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Abstract
Visual servoing is a technique for robot control, in which visual feedback is used in a closed-loop control to improve the 
accuracy and performance of robot systems. The control tasks in visual servoing are defined to control the robot using visual 
features extracted from the image. There are various problems when applying Visual servoing such as local minima, sin-
gularity, and visibility of feature points. These problems can be solved by using different features or using different control 
schemes. This paper provides a review of visual servoing for robot manipulators and conducts comparisons of five visual 
servoing approaches. First, the general theory of visual servoing and five different schemes for the comparison and evalua-
tion are presented. Next, the behaviors of the Visual servoing system depending on the selection of visual features are also 
presented in detail. In addition, the enhancement and combination schemes are also presented, which are a combination 
of visual servoing with various control techniques that help increase the robustness of visual servoing. To overcome some 
issues of the image-based visual servoing scheme, different methods to approximate the interaction matrix are presented. 
After that, the five visual servoing schemes are simulated on Matlab for performance comparison and evaluation. To conduct 
the assessment, the simulations are implemented with typical control tasks that are translational movements and rotation 
around the X, Y and Z axes. The evaluations are conducted with the varying motion parameters and the varying effects of 
noise in the image. The results of the criteria are visually displayed as 3D charts, from which the reviews and comparisons 
of schemes are drawn. In addition, the paper also evaluates the schemes when performing general movements. General tasks 
are simulated by using the PUMA 560 robot. Each task has its own purpose to show issues in some schemes as well as how 
others overcome them.
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1  Introduction

Nowadays, in conjunction with the non-stop improvement 
of science and technology, robots increasingly play a cru-
cial role in all regions of life and society, gradually change 
humans for difficult and dangerous tasks to create products 
of high quality and precision. Therefore, the requirements 

for flexibility, accuracy, and robustness of robots are increas-
ing and robots must have the ability to operate in distinctive 
environments. To meet such requirements, robots are fre-
quently incorporated with sensors to measure and perceive 
the surroundings (particularly when the robots operate in 
unstructured environments). Commonly used sensors are 
pressure sensors, ultrasonic sensors, lasers, vision sensors, 
etc. Among them, vision sensors (e.g., cameras) are the 
most common because vision sensors perceive the envi-
ronment as the same as humans and allow for non-contact 
measurements.

Cameras began to be used to control the motion of robots 
in the 60 s (Shirai and Inoue 1973). Feedback control using 
visual information from vision sensors (closed-loop control) 
was only developed in the 90 s to increase the accuracy of 
the robot system (Hashimoto 1993; Cong and Hanh 2022). 
This closed-loop control system is called Visual Servoing.
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Visual servoing (VS) is a feedback control technique that 
uses visual information to enhance the accuracy and versatil-
ity of robot systems (Cong and Hanh 2022; Chaumette et al. 
2016; Zhao et al. 2021). The control tasks in visual servoing 
are defined to manipulate the movements of robots using 
visual features extracted from images of interesting objects 
in real-time (Li et al. 2018; Cong and Hanh 2021). The error 
function in VS is defined as the error of visual features at 
the current and the desired position of the robot/camera. 
The purpose of a visual control schemes is to regulate the 
error and make it zeros. One, two or more cameras can be 
used to gain visual information of the objects for the robot 
control task (Cong and Hanh 2022, 2021; Zhao et al. 2021; 
Wu et al. 2022).

There are two main configurations for combining camera 
and robot in visual servoing applications. The first configu-
ration is eye-in-hand, the camera is mounted on the end-
effector of the robot and moves with the robot. A transforma-
tion between the camera’s frame and the end-effector’s frame 
is defined to convert motions from the camera’s frame to the 
end-effector’s frame. In the second configuration, called eye-
to-hand, one or more cameras are fixed in the workspace to 
observe both the robot and the objects. This configuration 
needs to calculate the transformation matrix between the 
camera and robot coordinate frame at each iteration. The 
hybrid configuration can use both eye-in-hand and eye-to-
hand configurations.

Two main control schemes that are commonly applied in 
visual servoing controls are position-based visual servoing 
(PBVS) scheme and image-based visual servoing (IBVS) 
scheme (Cong and Hanh 2022; Zhao et al. 2021; Wu et al. 
2022; Sanderson and Weiss 1980). The combination of two 
control schemes creates a hybrid scheme called 2-1/2D 
visual servoing (Malis et al. 1999). In the PBVS system, 
the control inputs are calculated in the 3D space. The 3D 
coordinates of the objects are estimated from the image fea-
tures. There are different methods for determining the posi-
tion of an object [see (Dementhon and Davis June 1995)]. 
All methods require knowing the complete geometry of the 
objects and the camera’s calibration parameters. In the IBVS 
system, the control inputs are directly calculated in the 2D 
image space. This method is robust to the camera and robot 
calibration errors (Espiau 1993; Malis et al. 2010; Xiaolin 
and Hongwen 2020). However, convergence is only guaran-
teed in a small region (completely impossible to analyze to 
determine) around the desired location. An expressive graph 
to illustrate the VS is shown in Fig. 1.

Two essential aspects that significantly affect the 
behaviour of a visual servoing system are the choice of 
visual features to be used as input by the controller and 
the control schemes. With the same set of features, the 
system has different behaviours when used in different 
control schemes, and the same control rule gives different 

behaviours when considering different features. The 
behaviour acquired with the combination of two choices is 
often not as expected, choosing a particular set of features 
or a particular control scheme can result in some stability 
and convergence problems.

This paper reviews common techniques in visual ser-
voing control and makes assessments based on the effi-
ciency and problem-solving ability of control schemes. 
The popular schemes are simulated on Matlab to obtain 
performance indicators and behavior graphs. To conduct 
the assessment, the paper gives typical control tasks that 
are translation and rotation around the X, Y and Z axes. 
The evaluations are conducted with the varying motion 
parameters and the varying effects of noise. After all the 
tests have been performed, the main conclusions drawn 
from them are presented and discussed.

2 � Review of visual servoing

2.1 � General theory of visual servoing

In visual servoing control, visual features are extracted 
from the image to control the motion of the robot (Ren 
et al. 2020; Zhong et al. 2019; Chwa 2020). The control 
rule is designed so that the current visual features s(t) are 
equal to the desired features sd . Therefore, all visual servo-
ing tasks are aimed at eliminating errors e(t) is defined as 
(Hanh and Cong 2022):

Fig. 1   Two visual servoing control schemes
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In visual servoing, the relationship between the derivative 
of the vector s and the relative velocity between the camera 
and the object is determined by the interaction matrix:

where ∂s/∂t is the derivative of s caused by the object's own 
motion, Ls ∈ Rk×n is the interaction matrix and cvo the rela-
tive velocity between the camera and the object.

In the case of a non-moving object, ∂s/∂t = 0, we have:

To ensure that the error of the feature vector is sup-
pressed, the following first-order control law is used:

where K is a constant gain matrix. Combined (4) with (1) 
and (3) we get:

where L+
S
=
(
LT
S
LS

)−1
LT
S
 is the pseudo-inverse of the inter-

action matrix.

2.2 � Visual servoing control schemes

Control schemes are mainly different in the way that visual 
information is used. Different control rules (Wang et al. 
2017; Ren et al. 2020; Liu et al. 2020; Malis Feb. 2004) 
will have different effects on the response of the system. 
This section presents visual servoing control schemes, start-
ing from traditional control schemes to hybrid schemes and 
enhanced control schemes. To form control rules for visual 
servoing schemes, 2D pixel coordinate or 3D coordinates 
are used. Other visual features will be detailed in the next 
section.

2.2.1 � Position‑based visual servoing (PBVS)

In PBVS the error signal is computed in the 3D Cartesian 
space. The state vector is the pose of the robot P =

[
t
d

c
, �u

]T
, 

where td
c
 is the translation vector from the current position to 

the desired position, determined in the current camera frame 
F , θu is the vector/angle representation of the orientation. 
We have the relationship:

where R is the rotation matrix, and LW is the interaction 
matrix of rotation motion

(1)� = s(t) − sd

(2)ṡ = Ls
cvo +

𝜕s

𝜕t

(3)ė = ṡ = Lsvc

(4)ė = Ke

(5)vc = −KL+
S
e = −KL+

S

(
s − sd

)

(6)Ṗ = LSvc =

[
R 0

0 LW

]
vc

L−1
W

 can be approximated by the identity matrix.
Assume vc =

(
vt,�c

)T where vt is the translation.
velocity and �c is the angular velocity of the camera.
From (5) we have:

where t =
(
tx, ty, tz

)T is the translation vector from the cur-
rent camera F to the desired camera frame F∗ , determined 
in the desired camera frame.

2.2.2 � Image‑based visual servoing (IBVS)

Let Pi =
(
Xi, Yi, Zi

)T is the 3D coordinate of a feature point 
and the image coordinate of Pi is pi =

(
xi, yi

)T . Using per-
spective projection in the pinhole camera model, we have:

where f  is the focal length. The velocity of point Pi relates 
to the camera velocity by the equation:

Taking the time derivative of Eq. (8) and combining it 
with Eq. (9), we obtain:

where:

Define feature vector s =
(
p1, p2,… , pn

)T , n is the num-
ber of feature points. The interaction matrix is obtained 
by stacking the interaction matrices of each feature point 
determined by (11):

There is a commonly mentioned issue when applying 
IBVS called “camera retreat” in which the camera moves 
away from the target in a normal direction and then returns 
(back-and-forth movements) as shown in Fig. 2.

L
w
= I3 −

�

2
[u]× +

(
1 −

sinc�

sinc2
�

2

)
[u]2

×
,

(7)
{

�� = −KtR
Ttd

c
= −Ktt

�c = −K
�
�u

(8)
xi = f

Xi

Zi

yi = f
Yi

Zi

(9)Ṗi = −�c − �c × Pi

(10)ṗi = Lsivc

(11)Lsi =

[
−1

Zi
0

xi

Zi
xiyi −

(
1 + x2

i

)
yi

0
−1

Zi

yi

Zi
1 + y2

i
−xiyi −xi

]

(12)LS =
(
Ls1,Ls2,… ,Lsk

)T
∈ R2n×6
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2.2.3 � 2 ½ D Visual Servoing (2.5DVS)

The 2 ½ D visual servoing control scheme was proposed by 
Malis (Malis et al. 1999) in 1999 with the aim of combining 
the advantages of both IBVS and PBVS schemes. Hence this 
method is also known as hybrid visual servoing. Different 
from the two control diagrams above, the 2.5DVS scheme 
separates the camera translation and rotation control laws 
from each other. The axis-angle parameters �u obtained from 
the rotation matrix are used to calculate angular velocity 
commands (Malis et al. 1999):

For calculating the translation velocities, define the 
extended image features me = (x, y, log(Z))T . According to 
Malis et al. (1999), we have:

where:

d∗ is the distance from the camera at the desired position 
to a fixed plane � containing the feature points, ρ1 is a coef-
ficient defined as (Malis et al. 1999):

Define feature vectors s =
(
me, �u

)T and sd =
(
med, 0

)T . 
The control  t ask  is  to  minimize  the  er ror 

(13)
d(�u)

dt
=
[
0 LW

]
vc

(14)ṁe =
[

1

d∗
Lv Lv�

]
vc

(15)

Lv =
1

�1

⎡
⎢⎢⎣

−1 0 x

0 −1 y

0 0 −1

⎤
⎥⎥⎦

Lv� =

⎡⎢⎢⎣

xy −
�
1 + x2

�
y

1 + y2 −xy −x

−y x 0

⎤⎥⎥⎦

(16)�1 =
Z

d∗

e =
((

me −med

)T
, �uT

)T

 . The derivative of the error and 
the camera's velocity is related by (3) with the interaction 
matrix (Malis et al. 1999):

and the velocity of camera obtained from (5) is (Malis et al. 
1999):

The 2.5D VS separates the camera translation and rotation 
control laws from each other, so it can avoid “camera retreat” 
problem as in the coupled control law of IBVS.

In Eq. (18), the ratio �1 , the ratio Z∕Zd and the vector/angle 
parameter �u is estimated by using the homography matrix. 
The homography matrix can be decomposed (Malis et al. 
1999):

where R is the rotation matrix between the camera’s current 
frame F and the camera’s desired frame F∗ , n∗ is the unit 
vector normal to plane � expressed in frame F∗ , and td∗ is 
defined as t∕d∗ , t being the translation vector between F and 
F∗ . The ratio �1 is computed as (Malis et al. 1999):

and the ratio Z∕Zd is determined as (Malis et al. 1999):

with m is the normalized coordinates of an image point.

2.2.4 � Partitioned visual servoing (PVS)

The 2½D visual servoing control scheme described above is 
designed to separate rotation from translational motion, by 
selecting features in both 2D and 3D spaces. Another scheme 
proposed by Corke and Hutchinson (Corke and Hutchinson 
2001) also decouples displacements in the Z direction using 
only features extracted directly in the image with the aim of 
solving some problems in IBVS, mainly the “camera retreat” 
problem that occurs when a rotation around the optical axis is 
required. Perform decoupling Z-axis motion:

(17)LS =

[ 1

d∗
Lv Lv�

0 LW

]
vc

(18)vc = −K

�
d∗L−1

v
−d∗L−1

v
Lv�

0 I3

�⎡⎢⎢⎢⎣

x − xd
y − yd

log
�
Z∕Zd

�
�u

⎤⎥⎥⎥⎦

(19)H = R+ td∗n
∗T

(20)�1 =
det(H)(
Rn∗

)T
m

(21)
Z

Zd
= �1n

∗Tm∗

(22)�̇ = �svc = Lxyvxy + Lzvz

Fig. 2   Camera retreat problem. a image feature trajectories. b transla-
tion along the X, Y and Z axes
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where the matrix Lxy includes the 1st, 2nd, 4th, and 5th col-
umns of the Ls matrix and the Lz matrix contains the 3th and 
6th columns of the Ls matrix.

Since vz is calculated separately, from Eq. (22) the veloc-
ity in the x and y directions can be determined:

The velocities in the Z direction are determined using 
angle feature and area feature extracted from the image:

2.2.5 � Shortest path visual servoing (SPVS)

Shortest Path Visual Servoing was presented by Kyrki and 
Kragic (Kyrki et al. 2004) with the aim of solving two funda-
mental problems in visual servoing: the possibility of objects 
coming out of the camera’s field of view and the joints get-
ting too close to the allowed limit. This method is designed 
to ensure that the camera trajectory is a straight line from the 
starting point to the desired position by using the position-
based control for the translation:

The rotation angle around the z-axis also remains the 
same control law:

And the rotation around the x and y axes will be con-
trolled by using a single feature point in the image to ensure 
the visibility of target points:

where �t,�ωz
, �

ωx,y
 are the interaction matrix for translation, 

rotation around Z and X, Y axes, respectively.

2.3 � Selection of visual features

The behavior of the VS system depends on the selection 
of visual features. The visual features are observed by the 
visual sensor and generate input for the control scheme. A 
visual sensor provides potential visual features, but if the 
features are not selected properly, it will lead to stability 
problems and the robot's displacement will be large (Ren 
et al. 2020). Therefore, the selection of visual features in 
VS is important because it determines the speed, accuracy 
and reliability of the visual measurements. And so, deter-
mines the accuracy and robustness of the VS system (Ren 

(23)vxy = L+
xy

(
−Ke − Lzvz

)

(24)
�
z
= k�

z

(
�∗
m
− �

m

)

v
tz
= k

v
z
(�∗ − �)

(25)�� = −Ktt

(26)ωz = kωz
uzθ

(27)
[
�x,�y

]T
= L−1

�x,y

(
−Ke − Ltvt − L�z

�z

)

et al. 2020; Feddema et al. 1991; Janabi-Sharifi and Wilson 
1997). For this reason, it is necessary to design the best vis-
ual features for VS systems that meet the following criteria: 
avoid local stability, robustness with calibration error and 
modeling error, non-singularity, the reasonable trajectory 
of the camera and of the features in the image and finally, 
maximum decoupling of degrees of freedom and for a linear 
relationship between the visual features and the controlled 
degrees of freedom.

2.3.1 � Geometric features

The most common visual features are geometric features 
(e.g., points, lines, circles, etc.). Geometric features are 
defined to describe the geometric content in an image (2D 
visual feature) or the relationship between a coordinate sys-
tem attached to the robot system and the coordinate system 
attached to the object (3D visual feature). Both 2D and 3D 
features can be used at the same time in hybrid diagrams.

2D visual features are often extracted from 2D images 
such as points, lines, ellipses, areas of interest or contours 
(Feddema et al. 1991; Janabi-Sharifi and Wilson 1997; Shi 
and Tomasi 1994; Andreff et al. 2000). These features are 
extracted by image processing algorithms. In the case of 
a feature point, Cartesian coordinates are often used, but 
polar or cylindrical coordinates can also sometimes be used 
(Chaumette Aug. 2004).

In addition, image moments and moment invariants can 
also be used in VS (Chaumette 2002, 2004; Tahri and Cha-
umette 2003, 2004, 2005, 2005; Zhao et al. 2013). Using 
image moments has many outstanding advantages over tra-
ditional VS, as it allows a general representation that not 
only allows solving for basic geometric objects but also for 
complex objects with unspecified shapes. In (Chaumette 
2004) the use of image moments is discussed to form the 
expression of the Jacobian visual matrix. This expression 
allows separate degrees of freedom based on the selected 
moment type. And in Tahri and Chaumette (2005) shows the 
use of moment invariants to design a decoupled 2D visual 
servoing control scheme.

Visual features can be selected in 3D space such as the 
position or coordinates of the 3D point (Martinet et al. 1996; 
Deng et al. 2003; Wilson et al. 1996). The model of the 
object and the measurement in the image are often used to 
estimate the relative position of the object relative to the 
camera. In (Cervera et al. 2003), the 3D coordinates of the 
object are used as feature vectors and it is required to know 
the camera calibration parameters in advance. In PBVS, an 
object’s orientation can be represented by roll-pitch-yaw or 
axis-rotation (Wang and Wilson 1992) or quaternions (Hu 
et al. 2010).

Several combinations of feature types can be consid-
ered, for example, the combination of both 2D and 3D 
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features are presented in Wilson et al. (1996); Deng et al. 
2002; Marchand and Chaumette June 2005) and the com-
bination of polar coordinates and Cartesian coordinates of 
pixels are presented in Corke et al. (2009).

2.3.2 � Photometry features

Contrary to using geometric features in VS, recently pho-
tometric features calculated from the luminance of pixels 
have been used in VS. Using photometry features does not 
require complex image processing such as feature extrac-
tion, matching and tracking. Furthermore, the effect of 
some parts being masked and the depth estimation is not 
great. This approach is implemented by considering the 
entire image as a set of features to calculate the control 
input signal (Nayar et al. 1996; Deguchi 2000). The con-
trol input can belong to the eigenspace or the kernel of 
the pixel, or it can also be defined as the set of all pixels.

In (Nayar et  al. 1996), pixel intensity is not used 
directly, but eigen spatial decomposition is performed first 
to reduce the dimension of the image data. Then, control 
is performed in eigenspace, not directly from the pixels’ 
intensity. Furthermore, this approach requires comput-
ing off-line the eigenspace and performing image projec-
tion on this subspace for each new frame. An interesting 
approach, also considering pixels’ intensity, was recently 
proposed in Kallem et al. (2007). This approach is based 
on the use of kernel methods resulting in highly decoupled 
control laws. It is also possible to use the brightness of all 
pixels in the image as a visual feature set (Collewet et al. 
2008; Collewet and Marchand 2009a, b).

2.3.3 � The velocity field features

The velocity field in the image is used as the visual feature 
in Dong and Zhang (2020), and the relationship between 
the change of the velocity field of features and the velocity 
of the camera is modelled. This method is used to drive 
the camera to the position parallel to a plane and follow a 
trajectory. The camera’s movement is controlled so that the 
velocity field in the image is equal to the velocity field at 
the desired location (Xu et al. 2018). In (Kelly et al. 2004), 
the velocity field is used in the VS of the robotic arm under 
the fixed sphere of the camera (Fig. 3). The desired veloc-
ity field vd is defined in the image space, which is a tangent 
vector representing the desired image velocity feature ẋ at 
each point of the image space. The velocity field error is 
defined as the difference between the desired velocity field 
vdx and the image velocity feature ẋ . The velocity field is 
also used in Kelly et al. (2006) to control a mobile robot 
with a fixed camera.

2.4 � Combined and enhanced control schemes

To increase system performance and overcome the disad-
vantages of visual servoing control schemes, in addition to 
using advanced control schemes (2.5D VS, Partitioned VS, 
Shorted Path VS), VS control schemes can be combined 
with each other or combined VS with other controllers to 
take advantage of the controllers and overcome the disad-
vantages of VS scheme for improving system performance.

Some studies have been done in this direction, such 
as combining VS with sliding mode control (Zanne et al. 
2000), partitioning approaches (Corke and Hutchin-
son 2521; Pages et al. 2006; Gans et al. 2003), planning 
approaches (Shu et al. 2018; Keshmiri et al. 2017), switch-
ing schemes (Gans and Hutchinson 2002, 2007; Norouzi-
Ghazbi and Janabi-Sharifi 2021; Zhao et al. 2017; Gha-
semi et al. 2019, 2020)

2.4.1 � Switching approaches

One of the ways to use multiple controllers in combina-
tion is to use a switching scheme, in which one controller 
is selected at a time depending on which criteria need to 
be optimized (Norouzi-Ghazbi and Janabi-Sharifi 2021; 
Abhilash and Ashok 2016). To implement this scheme, 
two levels of control strategy are required: the lower level 
is used to implement the VS control rules, and the higher 
level of control strategy determines which control scheme 
should be applied.

A switching system is represented by the differential 
equation:

(28)ẋ(t) = f𝜎(t)
(
x, t, u𝜎(t)

)
∶ 𝜎 ∈ {1… n}

Fig. 3   Visual servoing using velocity field (Kelly et al. 2004)
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where f�(t) is the set of n discriminant functions. The switch-
ing is directly affected by the choice of the control input u. 
Each visual servoing control scheme provides a controlled 
velocity u =

[
Tx, Ty, Tz,�x,�y,�z

]T  and a switching rule 
determines the actual control input used at each control 
cycle. The stability of the switching system is not guaran-
teed by the stability of the individual controllers. A set of 
stable controllers may become unstable if an inappropriate 
switching rule is applied, and unstable systems may become 
asymptotically stable if switching approaches are applied. 
Therefore, the overall stability of the system is difficult to 
guarantee, however, under certain conditions, the stability 
of the system can be demonstrated (Malis et al. 1999; Dem-
enthon and Davis 1995).

Nicholas R. Gans (Gans and Hutchinson 2007) imple-
mented a switching system between two control laws 
PBVS and IBVS based on the value of the Lyapunov func-
tion. The system starts with the Gan’s IBVS controller, 
considering the Lyapunov function for the PBVS controller 
defined by L =

1

2
‖e(t)‖2 . At any point in time, if the value 

of the Lyapunov function exceeds the threshold γP, the 
system switches to the PBVS scheme. And in the process 
of using PBVS, if at any time, the value of the Lyapunov 
function for IBVS exceeds the threshold γI, the system 
switches to the IBVS scheme. If the thresholds are chosen 
appropriately, the system can obtain the relative advan-
tages of IBVS and PBVS and limit the shortcomings.

Gan (Gans and Hutchinson 2002) implemented the 
switching scheme between the two controllers based on 
homography matrix and affine approximation. The hom-
ography-based scheme can be used in the case of general 
motion, including rotations around the x and y axes. If the 
motion does not include rotations around the x and y axes, 
the performance of the two methods is the same. However, 
when noise is present, the affine method is more efficient. 
Three different switching rules are implemented and com-
pared: “Deterministic Switching”, “Random Switching” 
and “Biased Random Switching”. The result shows that the 
Biased Random rule gives better results than other switch-
ing rules.

2.4.2 � Task sequencing

The original approach, at the beginning of studies of visual 
servoing control, constrained all degrees of freedom of the 
robot in one task. However, in the early stages of the control 
process, this is not necessary. The typical situation is that 
some features reach the desired position before others. In 
addition, the classical methods of choosing a trajectory may 
not be suitable, and not optimal.

A more efficient way to control the system is that uses 
some of the robot’s degrees of freedom to perform second-
ary tasks when the robot is very far from the target. These 

secondary tasks can improve control system robustness, 
including avoiding joint limits, ensuring that the targets 
remain within the camera’s field of view, or avoiding col-
lision with obstacles (Alatartsev et al. 2015; Ahmadi et al. 
2022). When the robot approaches the targets, all the degrees 
of freedom of the robot are controlled to reach the desired 
position. This approach is called task sequencing (Kurtser 
and Edan 2020; Diyaley et al. 2020).

To use this approach, it is necessary to ensure that all 
sub-tasks have different priorities and the sub-tasks do not 
affect the main task. To do that, redundancy formalism is 
used (Mansard and Chaumette 2004, 2005).

The task sequencing approach proposes a solution to 
increase the robustness of the system by dividing the global 
task into multiple subtasks. This is done by adding and 
removing those subtasks from a stack, according to the con-
ditions of the environment.

To build an environment-adaptive system, which may 
include trajectory constraints, add more subtasks to the 
stack. This can be done using the cost function, to determine 
the safe position of the robot. This function can be defined 
in the joint space and has a high value for dangerous situa-
tions and low for safe situations. Using predictive control, 
it is possible to estimate when the system is in danger with 
actual task stacks and change them to remediate. If the cost 
function exceeds a certain threshold value, then perform-
ing a task stack change. This method has been successfully 
implemented and tested by Mansard on a real robot and 
described in Mansard and Chaumette (2004) and Mansard 
and Chaumette (2005).

2.4.3 � Feature trajectory planning

In order to fulfill the requirements of obstacle avoidance, 
joint angle limitation or collision avoidance, it is possible to 
create a trajectory for the robot and use visual servoing to 
control the robot to follow the established trajectory (Hosoda 
et al. 1995; Mezouar and Chaumette 2002; Dejun and Kam 
2020). Constraints can integrate concurrently. Trajectories 
of features sd allow the camera to reach the desired position 
while ensuring that constraints are satisfied by using path 
planning techniques, such as the famous “potential field” 
method (Zhao et al. 2020).

Separating trajectory planning from tracking allows a sig-
nificant improvement in the robustness of the visual servoing 
to modeling errors. Indeed, modeling errors have a large 
effect when the error s—sd is large, but a small effect when 
s—sd is small. When the desired feature point trajectory sd(t) 
satisfying sd(0) = s(0) has been designed in the planning 
stage, the scheme can be adapted to the actual requirement 
of the changes of sd, and makes the error s—sd remain small. 
More precisely, we have:
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From that, using the control law ė = −𝜆e , the velocity 
can be obtained:

The second component of this control law predicts the 
variation of sd, eliminating the tracking error.

2.5 � Problems in visual servoing

Choosing a suitable set of visual features and designing 
good control schemes should be considered to avoid errors 
when performing visual servoing. Very common problems 
in visual servoing control tasks are directly affected by this 
choice, which includes local minima, singularity, and vis-
ibility of visual features.

2.5.1 � Local minima

In general, the local minima problem only occurs with 
specific configurations. When stuck in a local minimum, 
the camera velocity is zero while the errors of the features 
remain uncorrected to zero. This results in converging to 
a final position that is different from the desired position. 
When the feature vector s is generated from three points in 
the image and LS has full rank, then we have Ker ( L+

S
) = 0, 

implying that there are no local minima. However, when 
using three points, the same images of three points can be 
seen from four different camera positions, which means that 
exist four camera positions such that s = sd, corresponding 
to four global minimums. When using four points, there 
is theoretically only one position of the camera. However, 
dim

(
LS
)
= 8 × 6 , implies that dimKer

(
LS
)
= 2 . Using four 

points, the control law tries to control 8 constraints on the 
image trajectory while the system has only six degrees of 
freedom. In that case, due to the existence of impracticable 
motions in the image computed by the control law, the sys-
tem may reach a local minimum.

Several control strategies have been developed to avoid 
local minima in visual servoing such as using hybrid 
schemes or trajectory planning.

2.5.2 � Singularity

When the interaction matrix becomes singular, the camera 
velocity tends to infinity thereby causing instability of the 
system. The singularity can appear when selected pixels are 
image features. For example, when four points are used and 
the required motion of the camera is to rotate around the 
optical axis at an angle of 180°, the feature point trajectories 

(29)ė = ṡ − ṡd = Levc − ṡd

(30)vc = −λ�L+
e
e + �L+

e
ṡd

will be straight lines passing through the center of the image 
and the Jacobian matrix becomes singular. For this move-
ment, it is not appropriate to use pixel coordinates. If these 
points are replaced by cylindrical coordinates (ρ,θ), the sin-
gularity may not occur when performing a rotation of 180° 
around the optical axis.

In PBVS, problems of local minima and singularity can 
be avoided depending on the choice of the error e, a straight 
line from the starting position to the desired position is 
obtained when the error is defined in the desired camera 
system. The singularity can be avoided when using parti-
tioned visual servoing, 2 ½ D visual servoing, switching, 
and PBVS scheme.

2.5.3 � Visibility of the features

Using 2D and 3D visual servoing schemes with poor cali-
bration and an initial position far from the desired position, 
the target can be out of the camera’s field of view. So, visual 
servoing control rules must be designed to keep features 
in the camera’s field of view resulting in reliable feedback 
during visual servoing. To minimize the probability of fea-
tures leaving the FOV, a “repulsive potential field” can be 
applied, creating a strategy for path planning, using a sche-
matic transformation map as well as using structure light.

2.6 � Interaction matrix approximation for IBVS

When using IBVS, the following stability and convergence 
problems are encountered:

•	 The system reaches a local minimum far from the desired 
position. This happens when the interaction matrix has 
an incomplete rank.

•	 The interaction matrix becomes singular and leads to an 
unstable system.

•	 Unnecessary back and forth movements of the camera 
when performing rotation around the optical axis to 
ensure that the trajectory of the feature points is a straight 
line.

•	 When asked to perform a rotation around the optical 
axis at an angle of 180°, the camera performs an infinity 
retreat.

In this section, methods for approximating the interac-
tion matrix are presented to solve the above problems and 
analyze the advantages and disadvantages of each method.

Constant Jacobian matrix: L̂+ has a fixed value and is 
equal to the pseudo-inverse of the interaction matrix at the 
desired position. Therefore, it is only necessary to define the 
features and depth at the desired position to calculate the 
interaction matrix. The notation L∗ is the interaction matrix 
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at the desired position, if L∗ has a full rank, the camera’s 
velocity can be calculated by:

With this method, the stability of the system is only 
guaranteed in a small area around the desired location. 
This area is difficult and complex to define. Trajectories 
of feature points in the image are not straight lines and are 
difficult to determine in advance. Therefore, some features 
may be out of the camera’s field of view, especially when 
the start position is far from the desired position.

Varying Jacobian matrix: the depth z(t) of each feature 
is estimated if the 3D model of the object is known in 
advance or from the camera motion measurement. There-
fore, the interaction matrix can be calculated using expres-
sion (11). Notation L� = L

(
s(t), ẑ(t)

)
 , if the matrix L′ has 

full rank, the camera speed can be calculated by:

The trajectories of the feature points of this method are 
straight lines from the initial position to the desired posi-
tion. However, the camera can reach local minima and the 
interaction matrix becomes singular.

Pseudo-inverse of the mean of the Jacobians: The 
approximation of the interaction matrix is obtained by 
averaging the two matrices in the above method:

In general, the rank of the average matrix is not related 
to the rank of the two matrices L′ and L∗ . If this matrix has 
a full rank, the camera speed is calculated by:

This scheme shows good performance for translation 
and rotation movements around the camera's optical axis 
without any retreating motion. However, the camera goes 
to infinity when the requirement movement is a rotation 
of 180° around the optical axis. Because there is no back-
ward motion, the trajectories of the features are curves 
with great curvature, and some of the features may be out 
of the camera’s field of view.

Mean of the Jacobian pseudo-inverses: This method 
directly approximates the pseudo-inverse matrix:

and the camera’s speed is calculated by:

(31)v = −K(L∗)
+
e(t) = −K

(
(L∗)

T
L∗
)−1

(L∗)
T
e(t)

(32)v = −K
(
L�
)+
e(t) = −K

(
L�

T
L�
)−1

L�
T
e(t)

(33)L̂ =
L� + L∗

2

(34)v = −K

(
L� + L∗

2

)+

e(t)

(35)L̂+ =

(
L�
)+

+ (L∗)+

2

If the required motion is only rotations around the cam-
era’s Z-axis, there is no retreat motion. However, a small 
retreat occurs if the required motion of the camera is a 
combination of translation and rotation around the optical 
axis. The retreat motion makes the trajectories of the fea-
ture points almost linear. Thus, it helps to ensure that the 
features do not leave the camera’s field of view.

The MJPM scheme has an advantage over the PMJM 
scheme when the required camera motion is very close to 
180°, the MJPM converges with a smooth trajectory, but 
the PMJM shows an unreasonable trajectory. The camera 
performs a large rotation around the optical axis at the begin-
ning of the motion because the interaction matrix is close to 
the singularity (Cong and Hanh 2019).

2.7 � Parametric approximations for the Jacobian 
matrix

E. Nematollahi and F. Janabi-Sharifi have proposed a new 
class of parametric approximations for interaction matrices 
(Nematollahi and Janabi-Sharifi 2009) to solve some of the 
difficulties of IBVS systems related to interaction matrix 
approximations. This paper proposes three methods in which 
the third method is an extension of the other two methods. 
The first and second methods are special cases of the third 
method. So, we only discuss the third method.

Consider the following system of equations:

where �1, �2, �1, �2 are the coefficients that need to be 
determined.

The camera velocity is calculated by:

where L� = �1L
� + �2L

∗, L� = �1L
� + �2L

∗

We can see that this method includes all the above meth-
ods except the MJPM method. For example, when choosing 
�1 = �2 = 1∕2 and �1 = �2 = 0 , the PMJC method will be 
obtained. So, if the parameters are chosen appropriately, this 
method shows superior behavior over other methods. This 

(36)v = −K

(
L�
)+

+ (L∗)+

2
e(t)

(37)

(
�1L
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∗
)
v = −K

(
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)
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scheme can control the camera to perform a pure rotation 
of 1800 around the optical axis without any retreat motion.

3 � Assessment of visual servoing techniques

3.1 � Description of evaluation criteria and methods

In order to make the most objective evaluation of visual 
servoing control techniques, it is important to adhere to the 
evaluation criteria rigorously. Towards this goal, the paper 
builds a series of control tasks that are commonly found in 
visual servoing. In addition, it also proposes quantitative cri-
teria for evaluation. Techniques are evaluated when applied 
in tasks where visual servoing systems often encounter dif-
ficulties and reveal defects.

3.1.1 � Control tasks

Various visual servoing control methods have been devel-
oped to meet the specific requirements of different tasks. 
Therefore, to evaluate visual servoing techniques, the paper 
has selected four control tasks that most often cause prob-
lems in visual servoing.

Task 1: Rotation around the optical axis. The first task 
considered is pure rotation around the optical axis. With this 
task, the IBVS algorithms expose problems such as unnec-
essary movements along the optical axis (“camera retreat” 
and “camera advance” problem), and the camera movement 
to infinity when required a rotation of 1800. Several dia-
grams have been developed to solve this problem such as 
PC&SH method, 2 ½D VS, SPVS or solved by using differ-
ent approximations for Jacobian matrices.

Task 2: Translation along the optical axis. The second 
task is pure motion along the optical axis with an initial 
position from a distance of 1 m in front of the target to a 
distance of 1 m behind the target. This particular motion is 
chosen because, in essence, visual servoing control schemes 
depend on depth estimation.

Task 3: Rotation movement around the Y-axis of the 
camera. The third task corresponds to pure rotation around 
the Y-axis of the coordinate system attached to the camera. 
This task represents rotations around axes parallel to the 
image plane. The target rotation angles will be from 10° to 
70°. When the rotation angle is greater than 70°, the fea-
ture points will almost align, so visual servoing cannot be 
performed.

Task 4: Motion along the Y-axis of the camera. This task 
represents the result of translation along any axis in a plane 
parallel to the image plane.

Task 5: General motion. The final task is generalized 
movements that require the visual servoing system to per-
form translational and rotational movements simultaneously. 

In this task, in order to have a better assessment of the per-
formance of VS algorithms, the simulation is performed 
with the PUMA560 robot. The velocity obtained during 
visual servoing is used to control the rotations through the 
robot’s Jacobian matrix. Figure 4 shows the PUMA560 robot 
from the Robotics Toolbox used for simulation.

3.1.2 � Performance metrics

For the evaluations to be quantitative, it is necessary to 
define a set of performance metrics that are used to eval-
uate the schemes. The following metrics are selected for 
evaluation:

Number of iterations to convergence: Visual servoing is 
considered successful and stops when the average error of 
the feature points is less than 1 pixel. If the average error of 
five consecutive iterations differs by no more than 0.1pixel, 
the error is considered to converge to a constant value and 
the process is stopped. The number of iterations can be 
increased or decreased if the coefficient λ is changed. How-
ever, it is a parameter that deeply evaluates the performance 
of many systems or of a system with many different tasks.

Error at termination: At the halt of visual servoing, the 
pixel-error of each feature point from the desired position 
is calculated. Visual servoing stops if the error decreases to 
zero or converges to a constant value as mentioned above. 
Additionally, if over 300 iterations had been performed with-
out convergence visual servoing was halted. Finally, the VS 
process is halted if the camera has moved back 10 m from 
the target, advanced to a depth of 0 m, or the feature points 
have moved more than 3000 pixels from the image center.

Maximum feature excursion: At each iteration, the dis-
tance from the feature point to the center of the image is 
calculated. The maximum value, in pixels, achieved during 
the entire process was used for the evaluation.

Maximum camera translation: At each iteration, the dis-
tance of the camera from the desired position is calculated. 
The maximum value is used to evaluate.

Fig. 4   PUMA560 robot
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3.1.3 � Simulation methodology

The whole simulation uses Matlab with the support of 
Machine Vision Toolbox and Robotics Toolbox (Zhong et al. 
2019). For each simulation, the feature points are the verti-
ces of the square in the 3D coordinate system. The square 
has a side length of 0.1 m and the desired position of the 
camera is at a position of 1 m relative to the square plane. 
To estimate the homography matrix, it is required that the 
feature points be coplanar. Using the vertices of the square 
gives a uniform result that a configuration of any shape may 
not be able to achieve.

Simulation using a camera with pixel sizes of 
10–5 × 10–5 m, focal length f = 0.008 m. The image plane 
can be considered to be infinite, but if a feature goes out of 
the distance of 6000 pixels from the center of the image, the 
visual servoing system will stop. Furthermore, if the system 
fails to zero error, or does not converge to a fixed error after 
300 iterations, visual servoing also halts.

The gain for each system was a 6 × 6 diagonal matrix, 
allowing to adjust the convergence rate independently. The 
gains are chosen so as to adjust to zero an error of a certain 
degree of freedom in 30 iterations while keeping the error 
of other degrees of freedom at zero.

The performance of the visual servoing system is affected 
by various conditions such as signal noise, error in calibra-
tion, and error in the kinematic parameters of the robot. The 
paper performs simulations for visual servoing with noise in 
images. The noise causes a large shift in the coordinates of 
the feature points. This causes errors when calculating the 
camera's displacement. To measure the influence of noise on 
different systems, the paper simulates noise during feature 
detection by adding an “offset” value to the pixel coordinates 
of features. This offset value follows a Gaussian distribution 
with a mean of zero and variance ranging from 0 to 1. Since 
the noise is random, the simulation is performed 100 times 
for the entire range of motion and averaged to smooth the 
results and remove outliers.

3.2 � Simulation results and evaluation

In this section, the simulation results are presented for the 
five visual servoing control schemes described: Image-based 
Visual Servoing (IBVS), Position-based Visual Servoing 
(PBVS), 2 ½ D Visual Servoing (2.5D VS), Partitioned 
Visual Servoing (PVS) and Shorted Path Visual Servoing 
(SPVS). Each system is simulated with four tasks. Each sub-
section of this section details a control task. At the beginning 
of the subsections, the notable results are summarized, fol-
lowed by detailed descriptions for each performance metric.

Graphs are shown in groups of 5 figures, each for a dif-
ferent VS scheme. The figures arranged in clockwise order 
are IBVS, PBVS, 2.5D VS, PVS and SPVS. The simulation 

results under the influence of noise are presented in 3D 
graphs with the variance of noise increasing along the right 
axis, and the motion variables (rotation, translation) increas-
ing along the left axis. Performance index variables increase 
along the vertical axis.

3.2.1 � Rotation around optical axis

The trajectories of the feature points are shown in Fig. 5. 
The IBVS method has a trajectory that is a straight line from 
the starting position to the ending position. The rest of the 
methods give orbits that are circular arcs. When the rotation 
is close to 180°, the features in the IBVS go to the center of 
the image, the Jacobian matrix becomes singular and the 
system cannot converge.

(a)	 Remaining pixel error

The simulation results are shown in Fig. 6. IBVS regu-
lates the error to zero when rotations are less than 160°, even 
as the effect of noise increases. However, when the angle 
of rotation is greater than 160°, the camera moves back to 
infinity, bringing the feature points to the center of the image 
and cannot be converged.

Fig. 5   Trajectories of feature points with a rotation of 60° around the 
Z axis
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The remaining methods show the dependence of the error 
on the noise level. In which, the PVS method shows less 
influence of noise, while the influence of the other three 
methods is almost the same.

When there is no effect of noise or the effect is small, the 
algorithms are capable of adjusting the error to zero. How-
ever, when increasing the value of noise, after 300 iterations, 
the error still remains at 1.5 to 3 pixels (depending on the 
magnitude of the noise). The error of the IBVS algorithm 
also increases with the magnitude of the noise, although it 
is not shown in Fig. 6.

The rotation angle has almost no effect on the error.

(b)	 Number of iterations

Figure 7 shows the change of the number of iterations 
to convergence or failure with different values of rotation 
angle and noise.

The graphs show that all methods have a dependence on 
the number of iterations on the noise level and the rotation 
angle value. The IBVS method has a sudden change in the 
number of iterations when the rotation angle is close to 180°. 
This is because the camera performs a retreat to the limit 
value causing the system to stop, the retreating speed is very 
fast, so the number of iterations is also very small. Compared 
with other methods, IBVS is less affected by noise. When the 

variance of noise is less than 0.5, the number of iterations 
is almost unchanged. When the variance is greater than 0.5, 
the number of iterations increases but is still less than 300 
iterations. For rotation angles less than 30°, the number of 
iterations increases slightly as the rotation increases and is 
almost unchanged for rotation angles from 30° to 160°.

The two methods PBVS and 2.5DVS give almost the same 
results. The number of iterations starts to increase rapidly 
when the noise is larger than 0.25. When the noise is equal to 
one, these methods all take more than 300 iterations to stop. 
As the rotation angle value changes, there is also a slight 
increase in the number of iterations.

For the PVS method, the number of iterations increases 
when noise and rotation angle increase. Especially, if the 
rotation angle is large, the number of iterations increases 
sharply as the value of the noise increases.

(c)	 Maximum feature point excursion

The result of the dependence of the maximum distance 
of the feature points with the change of rotation angle and 
noise is shown in Fig. 8.

The results are similar to the graph for the number of iter-
ations. Except for the PVS method, all other methods show 
that the distance increases with the noise value and is inde-
pendent of the rotation angle. In the IBVS method when the 

Fig. 6   Average pixel error when rotating around the Z axis

Fig. 7   Average iterations until convergence with rotation around the 
Z-axis
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rotation angle is greater than 1600, the feature points move 
towards the center of the image, so the maximum excursion 
remains constant and equal to the value at the initial posi-
tion. As for the PVS method, the trajectory of the feature 
points changes as the noise value increases, causing the dis-
placement distance to increase. In the presence of noise, this 
distance depends only on the rotation angle and not on the 
noise. The excursion increases sharply as the angles increase 
and reach a maximum when the rotation is 1800.

(d)	 Maximum Camera Translation

In rotation around the optical axis, camera displacement 
is the most interesting feature. The graph for this parameter 
is shown in Fig. 9.

As mentioned before, IBVS has a large retreat movement. 
The translation of the camera increases exponentially with 
the value of the rotation angle. When the angle of rotation 
reaches 1650, this retreat exceeds 10 m and the process stops.

PBVS has the smallest camera translation. There is a 
small increase in this translation value as the magnitude of 
the noise increases.

The camera translates a large distance in the PVS method. 
This value increases with the rotation angle and reaches a 
maximum value of 1.23 m when the rotation angle is 140° 

and then gradually decreases. The translation value does not 
depend on the magnitude of the noise.

The two methods SPVS and 2.5DVS have almost the 
same graph, with the camera displacement increasing with 
noise and almost unchanged with the rotation angle. The 
maximum retreat value is only about 25 mm.

3.2.2 � Translation along the optical axis of the camera

The trajectories of the feature points in the image for motion 
along the Z-axis are almost the same (almost straight line). 
Figure 10 shows the trajectory for the IBVS method.

Fig. 8   Average maximum feature point excursion with rotation 
around the Z-axis

Fig. 9   Average maximum camera translation with rotation around the 
Z-axis

Fig. 10   Trajectories of feature points in translation along the Z-axis
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There is no problem of stability with the translation along 
the optical axis task, and the systems have approximately the 
same graph of the criterion.

(a)	 Remaining pixel error

The pixel error graphs are shown in Fig. 11, giving the 
same results for all schemes. The error increases with the 
increasing noise and is almost independent to the initial dis-
tance. IBVS gives the smallest error value, with error values 
varying from 0.8 to 1.2 pixels. PBVS and 2.5DVS have the 
largest error with a range of 0.5–2.5 pixels. The error in the 
SPVS method is quite uniform. In some cases, when the 
noise variance is equal to 1, the error increases to about 1.8 
pixels. The error range of the PVS method is from 0.5 to 
1.5 pixels.

(b)	 Number of iterations

The graphs for the number of iterations are shown in 
Fig. 12. The graph shows that three methods IBVS, PVS, 
SPVS have nearly the same results, all have the average 
number of iterations less than 300, the number of iterations 
increases rapidly when the value of the noise is greater than 
0.25. IBVS gives the smallest number of iterations and is 
less affected by noise than other methods. When the noise 

is equal to 0.25 and 0.5, the number of iterations is almost 
unchanged. The two remaining methods have the same 
results with the number of iterations increasing sharply as 
the noise increases, and when the noise is greater than 0.75, 
the number of iterations reaches 300.

When the motion value increases, the number of itera-
tions increases if there is no noise, when there is noise, the 
motion value does not affect the number of iterations (except 
for the 2.5DVS method which still changes).

3.2.3 � Rotation around the Y‑axis of the camera

Based on the trajectories of the feature points when rotation 
around the Y axis in Fig. 13, it can be seen that the trajecto-
ries of the features of all methods are almost straight lines, in 
which PVS and 2.5DVS give trajectories of relatively small 
curvature.

(a)	 Remaining pixel error

The pixel error graph is shown in Fig. 14, the results show 
that there is a difference between the methods.

All methods have an error value that increases as the 
noise increases. If the noise is greater than 1, all methods 
give an error of more than 1 pixel. Two methods IBVS and Fig. 11   Average pixel error when translation along the Z axis

Fig. 12   Average iterations with translation along the Z-axis
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PVS give lower error results than other methods. When the 
noise magnitude is less than 1, these two methods give an 
error of less than 1 pixel. The maximum error when noise is 
equal to 1 is about 1.4 pixels.

2.5DVS and SPVS give the same error graph results, the 
error increases as the noise size increases. However, SPVS 
has a smaller error with a maximum error of about 1.7pix-
els, and 2.5DVS is 2.5pixels. PBVS has a complex noise 
change graph, but in general, the error increases with noise 
and reaches a maximum of 1.8pixels.

The angle of rotation has almost no effect on the error.

(b)	 Number of iterations

Figure 15 shows the number of iterations to stop when rotat-
ing around the Y axis. Based on that, it can be seen that all 
methods have dependent on the number of iterations on the 
noise level and the rotation angle. The number of iterations 
increases as the rotation angle value increases. The 2.5DVS 
method has a rapid increase in the number of iterations to 
more than 100 when increasing the angle value close to 80°.

The graphs of the three methods 2.5DVS, PBVS and 
SPVS show that the number of iterations increases rapidly 
when the magnitude of the noise increases, in which 2.5DVS 
has the most influence, all three methods have 300 iterations Fig. 13   Trajectories of feature points when rotated around the Y-axis

Fig. 14   Average pixel error when rotating around the Y axis Fig. 15   Average iterations when rotating around the Y axis
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with noise variance greater than 0.75. The two methods 
IBVS and PVS are less affected by noise, the number of 
iterations is still guaranteed to be less than 300 iterations 
when the noise variance is equal to 1.

(c)	 Maximum camera translation

The graphs of the camera translation with different rotation 
angles and noise are shown in Fig. 16. It can be seen that 
the two methods PBVS and SPVS have almost no camera 
displacement because these two methods directly use the 
control law according to the translation vector for the trans-
lational velocities in three axes. When there is the influence 
of noise, the displacement of the camera of these two meth-
ods increases with the noise, the maximum displacement 
value is 6 mm when the noise is equal to 1.

The other three methods show that the camera has unnec-
essary movements when the movement requires only rota-
tion around the Y-axis of the camera. This can be explained 
by the fact that these methods use image features to control 
the translational velocity of the camera. The displacement 
value of the camera increases with the rotation angle value 
and is almost unaffected by noise except for IBVS whose 
displacement value increases slightly as noise increases. The 

PVS method has the largest displacement, with a maximum 
displacement of 2.2 m when the rotation angle is 80°. The 
two methods IBVS and 2.5DVS have the same displacement 
with a maximum value of about 1 m when the rotation angle 
is equal to 80°.

3.2.4 � Translation along the Y‑axis of the camera

The trajectories in the image of the feature points for motion 
along the Y axis are approximately the same. Figure 17 
shows the trajectory for the PBVS method.

For this task, all methods yielded roughly the same per-
formance metrics. Distance of motion does not have much 
effect on performance. IBVS and PVS are less affected by 
noise than the other methods.

(a)	 Remaining pixel error

Figure 18 shows the average pixel error when translating 
along the Y axis. The results are almost the same for all 
schemes. The error increases as the noise increases and is 
independent of the initial distance. PBVS and 2.5DVS have 
the largest error with a range of 0.75–2.5 pixels. The error in 
the PVS method is quite uniform, when the noise increases 
to 1, the error only increases to about 1.5 pixels. The other 
two methods have an error range of 0.75–2 pixels.

(b)	 Number of iterations

The graphs of the number of iterations are shown in Fig. 19. 
The graphs show that the number of iterations of all methods 
depends on the noise level and the motion value.

The three methods PBVS, 2.5DVS and SPVS have up to 
300 iterations when the noise is greater than 0.75. The other 
two methods, IBVS and PVS, give a number of iterations 

Fig. 16   Average maximum camera translation with rotation around 
the Y axis

Fig. 17   Trajectories of feature points when translating along the 
Y-axis
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less than 300 when the noise is equal to 1 and the number of 
iterations is almost unchanged if the noise is less than 0.5.

3.2.5 � General motion

Tasks with the initial position of the camera in the general 
position are performed by using the PUMA 560 robot. The 
desired position of the robot is at a distance of 1 m from the 
feature points with the end-effector at the pose with coordi-
nates P0 = [0.4318, − 0.15, − 0.6] and the three angles roll, 
pitch, yaw are π, π, π/2 as shown in Fig. 20.

The tasks performed in general motion were all per-
formed under the condition that the noise in the image was 
white noise with the noise variance equal to 1. The tasks 
were performed 50 times and averaged for the criteria.

(a)	 Test 1

Test 1 is a combination of three translational motions along 
the X, Y and Z axes with the translation vector P = [0.3, 
0.2, 0.6]. The robot configuration at this location is shown 
in Fig. 21.

Fig. 18   Average pixel error when translating along the Y axis

Fig. 19   Average iterations when translating along the Y axis

Fig. 20   The desired configuration of the robot

Fig. 21   The initial configuration of the robot in Test 1
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Table 1 shows the criteria for each method. Figures 22 
and 23 show the trajectory of the feature points in the image 
and the trajectory of the camera for each method, respec-
tively. It can be seen that, for test 1, which only requires 
translational motions along the three axes X, Y, and Z, the 
result is almost the same. All methods can regulate the error 
to zero. The number of iterations for convergence of each 
method is almost the same. The 2.5DVS method has a slower 
convergence rate than other methods. This can be explained 
when looking at the velocity graph in Fig. 24, the Z-axis 
velocity of the 2.5DVS method is only half of the other 
methods, so the convergence is slower. The PVS method 
also has a small Z velocity, but a larger X and Y velocity, so 
the convergence speed is also equal to other methods.

All systems have a feature point trajectory that is almost 
a straight line from the initial coordinates to the desired 
coordinates. In which the trajectories of PVS and 2.5DVS 
methods have small curvature. The camera’s trajectories in 
3D space are also straight lines.

(b)	 Test 2

Test 2 is a combination of three rotations around the X, 
Y, and Z axes with rotation angles of 10°, 15° and − 90°, 
respectively. There is no translational motion required in test 
2. The objective of this test is to investigate the independ-
ence of rotational and translational motions. Table 2 presents 
the performance metrics for test 2.

Based on the data in Table 2, it can be seen that all meth-
ods can be able to drive the camera to the desired position. 
In particular, the 2.5DVS method gives faster convergence 
results than other methods. The PVS method has the dis-
placement of the feature points larger than half of the image 
size, so the feature points will be out of the image boundary. 
All other methods keep the feature points in the image as 
shown in Figs. 25 and 26 

Figures 27 and 28 show the angular and translational 
velocities of the camera, respectively. The translational 

Table 1   Performance metric when executing test 1

Scheme Error (pixel) Number of 
iteration

Excursion (pixel)

IBVS 0.87 82.26 274.44
PBVS 0.81 74.12 270.04
PVS 0.85 82.88 275.16
2.5DVS 0.87 93.58 275.26
SPVS 0.85 71.60 275.26

Fig. 22   The trajectories of the feature points in Test 1

Fig. 23   The 3D trajectory of robot in Test 1
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velocities of the two methods PBVS and SPVS are almost 
zero, so there is no translational motion. The IBVS method 
has the highest velocity in the Z direction, the PVS method 
has the largest velocity in the Y direction. The angular 
velocity graphs of the three methods PBVS, 2.5DVS and 
SPVS are almost the same. Although the required motions 
are rotation in three axes, these three methods only require 
two rotations around the axis. The two methods IBVS 
and PVS require all three rotations around three axes to 
achieve the desired position.

Figure 26 shows the change in the 3D coordinates of 
the robot, it can be seen that the two methods PBVS and 
SPBVS have no redundant motion along the X, Y and Z 
axes. The other methods have unnecessary motions along 
the X, Y, and Z axes. In which the IBVS method has the 
largest motion of 0.3 m in the Z direction. The 2.5DVS 
method has the smallest motion in all directions.

(c)	 Test 3

Test 3 requires translation in the three X, Y and Z axes and 
rotation around the Z axis. The initial position of the camera 
relative to the desired position has the coordinate P = [0.2, 
0, 0.5] and the required rotation angle is 180° around the Z 
axis. Figure 29 shows the configuration of the robot at the 
initial position for test 3.

Based on the data obtained in Table 3, it can be seen 
that except for the IBVS method, all other methods have 
converged results after about 90 iterations. Because test 3 
requires 180° rotation, IBVS performs a retreat to infinity, 

Fig. 24   The translational velocity of robot in Test 1

Table 2   Performance metric when executing test 2

Scheme Error (pixel) Number of 
iteration

Excursion (pixel)

IBVS 0.85 80.84 497.24
PBVS 0.87 81.56 512.08
PVS 0.86 85.92 525.31
2.5DVS 0.84 57.48 497.49
SPVS 0.81 80.56 497.59

Fig. 25   The trajectories of the feature points in Test 2
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however, due to the robot’s limitation, after only 5 iterations, 
the system stops due to exceeding the robot’s workspace.

To better see the behavior of each system, consider 
the graphs of the feature point trajectories in Fig. 30 and 
the 3D trajectories of the camera in Fig. 31. Each method 
gives different trajectories. The two methods PBVS 
and SPVS have similar trajectories of feature points in 
the image because they share the same control law for 
translational and rotational motion around the Z axis. 
The 2.5DVS method gives slightly different trajectories 
because a different control law is used for translational 
motion. The PVS method gives a different trajectory 
than the other methods in which the feature points follow 
curves, so the distance of feature points from the center 
of the image is also larger than other methods (Table 3). 
The 3D trajectory of the PVS method is also a curve with 
great curvature, while the PBVS methods are almost linear. 
Test 3 does not have motions in the X and Y axes from 

which it can be seen that only the SPVS method doesn’t 
have unnecessary movements, the trajectory is a straight 
line from the initial to the final position. The two methods 
PBVS and 2.5DVS have redundant movements on the Y 
axis. IBVS method has a retraction movement in the Z 
direction, the camera has retreated up to a height of 0.8 m, 
exceeding the limit of the robot.

Figures 32 and 33 are velocity plots. It can be seen that 
the two methods PBVS and SPVS have similar velocity 
graphs (the same control law). The PVS method gives a 
velocity graph with very large variations in the velocity val-
ues in the X and Y directions. The IBVS has a large velocity 
in the Z-axis to perform the retreat motion.

(d)	 Test 4

Test 4 is a general motion that requires translation and 
rotation in the X, Y, and Z axes. The initial position of the 

Fig. 26   The change in the 3D coordinates of the robot in Test 2

Fig. 27   The angular velocity of the robot in Test 2
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camera relative to the desired position is P = [− 0.3, − 0.2, 
0.4], the rotation angles are π/6, − π/6, − π/2. The configura-
tion of the robot in the initial position is shown in Fig. 34.

In this test, the features are located near the edge of the 
image, so that the phenomenon of the features coming out 
of the camera’s field of view can be seen. Table 4 shows the 
performance metrics for test 4. All methods can drive the 
camera to the desired position with an average error of about 
0.8 pixels and a number of iterations between 80 and 90. The 
SPVS method has the largest number of iterations with 94.1 
iterations. The two methods PBVS and PVS have the dis-
tance from the feature points to the center of the image larger 
than half the size of the image, so these points can be out 
of the camera's field of view. The remaining methods still 
ensure that the features are in the field of view of the camera. 
The trajectories of the feature points are shown in Fig. 35.

In Fig. 35, it can be seen that the feature points trajecto-
ries of the two methods PBVS and PVS are curves with a 
large radius, so the two lower points are out of the camera's 
field of view. The remaining three methods use pixel coor-
dinates in control schemes, so they always tend to bring the 
feature points towards the desired position, thus keeping the 
feature points in the image. The SPVS method has the trajec-
tories of the feature points closest to straight lines.

Fig. 28   The translational velocity of the robot in Test 2

Fig. 29   The initial configuration of the robot in Test 3

Table 3   Performance metric when executing test 3

Scheme Error (pixel) Number of 
iteration

Excursion (pixel)

IBVS 404.79 5 240.28
PBVS 0.86 91.10 301.48
PVS 0.86 93.20 398.69
2.5DVS 0.85 90.92 281.10
SPVS 0.82 88.62 287.08

Fig. 30   The trajectories of the feature points in Test 3
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Figure 36 shows the 3D trajectories of the camera. It can 
be seen that the trajectories in the two methods IBVS and 
PVS are arbitrary curves. In the PBVS method, the trajec-
tory is a curve with small curvature. The SPVS method has 
a straight-line trajectory. Thus, the SPVS method has the 
shortest trajectory both in 3D space and in the image. The 
2.5D VS method also has an almost straight-line trajectory.

The camera velocities are shown in Fig. 37 and Fig. 38. 
The two methods IBVS and PVS give a large change in 
velocity values, while in the other methods, the velocities 
decrease exponentially to zero.

4 � Conclusion

The paper has presented the general theory of visual servo-
ing, the two main components in visual servoing are con-
trol schemes and visual features. Several enhancement and 
combination schemes are used to increase the robustness 

of the system. Problems in visual servoing are presented 
and interactive matrix approximations are used to solve 
them in IBVS.

Several standardized tests have been performed in 
the face of image errors to evaluate system performance 
against difficult tasks. This data can be used to select 
appropriate visual servo systems for specific tasks.

The two methods IBVS and PVS are less affected by 
noise than other methods due to directly using the con-
trol laws in the image. However, they create unnecessary 
movements of the robot. The two methods PBVS and 2.5D 
are influenced by noise, which may not achieve the desired 
error if the value of the noise is large.

Through the general tasks, it can be concluded that the 
two methods PVS and PBVS have complex trajectories 
in the image and feature points easily out of the camera’s 
field of view, especially when these points are located near 
the boundary. The two methods IBVS and PVS have redun-
dant movements as mentioned above. The SPVS method 

Fig. 31   The 3D trajectory of the robot in Test 3 Fig. 32   The translational velocity of the robot in Test 3
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Fig. 33   The angular velocity of the robot in Test 3

Fig. 34   The initial configuration of the robot in Test 4

Table 4   Performance metric when executing test 4

Scheme Error (pixel) Number of 
iteration

Excursion (pixel)

IBVS 0.84 91.90 519.69
PBVS 0.85 86.68 576.02
PVS 0.87 89.34 617.05
2.5DVS 0.89 83.54 505.73
SPVS 0.84 94.10 508.15

Fig. 35   The trajectories of the feature points in Test 4

Fig. 36   The 3D trajectory of robot in Test 4
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has the best results with a 3D trajectory that is a straight 
line from the starting position to the desired position with-
out unwanted motion and keeping the features in the cam-
era's field of view. The 2.5DVS method has performance 
somewhere in the middle.
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