD

= �Vk−1
iD

+ c1r1(P
k−1
iD

− Xk−1
iD

) + c2r2(P
k−1
gD

− Xk−1
gD

)

(6)Xk
iD

= Xk−1
iD

+ Vk
iD

(7)
min
M

f (M) =
1

2
(�TM−1

�) + 𝜌tr(MSk)

s.t.M ≻ 0
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Computing the gradient of M� with the formula (9), then 
M�+1 can be defined as

The flowchart of the PSO-FSVM algorithm is shown in 
Fig. 9. The proposed method combines FSVM and PSO, 
which mainly includes the following steps. Firstly, divide 
the dataset for training and testing, and put the training set 
into the feature space by introducing a transformation matrix 
and integrating the radius information. Secondly, the PSO 
algorithm is adopted to find the optimal parameters C and 
� in the feature space. Finally, by testing the dataset during 
external evaluation, the performance of the gait phase clas-
sifier is measured.

4  Gait analysis experiments

The gait sensor system consists of smart insoles for the left 
and right feet. The sampling frequency of the smart insole 
system is 50 Hz. The Bluetooth communication protocol 
is used for ground reaction force data collection with up to 

(8)f (M) = −
1

2
(M−1

��
TM−1) + �S

(9)M�+1 = �s+(M� − t�∇f (M�))

10 m communication distance. Using the designed system, 
we collected the pressure signals of humans walking under 
different conditions. Before conducting the experiment, 
the sensor insoles are initially placed stationary inside the 
shoe to measure the baseline pressure information. The 
actual pressure exerted by the human body is then deter-
mined by calculating the difference between the acquired 
pressure data and the baseline pressure information. In 
this study, we collected training and testing datasets from 
Task 1 and Task 2.

Fig. 9  Flowchart of PSO-FSVM 
for Gait phases classification

Fig. 10  Estimated phases obtained with SVM (Speed 3.5km/h)
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4.1  Indoor experiments

Using the dataset from Task 1 as the training and testing 
dataset, we tested the performance of PSO-FSVM in gait 
phase recognition. The results indicate that the algorithm 
detected their gait phases. Firstly, we analyze the perfor-
mance of gait data at 3.5 km/h speed on the standard SVM 
classifier and the proposed classifier. As portrayed in Fig. 10, 
it manifests that although the predicted value matches the 
real value in phase 5, there are still large errors in the other 
four gait phases. As a consequence, only 93.78% accuracy 
of gait phase recognition can be achieved with the SVM-
only classifier. Figure 11 showed that the recognition result 
using the proposed method matched well with the manu-
ally labeled reference phases, especially in the swing phase. 
Overall, it can be found that the proposed method outper-
forms the SVM-only method.

The error of each gait phase at 3.5 km/h is depicted in 
Fig. 12. The results demonstrate that phase 5 can be detected 
by the proposed method with no detection error on subject 
3, and the error rate of phase 4 is higher than other gait 
phases in most cases. The recognition errors for phase 1 
of the three participants are all below 2%. Among them, 
the recognition error rate for phase 3 is approximately 4%, 
indicating that apart from gait phase 4, it is more challeng-
ing for gait phase 3 to be identified compared to other gait 

phases. Additionally, phases 1 and phase 5 have relatively 
low recognition error rates using the proposed method.

Considering the influence of different speeds in human 
movement, the proposed method is used to detect gait phases 
at a speed varying from 2.5 km/h to 4.0 km/h. Datasets are 
from task 1. The recognition accuracy with five-fold cross-
validation is illustrated in Fig. 13. The average recognition 
accuracy at the speed of 2.5 km/h for the gait phase reaches 
99.13%, which surpasses the average recognition accuracy at 
other speeds. Therefore, it can be concluded that the recogni-
tion accuracy decreases with the increase of speed. Further-
more, the experiment results show that the accuracy of the 
ten tests is all above 96% at four speeds, which proves that 
the proposed method has a good performance of gait phase 
detection at different speeds.

Figure 14 and Table 2 compare the accuracy of gait 
phases detected by the proposed method and other vari-
ants of SVM at speeds ranging from 2.5 to 4.0 km/h. The 
results show that the proposed method achieves the best per-
formance in the testing dataset. As can be observed from 
Fig. 14, the recognition performance of the four classifiers 
can be ranked from the highest to the lowest as follows: 
PSO-FSVM, FSVM, PSO-SVM, and SVM. In Table 2, by 
adopting the particle swarm optimization algorithm, the 

Fig. 11  Estimated phases obtained with PSO-FSVM (Speed 3.5km/h)

Fig. 12  Error rate of PSO-FSVM at 3.5 km/h

Fig. 13  Average accuracy of PSO-FSVM under different speeds

Fig. 14  Average accuracy of four classifiers under different speeds
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accuracy improves by 1.28% and attains 96.90% at 3 km/h. 
The average recognition accuracy of FSVM at four speeds 
fluctuated between 97% and 98%. The proposed method 
has a superlative performance with an average accuracy of 
99.13% at 2.5 km/h and achieves 98.01% at the speed of 
4 km/h. To further appraise the performance of our phase 
segmentation model, the computational efficiency of the 
proposed algorithm and other classification methods is also 
compared in Fig. 15. Through the comparison results, it can 
be found that the average classification time for a single gait 
cycle of the four algorithms is less than 2ms. Moreover, 
the algorithm proposed in this article outperforms the other 
three algorithms in both response time and recognition accu-
racy. In summary, the PSO-FSVM method has been vali-
dated to be accurate and stable for gait phase recognition.

4.2  Outdoor experiments

Considering that the outdoor environment can be affected 
by factors such as stride frequency, speed, weather, and road 
conditions, we conducted a series of experiments outdoors 
to verify the effectiveness of the proposed method for gait 
phase classification. Several different classifiers were trained 
on the dataset from task 2 and their average classification 
accuracies were compared.

The proposed method is compared with the other four 
algorithms to validate the effectiveness of gait phase 
detection. It is evident that the classification performance 
of the proposed algorithm outperforms SVM, k-nearest 
neighbor (KNN), adaptive boosting (AdaBoost), and 

quadratic discriminant analysis (QDA) algorithms. The 
proposed algorithm shows high average recognition accu-
racy for different walking states in outdoor circumstance. 
The average recognition accuracy of four classifiers under 
different speeds can be seen in Fig. 16. Different condi-
tions can have a destabilizing effect on algorithms such 
as KNN. The average accuracy of KNN is 93.76% under 
slow speed conditions, and the accuracy under moderate 
speed is 92%. In contrast to the stable environment of the 
treadmill, participants are influenced by the surroundings 
in outdoor experiments. Accuracy decreases with increas-
ing speed. The accuracy under variable conditions is lower 
than that in fixed speed. The average recognition accuracy 
of gait phases for the KNN, Adaboost, and QDA algo-
rithms is below 95%, while the proposed method achieves 
an average recognition accuracy of over 98% in slow walk-
ing conditions and can still reach 96% with variable speed. 
Overall, the proposed method achieves an average accu-
racy exceeding 96% across all four scenarios.

From Fig. 17 and Table 3, it can be observed that under 
the variable speed walking and fast walking conditions, the 
average recognition error rates for the five gait phases are 
significantly higher compared to the other walking condi-
tions. On the contrary, the gait phase recognition error rate 
of the proposed method is minimal under slow walking 
conditions. Additionally, the recognition error rate for the 
swing phase is the lowest among the five gait phases and 
the error rate of the proposed method is less than 1.1%. 
The proposed method can achieve accurate identification 
of the swing phase in outdoor scenarios. Compared to the 
other algorithms, the proposed method showed the best 
performance in gait phase detection in outdoor experi-
ments. The average error rate for gait phase recognition is 
less than 3.5% with slow walking and moderate walking 
speeds. In the cases of variable speed and fast walking 
conditions, the overall average error rate for gait phase 
recognition is less than 4.5%, verifying the effectiveness 
of the proposed method.

Fig. 15  The recognition efficiency of the four algorithms

Table 2  Average accuracy performance (%)

Speed (Km/h) SVM PSO-SVM F-SVM PSO-FSVM

2.5 95.40 96.21 97.29 99.13
3.0 95.62 96.90 98.00 98.75
3.5 93.97 96.73 97.16 98.32
4.0 94.99 96.38 97.76 98.01

Fig. 16  Average recognition accuracy of four classifiers(under differ-
ent speeds)
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5  Discussion

The gait phase detection by PSO-FSVM showed the best 
performance in the estimation. When SVM-only is adopted 
for gait detection at four speeds, the error rate is notice-
ably higher. In addition, as the speed improves, the detec-
tion accuracy of the gait phase decreases, which reflects the 
limitations of this algorithm under more conditions. The 
outdoor concrete and the indoor treadmill were used as the 
test platform to collect and preprocess the multi-task gait 
data. The experimental results show that the gait detection 

Fig. 17  Average Error Rate of Five Gait phases: a slow, b moderate, c fast, d (variable)

Table 3  Average accuracy performance (%)

Speed SVM KNN Adaboost QDA PSO-FSVM

SLOW 94.54 93.76 94.83 93.04 98.06
MODERATE 94.33 92.89 92.75 92.27 97.14
FAST 93.46 91.82 92.53 91.92 96.98
VARIABLE 92.75 90.24 91.17 90.01 96.13
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equipment based on flexible elastic sensing technology can 
effectively collect and display plantar pressure signals in 
real-time. Furthermore, the PSO-FSVM model proposed 
can achieve an average recognition accuracy of 99.13% for 
gait data at the speed of 2.5 km/h. The average recognition 
accuracy of the three subjects exceeds 98%, and the average 
recognition accuracy is higher than SVM, PSO-SVM, and 
FSVM algorithms at four speeds. It retains the recognition 
advantages of a single algorithm model as well as solves 
the shortcomings of SVM in practical applications. By 
integrating the advantages of improved SVM and PSO, the 
reliability of the algorithm is enhanced and the recognition 
accuracy is improved. To verify the effectiveness of the pro-
posed method outdoors, another set of outdoor experiments 
was conducted. Subjects may be affected by uncertainties in 
the external environment, and their walking speed may vary 
and be irregular. All subjects were required to walk at slow, 
fast, moderate, and variable speeds and were trained using 
SVM, KNN, Adaboost, QDA, and PSO-FSVM as classifiers 
respectively. The experimental results indicate that the aver-
age accuracy of gait recognition is lower compared to walk-
ing on the treadmill due to the external environment. Among 
them, the recognition accuracy is the lowest under variable 
speed conditions, with an average accuracy of 96.13%. This 
suggests that variable speed conditions have the most sig-
nificant impact on recognition outcomes. The gait detection 
accuracy under various speeds and environmental condi-
tions may be affected by stride, BMI (Body Mass Index), 
weather, and parameters of the PSO-FSVM. Therefore, data 
that encompasses more factors and gait information can be 
analyzed under various speeds and environmental conditions 
and then serve as input for the gait detection model. Addi-
tionally, a more precise PSO-FSVM method can be modeled 
by improving the optimization process of PSO algorithms 
(Wu et al. 2023; Moazen et al. 2023). Besides, the proposed 
method achieves an average gait recognition rate of 97% in 
moderate speed conditions. The accuracy of the proposed 
algorithm can obtain 96.98% with the fast speed conditions, 
which manifests the effectiveness of the method. The aver-
age recognition rate is higher than the recognition results of 
the other four classifiers.

6  Conclusion

In this paper, we develop a pressure insole system using flex-
ible and elastic sensors to collect lower limb walking ground 
reaction force at different speeds. To tackle the multi-gait 
phase recognition of the exoskeleton robot, we propose a 
PSO-FSVM method that takes advantage of PSO and con-
siders radius-margin error bound. Experimental results 
show that the proposed method improves the accuracy by 
2.68% on average in comparison with the standard SVM 

and achieves 98% accuracy at four speeds. Furthermore, 
outdoor experiments demonstrate the effectiveness of the 
proposed method for gait phase detection under more con-
ditions. Experimental results show that the average recog-
nition accuracy can exceed 96%, despite being affected by 
the environment. With the optimal parameters and model 
offline trained of PSO-FSVM and the real-time module of 
the industrial control system, the real-time recognition of the 
gait phase for the exoskeleton robot will be achieved. Future 
work will focus on applying this method in real-time gait 
phase prediction for the lower limb exoskeleton.
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