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Abstract
Wheel-slippage is a crucial but one of the marginally attended subjects regarding indoor navigation. Uncompensated slip-
page has the potential to introduce serious consequences in the form of safety-violation while manipulating obstacles and 
degraded performance when the vehicle is subjected to tracking and interception. This paper aims at establishing an alter-
native approach to dynamic modeling and robust control by proposing online estimation of slip parameters and modifying 
the kinematic model such that it is capable to accommodate slip-disturbance inputs. This approach works in a minimally 
invasive way, without interfering with or replacing the existing controller. The proposed approach has a low computational 
requirement and can be easily implemented without any major changes in the control architecture.

Keywords  Disturbance · Observer · Slip-angle · Slip-ratio ·  Slip estimation · Slip-kinematic model

1  Introduction

Kinematic models are widely used in indoor navigation 
mainly because of a moderately uniform terrain that supports 
pure rolling motion. Apparently, this assumption holds good 
in most cases and kinematics make controller design easier 
(Taghia and Katupitiya 2013) for highly complex path arbi-
tration problems. Practically however, indoor manoeuvres 
are not entirely free from violation of the said assumption. 
In most cases, mechanical vibrations due to tire deformation, 
unbalanced loading, variations in tractive forces induced by 
ground texture, etc. are the primary contributors of unmod-
eled disturbances. A wet floor, or the difference between 
a tiled corridor and a carpeted lobby or simply a sudden 
change in speed and direction may lead to kinematic distur-
bance like wheel slippage.

In this paper, our interest is to detect the slip-angle and 
the slip-ratio due to sudden dynamicity of motion. It is 

important to understand the premises of such dynamicity 
in the context of indoor navigation (target-tracking, for an 
example) and why the violation of non-holonomicity may 
be misleading with respect to safety and performance evalu-
ation. Classically, a vehicle localizes itself with the help of 
odometry. In the event of slippage, the odometer generates 
faulty readings and this ‘apparently correct’ feedback further 
affects the successive actions. An incorrect state feedback 
may create an illusion of safety from an imminent collision 
and it may also indicate a false convergence of tracking error 
wherein the vehicle is actually diverging.

The commonly adopted remedial measures include 
replacing the kinematics with a detailed dynamics of the 
vehicle and substituting the existing controller by a more 
robust or adaptive scheme (Liao and Berrelli 2019). Both 
of these measures are undoubtedly effective in addressing 
the present concern, but they introduce additional cost and 
complexity (Wang et al. 2009). In this paper, our objective 
is to investigate two things—whether (1) the existing con-
troller can be retained and (2) the existing kinematic model 
can be upgraded to incorporate slippage, with the help of 
additional sensors. In this regard, experiment-based dynam-
ics-free sideslip calculation of four-wheeled vehicles have 
been reported by Selmanaj et al. (2017). Motivated by the 
precedent work, we have developed a modified slip-kine-
matic model and validated the same using a time-sequence 
of ‘estimated’ values of the slip parameters. The idea of slip 
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‘forecast’ also appears in association with anti-lock braking 
systems reported by Oniz et al. (2009). The technique pro-
posed in the current paper can be executed easily and with 
a non-invasive perspective towards the existing controller.

2 � Related work

Wheel slippage acts instantaneously. Hence, a regular pat-
tern cannot be ascribed to it. Most of the related literature 
direct the readers to common faults like—non-ideal contact 
patch instead of a contact point and deformation of tires 
(Gillespie 1992; Lhomme-Desages et al. 2009) under shear 
force. Studies on anti-lock braking and traction control strat-
egies (Zhang et al. 2016) have investigated the effects of dif-
ferent tire models. Probable reasons behind wheel slippage 
have also been discussed in relation to vehicle stability (Kar-
nopp 2013). Change in coefficient of friction due to surface 
texture is also possible if the vehicle travels from hardwood-
surface to concrete or climbs an incline with uneven load 
distribution on wheels. These problems are similar in nature 
and treatment to an outdoor navigation system. But slippage 
due to sudden dynamic motion still remains one of the least 
studied areas. Although an examination of ‘wheelie’ in two-
wheelers (Corno et al. 2013) lightly touches this subject, 
lack of a detailed investigation is a motivation for this paper.

State estimation is usually the first step to tackle this 
issue. An adaptive learning method that has been proposed 
by Lai and Le (2021) for observation of the coupled dynam-
ics of a helicopter promises robust estimation. Another land-
mark assisted robust localization with disturbance estima-
tion and cancellation scheme has been discussed by Shimada 
(2018). Use of deep learning techniques (Chang 2019) for 
localization of high-speed objects is a recent advancement 
in estimation literature. A unified nonlinear observation 
approach combining both Luenberger and parameter-estima-
tion observers has been presented by Yi and Zhang (2019). 
Recently, a non-Bayesian filter using wideband beacons has 
been proposed for accurate state estimation and prediction of 
uncertainties in Fontanelli et al. (2021). Observers have also 
proved to be efficient in analysing responsiveness of multi-
agent systems over classical L1 gain approach (Shang et al. 
2021). Events like, sudden acceleration (or braking), turn-
ing manoeuvres at high speed (cornering and lane-change) 
introduce dynamic forces lateral to the direction of motion 
and result in slippage. The terminology have been adopted 
from automobile technology, but are equally relevant for 
indoor navigation problems like tracking, collision avoid-
ance and formation control. Applications thereof present a 
typical scope for the proposed work. Unlike direct estimation 
of body-slip angle for yaw rate control presented by Geng 
et al. (2007), our aim is to improve the reliability of the state 
feedback. Our approach is aligned with the complementary 

sensing topology discussed by Zhu and Lamarche (2007) 
and Fusini et al. (2015), following which, a slip-propagation 
model has been derived.

Popular disturbance handling techniques for dynamic 
systems include disturbance rejection (Davison et  al. 
1999), robust controller design (Zwierzewicz 2020) and 
adaptive approaches (Cui 2019). However, introduction of 
new controllers to achieve improved performance is often 
non-economical. Robust controllers are difficult to design 
and extremely hard to manifest (Pretagostini et al. 2020). 
Reactive controllers are adaptive but require extensive 
parameter tuning, whereas, optimal model predictive con-
trollers demonstrate reliable dynamicity and disturbance 
rejection, but are computationally intensive. The idea is 
to point out that each of the existing advanced controller 
designs come with additional constraints and limitations 
which can make cost of controller replacement unjusti-
fied. In contrast, our solution is easier to implement and 
can bypass the need to replace existing controllers until 
absolutely necessary. For example, a proportional–inte-
gral–derivative (PID) control strategy, which is known to 
suffer from poor response with nonlinearities and distur-
bances but show easily tuneable behaviour and reliable 
implementation can benefit from the proposed technique 
as a low-cost, complementary addition.

The key contributions of our work may be summarized 
as follows. 

(1)	 Slip estimation and prediction: Slip-angle and slip-ratio 
(disturbance parameters) have been estimated and prop-
agation models of these parameters have been derived 
for quantitatively predicting slippage at a later instant.

(2)	 Slip-kinematic vehicle model: Modified kinematic-
based state equations for a mobile robot have been pro-
posed, which have been configured to accept ‘expected 
slip’ as disturbance input.

(3)	 Observer based state estimation using low-cost camera: 
Linear/nonlinear observers have been studied for esti-
mating pose and velocity based on optical flow from a 
low-cost vision sensor and inertial sensors. Estimated 
pose and velocity are used to further estimate slip-
page. No other absolute position, velocity or yaw rate 
measurements have been used to validate our claim of 
improving the accuracy of state feedback.

(4)	 Non-invasive approach to existing controller: The pro-
posed state estimation strategy for reliable navigation 
is completely exclusive of the existing control method, 
which means the proposed method can be applied with-
out needing to replace any existing stable control strat-
egy. Tracking performance is improved in presence of 
disturbance by introducing corrective measures gener-
ated by state estimation through secondary observation. 
The focus is to provide accurate state feedback when 
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subjected to slippage, as the latter goes overlooked by 
wheel encoders.

The paper is organized in the following manner. Section 3 
explains the slip parameters relevant to the present problem. 
Section 4 discusses the design of a linear observer and an 
extended Kalman filter (EKF) which have been used to vali-
date the proposed approach. Section 5 presents the proposed 
slip propagation model and the modified robot kinematics that 
accepts slip inputs. The experimental results for four case stud-
ies have been analysed in Sect. 6, along with a demonstration 
of how the proposed slip estimation helps to identify safety 
critical situations. Concluding remarks summarize the paper 
and give directions to future work.

3 � Wheel‑slip as disturbance

Slippage occurs when the patch of tire in contact with the 
ground is subjected to dynamic forces, that act in directions 
other than forward. As a result, the actual trajectory deviates 
from the intended path. As lateral forces develop at the contact 
patch, pure rolling motion is compromised (Karnopp 2013) 
and the wheel encoders fail to record this deviation, thereby 
giving an incorrect localization response. Any control action 
taken upon this ‘incorrect’ pose feedback can lead to serious 
errors.

Instead of treating longitudinal and lateral slip in each 
wheel independently (Gillespie 1992), this paper considers an 
effective slip-angle and slip-ratio about the geometric center of 
the vehicle and maintains this definition throughout the entire 
discussion.

Slippage can be quantified by two parameters. The first 
one � , in Eq. (1) is the lateral deviation of heading, � from 
the commanded direction. The second parameter, � (see 
Eq. (1)), is defined as the ratio of forward velocity error 
between the data recorded by wheel encoders and the obser-
vation (v is forward velocity). The angular shift, � is called 
the slip-angle and � is known as the slip-ratio. The mobile 
vehicle is assumed to have no backward motion. Therefore, 
� is a positive, dimensionless variable ranging between 0 and 
1. A perfect non-holonomic motion corresponds to � = 0 , 
indicating a complete agreement between the odometry 
and observed pose. Conversely, � = 1 indicates a complete 
disagreement implying either a skid or a false-rolling condi-
tion, depending on whichever is greater between the driving 
torque and traction.

(1)
� = �commanded − �observed

� =
|vencoder − vobserved|

max{vencoder, vobserved}

4 � Observer design

The objective of this paper is to validate the concept of 
on-line slip estimation through observation and thereby to 
advocate in favour of a modified vehicle kinematics that can 
accommodate slippage. Therefore, the claim does not rest on 
the novelty or efficiency of the observer design. For a fair 
understanding of the proposed approach, we have investi-
gated the effects of both linear (Zhu and Lamarche 2007) 
and nonlinear observers (Katriniok and Abel 2016; Fusini 
et al. 2015).

4.1 � Linear observer

The system to be observed can be explained with the help 
of Eq. (2), where (A, B) is the system and input matrix pair, 
q is the state vector, u is the input vector and n is Gaussian 
process noise.

where,

Here the states are, forward travelled distance: p, forward 
velocity: v and heading: � . The input pair, (a,�) are the 
linear acceleration along the forward direction and angu-
lar velocity about the center of mass of the vehicle. The 
parameters, ca and c

�
 are the accelerometer and gyroscope 

biases having Gaussian distribution. Assuming there is no 
absolute-position sensor and dedicated velocity sensor like 
GPS/GNSS and tachometer, we have used optical flow from 
an overhead camera for observation. In absence of expen-
sive commercial sensors, techniques and utility of deploying 
low-cost vision sensor in velocity-estimation of a vehicle 
have been explained by Sun et al. (2013). The output z, is 
related to the state vector q (see Eq. (4)) through the obser-
vation matrix C (identity matrix of rank 3) and is supposed 
to represent the actual trajectories. Measurement noise m is 
assumed Gaussian.

The system (2) defined above is observable and pertaining 
to (4) a generalized state equation for a Luenberger observer 
(Frazzoli and Daleh 2011) can be defined as in (5).

The pair, (q̂, ẑ) denote the estimated state and output vec-
tors and L represents the observer gain matrix of full rank. 

(2)q̇ = Aq + Bu + n

(3)A =

⎡⎢⎢⎣

0 1 0

0 0 0

0 0 0

⎤⎥⎥⎦
,B =

⎡⎢⎢⎣

0 0

1 0

0 1

⎤⎥⎥⎦
, q =

⎡⎢⎢⎣

p

v

�

⎤⎥⎥⎦
, u =

�
a − ca
� − c

�

�

(4)z = Cq + m

(5)̇̂q = Aq̂ + Bu + L(z − ẑ)
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The observer error, e is a difference vector of the actual 
and the estimated states and is represented by q − q̂ . It may 
be recalled that, the elements of the observer gain matrix, 
L can be determined independent of any controller (which 
drives the vehicle along a reference trajectory) by virtue of 
the ‘Separation Principle’. For the same reason, the observer 
error can be designed to converge asymptotically by selec-
tive pole placement of the matrix (A − LC) , irrespective 
of the controller design, (A − BK) (K being the controller 
gain). Using Ackerman’s method or otherwise, the elements 
of L can be placed such that the eigenvalues of the closed 
loop observer are located in the negative half of the s-plane. 
However, it may be noted that L may not be unique in this 
case. In the light of the correlated observation gain designed 
for a non-linear observer by Fusini et al. (2015), the matrix 
(A − LC) in this paper is block-diagonal at best. This is sub-
ject to an assumption that there exists little or no correlation 
between heading and forward travelled distance, and heading 
and forward velocity. Thereby, the observer error dynam-
ics can be rearranged into Eq. (6), which guarantees global 
asymptotic stability to the designed observer. Convergence 
proof of Luenberger observer of similar construction can be 
found in literature by Cui (2019) in addition to pole-place-
ment methods discussed by Ogata (2009).

The process and measurement noises have no effect on the 
designed observer. In Eq. (6), (A − LC) is a 3 × 3 matrix. 
Since odometry cannot be trusted in presence of slippage, 
the states must be estimated from additional observations, 
like a camera in this case. Optical flow, most certainly, does 
not give a very accurate measurement due to its sensitivity to 
light, processing delay and low sampling rate in response to 
high-speed motion segments of short duration. If available, 
it is recommended to use a sensor network for facilitating 
accurate observation over a distributed space comprising of 
multiple mobile units. A combination of optical and proxim-
ity sensors would be preferable for fast and accurate locali-
zation. Unified sensing using onboard sensors and beacons 
have recently been found to yield good results in state esti-
mation in presence of uncertainties (Fontanelli et al. 2021). 
While high-speed motion capture cameras are best suited to 
this case, with proper static and dynamic calibration prior to 
the experiments, satisfactory performance can be achieved 
with a low-cost, moderately efficient vision sensor (Ama-
rante and Fujarra 2020) paired with advanced image recog-
nition techniques.

(6)ė = (A − LC)e

4.2 � Nonlinear observer

In order to strengthen our investigations, we have also 
studied an Extended Kalman Filter (EKF) assuming that 
the system to be observed is governed by the non-linear 
kinematics given in Eq. (7), where k is the sampling instant 
and dt is the sampling time.

The states are, Cartesian positions: x and y, forward linear 
velocity: v and heading: � ; and n is the vector of zero-mean 
Gaussian white state-noises. The observation is given by 
zk = Hqk + mk , where the observation matrix, H is basically 
an identity matrix of rank 4 and m is a zero-mean Gaussian 
measurement-noise vector. The apriori estimation covari-
ance matrix is initialized by identity matrix and we assume 
that det(R) < det(Q) , where, Q and R are respectively the 
process and measurement noise covariance matrices. The 
filter equations for prediction and correction are given in 
(8). Predictions are driven by odometry while corrections 
are driven by optical flow.

The elements Q̄ and R̄ represent the noise terms nkQk−1n
⊤

k
 

and mkRkm
⊤

k
 respectively. The Jacobian, J =

�f

�q
 locally lin-

earizes the state model. The estimated (prior) and corrected 
(posterior) state covariances are expressed as Pk|k−1 and Pk|k 
respectively. The Kalman gain at the kth instant is given as 
Kk and z̄k is the observed state from the camera.

The acceleration and angular velocity inputs are obtained 
from a 6 DOF inertial measurement unit (IMU) attached 
to the vehicle. However, the deviation of inertial measure-
ment builds up incremental errors over time and need to 
be updated regularly. In absence of a yaw-rate measure 
(magnetometer), heading provided by the optical flow has 
been assumed to be the reference for the update. For veloc-
ity estimation, the observer uses both integration and dif-
ferentiation, representing the core operations of the IMU 
and the camera and are performed simultaneously. These 
complementary operations cancel out the lead and lag errors 
introduced by them (Zhu and Lamarche 2007).

(7)

qk = fk(qk−1, uk−1, nk−1)

⎡
⎢⎢⎢⎣

xk
yk
vk
�k

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

xk−1 + vk−1 cos(�k−1)dt

yk−1 + vk−1 sin(�k−1)dt

vk−1 + (ak − ca)dt

�k−1 + (�k − c
�
)dt

⎤
⎥⎥⎥⎦
+
�
nk−1

�

(8)

Prediction ∶qk|k−1 = f (qk−1|k−1, uk−1)
Pk|k−1 = Jk|k−1Pk−1|k−1J⊤k|k−1 + Q̄

KalmanGain ∶Kk = Pk|k−1H⊤

k
(HkPk|k−1H⊤

k
+ R̄)−1

Correction ∶qk|k = qk|k−1 + Kk(z̄k − zk)
⊤

Pk|k = [I − KkHk]Pk|k−1



568	 K. Biswas, I. Kar 

1 3

Ideally, the accelerometer and the gyro biases also 
need to be estimated online. In contrast to the complicated 
bias models presented  by Zhu and Lamarche (2007), we 
have assumed a ‘random walk’, inspired by the bias calcu-
lation for a state partitioning particle filter demonstrated 
by Berntorp (2015). The time-varying ‘estimated’ bias 
terms, ĉa and ĉ

𝜔
 are effectively zero-mean Gaussian white 

noises. Stability and local convergence properties of EKF, 
in the role of an observer for deterministic nonlinear 
dynamics have been well established in existing litera-
tures (Boutayeb et al. 1997; Bonnabel and Barrau 2017) 
and hence proof of the same have been omitted here.

5 � Slip propagation and modified kinematics

Following the pose and velocity estimation (by using 
a linear or a non-linear observer), the evolution of the 
expected slip-angle and the slip-ratio can be modeled 
according to the differential equations given in (9), which 
have been formulated by differentiating equation (1) and 
using estimated states instead of the observed states, 
wherever applicable. The ± signs in the ODE governing 
the slip-ratio are decided by the ‘skid’ and ‘false-rolling’ 
conditions (see Appendix). Slip-dynamics illustrated in 
Eq. (9) can be represented by Euler discretization with a 
fixed sampling interval, wherein at each sampling instant, 
k, current estimated states can be obtained from the 
observer. Using the estimated state at k in the discretized 
version of Eq. (9), ‘anticipated’ discrete-time propagation 
models of slip-angle and slip-ratio can be computed for 
instants (k + 1) and beyond. At (k + 1) , these anticipated 
values can be revised based on a new set of estimates 
(if available) provided by the observer. Expected slip-
page projected by the propagation models and the actu-
ally observed values computed from the camera and the 
wheel encoders have been found to be in close agreement 
(see Sect. 6).

Using the current expected slip-angle as an input, a modified 
vehicle kinematics can be constructed according to Eq. (10). 
The longitudinal and the lateral components of velocity (due 
to slip disturbance) about the originally desired direction of 
motion are defined as vL = v̂ cos 𝛼 and v

𝛿
= v̂ sin 𝛼 respec-

tively. The estimated angular velocity, 𝜔̂ =
̇̂
𝜃 can also be 

computed from the observer equations (5) or (8).

(9)
𝛼̇(t) = 𝜔commanded(t) −

̇̂
𝜃(t)

𝜎̇(t) = (1 ± 𝜎(t))

(
̇̂v(t)

v̂(t)
−

v̇encoder(t)

vencoder(t)

)

A discrete-time linearization of (10) can now correctly pre-
dict the reachable state in the next instant. It may again be 
recalled that the proposed method aims to facilitate an accu-
rate estimation of state in presence of slip-disturbance and 
has no direct bearing with the controller used or the quality 
of measurement.

6 � Experiments and simulations

In this section we shall discuss how the proposed method 
works, with the help of different navigation scenarios. 
We have demonstrated four case studies, which are prone 
to undergo wheel slippage. Observation of the vehicle’s 
states using optical flow has been considered to be a true 
representation of ground truth. For validation purpose we 
have used a single overhead camera monitoring a 3 m × 3 
m arena. We have used a low-cost commercial grade cam-
era with limitations on response time and frame rate. This 
has been done in an attempt to identify the lower limit of 
achievable performance in a tracking robot, as explained 
in Sect. 6.2 and a collision avoidance situation which will 
be explained further in Sect. 6.4. Efficiency of the ‘estima-
tion’ process discussed in this paper is not controlled by 
the quality of measurement. This means that a better vision 
sensor will yield measurements closer to ground truth, but 
does not imply a reduced estimation error.

6.1 � Experimental set‑up

The experiments reported in this paper have been imple-
mented on Patrolbot, a programmable autonomous mobile 
robot by MobileRobotics Inc. (MobileRobotics 2020). The 
mobile robot is equipped with two symmetrically placed 
differential drive wheels, controlled by an in-built PID 
controller. Differential encoders attached to the wheels 
provide in-built dead-reckoning capabilities and a 6-DOF 
inertial measurement unit (MPU6050) has been attached 
close to the base along the centre of gravity. The accel-
erometer operates in the ±2 g mode and the gyroscope 
at ±250◦/s. The IMU communicates with the Arduino at 
115,200 baud rate. Swing radius of the vehicle is 29 cm 
and velocity saturation limit is 1.8 m/s. Unique and asym-
metric pre-registered visual marker has been attached to 
the top of the robot, which carries a piggybacked computer 
configured to run in the Server mode. The server performs 
slip estimation and generates motion commands for the 
vehicle through in-built PID control action. A schematic 

(10)
ẋ = vL cos(𝜃commanded) − v

𝛿
sin(𝜃commanded)

ẏ = vL sin(𝜃commanded) + v
𝛿
cos(𝜃commanded)

𝜃̇ = 𝜔̂
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representation of the connections between the key func-
tional blocks of the experimental setup has been illustrated 
in Fig. 1. A camera has been attached to  the ceiling of the 
designated workspace so that it receives an aerial view of 
the movement of the robot in the arena. The camera is a 
fixed focus 720 p/30 fps (maximum resolution) webcam 
with 60◦ field of view. A remote computer connected to 
the camera runs in the client mode and computes closed 
loop optimal tracking trajectory based on commanded path 
and state feedback from the robot. The client executes an 
image processing application program aided by Augmented 
Reality toolkit (Unity3d 2020). This application is enabled 
to recognize the visual marker on the robot and corre-
spondingly generate a stream of position and orientation 
data. The data is received by the client, transformed using 
a suitable transformation matrix and maps observed data 
onto the workspace. The client sends the localization data 
to the server via wireless serial transmission using User 
Datagram Protocol (Masirap et al. 2016) which aids fast 
communication.

Prior to the experiments, we perform two calibrations 
to ensure correctness of data obtained from the camera 

and the IMU. First, a commanded trajectory is physically 
marked on the workspace and the camera data is verified 
by displacing the visual marker through a predetermined 
sequence of points on the commanded path. Linear and 
angular displacement offsets of the transformation matrix 
are tuned till desired accuracy is obtained. Secondly, the 
IMU is calibrated by static placement and independent axial 
motion experiments. The IMU offsets have been calibrated 
with an Arduino-Uno programmer using the open-source 
‘I2Cdevlib’ libraries (InvenSense 2020). Calibrations ensure 
reliability of the experimental observations and help to 
minimize modeling and measurement errors, which means, 
deviations can be safely attributed to slippage and not to the 
designed observer. A better camera is undoubtedly capable 
of generating more accurate observations, but our experi-
ments show that even a low-quality camera can also produce 
useful outcomes by adopting the proposed method and using 
standardized image recognition techniques.

The experimental trajectories have been designed to chal-
lenge the kinematic limits of the Patrolbot. The observation 
time has been kept short, typically within 3s, pertaining to 
the limitations imposed by the vision sensor’s field of view. 
Accordingly, sudden acceleration, sudden deceleration, cor-
nering and lane-change are the four types of trajectories that 
have been commanded to the robot. In the first two cases, the 
effect of sudden changes in linear acceleration and sudden 
braking have been studied. Ideally, slippage in these exam-
ples indicate contrasting phenomena—wheels rotating in-
place without forward movement and motion due to inertia 
without actual rolling of the wheels, respectively. The third 
and the fourth cases deal with turning manoeuvres. A high-
speed turn and a series of quick sharp turns respectively 
represent situations like cornering and lane-change.

6.2 � Case study: changes in linear velocity

Separate experiments have been designed for a tracking 
robot where—(1) the robot brakes due to an unanticipated 
and fast movement of an obstacle and (2) the robot speeds 

Fig. 1   Data flow between the system, observer and controller

Fig. 2   Contrasting effects of 
sudden braking and sudden 
acceleration gives rise to skid-
ding and false-rolling. Esti-
mated forward velocities depict 
the correct trajectories
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up to avoid a slow-moving object. In the former situation 
(braking), the instantaneous drop in the driving torque stalls 
the motors, but the vehicle continues to move due to inertia. 
Whereas, the second event (acceleration) is followed by a 
‘phase’, in which, the driving torque fails to exceed the trac-
tive force, and the wheels rotate in-place without making an 
actual forward motion. In both cases, dead-reckoning by the 
wheel encoders infer incorrect results.

Figure 2 illustrates the mismatch between the veloci-
ties computed from odometry and optical flow in the 
said experiments, the reasons being explained before. In 
the first experiment (braking), the commanded velocity 
demonstrates a sharp decline between 2.2 and 3 s. While 
the odometry seems to follow suit, the actual (observed) 
velocity is found to keep increasing for a few more sec-
onds due to inertia and starts decreasing at a comparatively 
slower rate around 2.3 s. In the second experiment (accel-
eration) the desired velocity involves a sharp rise between 
1.5 and 2 s, but the observed velocity fails to catch up 
with the desired trajectory. The under-achieved velocity 
profile is indicative of a false-rolling condition, contrary 
to the odometry readings. Figure 3a shows a comparison 
of path profiles due to sudden braking. The estimated 
time-evolution of the slip parameters, � and � have been 

computed from the estimated states of the observer. The 
actual slip-ratio and slip-angle have been computed from 
the observed states, commanded states and corresponding 
odometer readings according to Eq. (1). Figure 3b shows 
the slip-angle estimation error over commanded heading 
and the slip-ratio estimation error against observation 
time. The errors are bounded and their low magnitudes 
verify the efficiency of the estimation, given that slippage 
does not evolve in a regular pattern. The desired, observed 
and estimated heading profiles in Fig. 3c help to correlate 
the foregoing comparisons in Fig. 3a and b.

In Fig. 4, we have compared the performances of a linear 
observer (described in Sect. 4.1) and an extended Kalman 
filter (non-linear) (described in Sect. 4.2) in estimating the 
forward velocity and heading for a sudden acceleration 

Fig. 3   Path and heading profiles 
of the vehicle on event of sud-
den braking. Estimation errors 
for slip-angle (blue) and slip-
ratio (black) has been shown. 
EE estimation error, OdH 
odometry heading, CH com-
manded heading, EH: estimated 
heading, OH: observed heading 
(colour figure online)

Fig. 4   Comparison of veloc-
ity and heading estimation by 
a linear observer and extended 
Kalman filter for sudden 
acceleration of the vehicle. LO: 
linear observer, EKF: Extended 
Kalman Filter

Table 1   Mean average estimation error: SA

SA: sudden acceleration, EKF: Etended Kalman Filter

Estimated parameter Linear observer EKF

Position (mm) 0.00079 0.00017
Velocity (mm/s) 0.0036 0.0105
Heading ( ◦) 0.0015 0.0084
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scenario. The EKF and the linear filter have almost similar 
symmetric mean average estimation errors, as can also be 
inferred from Table 1. The only disadvantage of the lin-
ear observer is that it requires nine gain parameters to be 
designed and tuned to achieve the desired result. However, 
this tuning needs to be done offline and only once before the 
experiment is performed. It is clear from this study that a 
suitably designed observer can be used to estimate slippage, 
irrespective of whether it is a linear filter or a nonlinear one. 
It is important to note that estimation is necessary in case 
the observations are unavailable due to a temporary period 
of occlusion or communication delay. During that time, the 
vehicle can be driven by the modified kinematics with pro-
jected slip-angle estimates from the last iteration.

6.3 � Case study: turning manoeuvres

The next set of experiments is aimed at studying slippage 
during turning manoeuvres. The first case studies a high 
speed motion along an arc, wherein the vehicle is subjected 

to slippage causing understeer or oversteer or both, depend-
ing on its rate of acceleration. This phenomenon is known 
as ‘cornering’. The second case investigates motion along 
sharp turns, which are constrained by the swing radius of the 
vehicle. Figure 5a illustrates the estimated path traced out 
by the vehicle compared to the desired path. While the path 
computed from odometry preserves the spiral shape due to 
linearly increasing velocity (see Fig. 6b), the deviation from 
the desired path is only due to a miscalculated initial head-
ing (see Fig. 6c for the heading from odometry) deliberated 
by inertia. However, odometry fails to recognize the actual 
slippage when the vehicle gains enough speed and oversteers 
between 1 and 1.8 s. During understeer, the wheel spins 
in-place and the observed velocity lags the commanded 
velocity. Whereas, once the vehicle gains momentum, the 
vehicle steers inwards across the arc. At this point, the wheel 
skids in an effort to maintain the commanded motion and 
the estimated velocity leads the desired velocity. The slip-
angle attains the maximum value in the said interval (see 
Fig. 5b) and changes sign due to the switch from understeer 

Fig. 5   Comparison of path 
trajectories due to cornering. 
Also shows the estimated slip 
parameters. ET: estimated tra-
jectory, DT: desired trajectory, 
OdT: odometry trajectory, OT: 
observed trajectory

Fig. 6   Comparison of estimated distance travelled, forward veloc-
ity and heading with commanded, observed and odometry readings 
in relation to slippage-induced over and understeer. OdV/H: odom-
etry velocity/heading, DV/H: desired velocity/heading, EV/H: esti-

mated velocity/heading, OV/H: observed velocity/heading, EDT: esti-
mated distance travelled, OdDT: odometry distance travelled, ODT: 
observed distance travelled, CFD: commanded forward distance
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to oversteer. Figure 6c clearly shows that the transition of 
estimated heading is stimulated by the said slippage and 
the result concurs with the present analysis. The cornering 
effects gradually subside after 1.8 s and can be observed 
from the decline of the slip-ratio curve in Fig. 5c.

In the second experiment of this set, slippage is encoun-
tered as the robot tries to make a sharp turn at a constant 
acceleration. A ‘lane change’ can be interpreted as a 
sequence of sharp turns in quick succession, thus challeng-
ing the robot’s ability to stabilize itself along the desired 
heading. With the velocity increasing linearly, the initial lag 
in observed velocity and heading are caused by slippage due 
to false-rolling, as we can see in Fig. 7b and c. After 1.7s, 
both the estimated velocity and estimated heading make an 
attempt to stabilize about the reference values. Figure 7 also 
provides a performance comparison of the linear observer 
and Extended Kalman Filter in estimating pose and veloc-
ity. The preceding analysis can be further confirmed by the 
time-evolution of the slip parameters demonstrated by Fig. 8. 
The close agreement between the observed slip parameters 
(slip angle in Fig. 8a and slip-ratio in Fig. 8b) and the esti-
mated slip parameters validates the efficiency of the estima-
tion process.

6.4 � Effectiveness of slip‑kinematic model

An experiment concerning collision avoidance has been per-
formed for validating the effectiveness of the slip-kinematic 
model. In Fig. 9, the desired trajectory represents a path 
constraint, designed to limit the vehicle’s motion to a safe 
distance from the obstacle. The vehicle is commanded to 
follow the desired trajectory at a constant linear acceleration 
(wall-following manoeuver), thereby making the situation a 
classic example of cornering. Odometry, as expected, fails 
to detect slippage and gives a false idea of safety. Whereas, 

Fig. 7   Trajectory, forward 
velocity and heading with 
lane change manoeuver. LO: 
linear observer, EKF: Extended 
Kalman Flter, EV/H/TD: 
estimated velocity/heading/
travelled distance, OV/H/TD: 
observed velocity/heading/
travelled distance, OdV/H/TD: 
odometry velocity/heading/trav-
elled distance, DH/TD: desired 
heading/travelled distance, 
CV: commanded velocity

Fig. 8   Demonstration of actual 
and predicted slip parameters 
for motion with lane change. 
SA: slip-angle, SR: slip-ratio

Fig. 9   An example showing the effectiveness of the slip-kinematic 
model in detecting safety violation condition. ET: estimated trajec-
tory, UST: undetected slippage in trajectory
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the proposed estimation approach shows the possibility of 
an imminent collision, as the vehicle slips, oversteers and 
crosses the safety boundary. A suitable controller (like an 
optimal controller, PID controller or otherwise) can be ben-
efitted by a correct state feedback in replanning the trajec-
tory and avoiding the collision.

In a subsequent trial of this experiment, we have selec-
tively blocked some samples of data obtained from the cam-
era to imitate a case of temporary occlusion or data loss. At 
those instants, the modified kinematic model (10) applies a 
reverse engineering using the time-sequence of estimated 
slip-angle and slip-ratio given in (9) along with Eq. (1) to 
predict the future states. The estimated trajectory computed 
therein is shown in blue in Fig. 9. It may be noted that this 
trajectory also indicates the violation and hence confirms 
that the proposed method can be utilized by a controller for 
taking necessary actions for improved navigation.

6.5 � Selection of observer gain

The main challenge in designing the Luenberger observer is 
the number of parameters that need to be tuned in order to 
achieve the desired error convergence. While we can safely 
rule out the dependence of forward travelled distance and 
forward velocity on the vehicle’s heading (and vice versa), 
there exists a correlation between the estimated p and v 
(Fusini et al. 2015). In fact, it has been experimentally con-
firmed that it is best to design the gain matrix in a block 
diagonal form. The dependence on velocity term is crucial 
because, it is the only state which is not directly measured 
but computed either by differentiating position informa-
tion or integrating acceleration or a combination thereof. 
Experimental results indicate that l2 and l4 must be smaller 
or atmost equal to l1 and l5 respectively, li ( i ∈ ℤ, i ∈ [1, 9] ) 
being the elements of observer gain matrix. It has been 
found that poles placed further away from the origin 
enhances the observer’s efficiency, which typically means 
that better results can be expected if the gain is high. This is 
especially true for the heading, wherein camera data is the 
sole reference. For turning manoeuvres, however, the gain 
can be chosen as a diagonal matrix. The primary diagonal 
elements, which determine the stability of the observer, 
have been selected close in numerical values, typically in 

the order of ∼ 20–25 in the above experiments. For case 
studies reported in Sect. 6.2, l2 and l4 have been numerically 
assigned half of the values compared to l1 and l5 respectively. 
Typical eigenvalue assignment for the four cases discussed 
above in selecting the gain parameters of the Luenberger 
observer have been shown in Table 2. These eigenvalues 
have been experimentally validated to yield acceptable con-
vergence rate and were found to produce realisable gain with 
the hardware used.

The advantage of using an Extended Kalman Filter is that, 
a rigorous gain tuning procedure is inessential, but requires 
well-conditioned covariance matrices to achieve conver-
gence. Having said so, our investigations do not recognize 
any significant difference and/or inconsistency in the esti-
mation errors incurred by both the filters. Both linear and 
non-linear observers have been tested on the four dynamic 
cases discussed above, and the number of iterations taken by 
the respective observers for the observer errors to reach 95% 
of steady-state value (5% tolerance band) has been shown 
in Table 3. EKF exhibits a faster convergence in accordance 
with its exponential convergence properties, but increases 
computational complexity by 66%. The only practical dis-
advantage of the linear observer is gain-tuning, which is a 
single-time procedure and can be carried out offline before 
execution of the task. In terms of implementation, it can be 
concluded that either of the estimators will work well in the 
present application.

7 � Conclusions

This paper proposes a strategy demonstrating slip detection, 
estimation and prediction to facilitate accurate state feedback 
for improved navigation. The proposed method can be used 
to complement an existing controller in presence of slip-dis-
turbance. Slippage can be attributed to a variety of sources, 
types and pattern of occurrence, based on which, rejection or 
adaptation strategies can be widely different. Besides, many 
of similar such disturbances are un-modelable, which makes 

Table 2   Eigenvalue assignment in linear observer

SA: sudden acceleration, SB: sudden braking, LC: lane-change, C: 
cornering

Eigenvalues SB SA LC C

�
1

− 29 − 29 − 20 − 20
�
2

− 52 − 31 − 10 − 22
�
3

− 10 − 11 − 27 − 20

Table 3   Comparison of 
observer error convergence

SA: sudden acceleration, SB: 
sudden braking, LC: lane-
change, C: cornering, LO: lin-
ear observer, EKF: extended 
Kalman filter, N: no. of itera-
tions, dimensionless, � :  sam-
pling rate (samples per second)

Motion LO (N) EKF (N) �

SA 7–8 2–5 4
SB 9–10 2–5 5
LC 28–30 3–5 10
C 21–25 3–4 10
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our approach highly relevant and useful. We have shown 
that an online observer can be designed to achieve accurate 
tracking performance, without interfering with the existing 
controller and without using any dynamical equation (force-
torque etc.) of the vehicle. A modified slip-kinematic model 
has been derived which, along with the proposed slip prop-
agation model can approximate the reachable states fairly 
accurately. Both linear and nonlinear observers have been 
tested and they yield similar mean average estimation errors. 
In future this work may be extended to formulate a robust 
estimation problem with disturbance rejection.

Appendix

Derivation of slip‑ratio propagation model

Representing observed velocity by estimated velocity of 
the vehicle, v̂ , we can write:

where, (a) ∶ vencoder(t) > v̂(t) and (b) ∶ vencoder(t) < v̂(t).
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