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Abstract
This paper presents a multi-objective hybrid path planning method MOHPP for unmanned aerial vehicles (UAVs) in urban 
dynamic environments. Several works have been proposed to find optimal or near-optimal paths for UAVs. However, most 
of them did not consider multiple decision criteria and/or dynamic obstacles. In this paper, we propose a multi-objective 
offline/online path planning method to compute an optimal collision-free path in dynamic urban environment, where two 
objectives are considered: the safety level and the travel time. First, we construct two models of obstacles; static and dynamic. 
The static obstacles model is based on Fast Marching Square (FM2) method to deal with the uncertainty of the geography 
map, and the unexpected dynamic obstacles model is constructed using the perception range and the safety distance of the 
UAV. Then, we develope a jointly offline and online search mechanism to retrieve the optimal path. The offline search is 
applied to find an optimal path vis-a-vis the static obstacles, while the online search is applied to quickly avoid unexpected 
dynamic obstacles. Several experiments have been performed to prove the efficiency of the proposed method. In addition, a 
Pareto front is extracted to be used as a tool for decision making.

Keywords  UAV path planning · Dynamic urban environment · FM2 · A* · MOHPP

1  Introduction

In the last years, we have seen an emergence of the use of 
Unmanned Aerial Vehicles (UAV) with a variety of struc-
tures and shapes. Their extensive use has induced the rapid 
growth of related research areas, both in military and in 
civil fields, such as, security and surveillance (Ma’sum 
et al. 2013), delivery (Thiels et al. 2015), search and res-
cues (Doherty and Rudol 2007), and fire fighting (Casbeer 
et al. 2005). The use of UAVs is constantly increasing, 
especially in urban areas (Mohammed et al. 2014). This is 
why the UAV should be first safely and timely designated in 

accordance with the target field, what is commonly known 
as path planning problem.

Path planning is the key element to provide autonomy 
to UAVs in the execution of their mission, by determining 
a collision-free pathway between a UAV’s current position 
and its destination, while satisfying some optimality crite-
rion (Goerzen et al. 2010). Path planning has been widely 
studied and a large number of methods have been developed 
in last decades. However, most of them are not efficient in 
real world applications because of the dynamic, uncertain 
and changing nature of such environments. Mobile robots 
motion path planning problem can be divided into two 
groups: Optimized Classic Approaches, and Evolutionary 
and Hybrid Approaches (see Fig. 1) (Khaksar et al. 2015). 
For the Optimized Classic Approaches, the robot is con-
sidered as a single point in the space. It includes three sub-
group methods, namely, the Potential field method (Khatib 
1986), the Heuristic Search method (Knuth 1977) and the 
Sampling Based Algorithm (LaValle 1998). The Evolution-
ary and Hybrid Approaches are divided into two sub-group 
methods, namely the Artificial Intelligence and Hybrids. 
In the Artificial intelligence sub-group many evolutionary 
algorithms are included, as the Genetic algorithm (GA) (Yun 
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et al. 2011), Ant Colony Optimization (ACO) (Di Caro and 
Dorigo 2004), Reinforced Learning (Jaradat et al. 2011) and 
Particle Swarm Optimization (PSO) (Eberhart and Kennedy 
1995). The hybrid approaches combine different evolution-
ary algorithms for better result, we can cite the ACO-PSO 
(Gigras et al. 2015), the fuzzy logic with the PSO (PSO-
Fuzzy), the genetic algorithm with fuzzy logic (GA-Fuzzy), 
the fuzzy logic with neural network (Neuro-Fuzzy) (Khaksar 
et al. 2013).

The most important criterion is the search mechanism 
which is responsible of defining a path that assumes the 
safety, optimal travel time and low energy consumption 
for the UAV and defines how it will navigate to the target 
position. It can be offline, online (Raja and Pugazhenthi 
2012) or hybrid (Cao et al. 2018) that handle the optimized 
classic, and the evolutionary, and hybrid approaches. The 
offline search needs the knowledge of the static environ-
ment and the robot will execute the pre-planned path. With 
online search, the environment is unknown and the path is 
re-planned in real-time according to new information acqui-
sition of the surrounding dynamic environment. The Hybrid 
search combines both offline and online search mechanisms 
to plan and re-plan a path within the dynamic environment.

Particularly, there are more challenges to adapt these 
methods to UAVs path planning. In the dynamic urban 
environment, a UAV would be possible to crash against the 
unexpected obstacles because of the dynamic and uncertain 
environment constraints. Although re-planning can be lev-
eraged to mitigate the uncertainty during flying, the chal-
lenge is to generate a feasible trajectory in real-time with 
limited on-board computational resources and deal with the 
sudden changing in the surroundings within limited sensing 
range. In this paper, we propose to tackle this issue. Our 
solution is a multi-objective hybrid search path planning 
method to find an optimal path for a UAV flying in dynamic 
urbain environment, so that it can avoid any present obstacle, 
whether static or dynamic. The optimality of the trajectory 

is centered essentially around two objectives: the travel time 
and the safety.

The main contributions of this paper can be summarized 
as follows: 

1.	 We use the graph properties and a uniform Cartesian 
deterministic sampling scheme to represent the urban 
environment in a 2D space. A grid map is constructed 
where each cell is mapped with a node of the graph 
to define the free spaces and capture both static and 
dynamic obstacles.

2.	 We design a risk map model to define the velocity and 
cost of each point in the environment. Specifically, a 
cost distribution map is constructed offline based on the 
Fast Marching Square [FM2 (Valero-Gomez et al. 2013)] 
method which incorporates the static obstacles. And, a 
dynamic risk map is developed to define the unexpected 
obstacles that are not available in the geography map. 
The dynamic risk map is constructed online during the 
fly based on the safety distance and the perception range 
of the UAV.

3.	 A new method is proposed to solve the formulated multi-
objective path planning problem where the travel time 
and safety are considered. Two algorithms are intro-
duced for both search mechanisms (offline and online) 
to find the optimal path. The offline search is to plan a 
Pareto optimal path of avoiding static obstacles based on 
the cost distribution map. The online search is exploited 
to re-plan an optimal path avoiding the dynamic and 
unexpected obstacles based on the online constructed 
risk map of unexpected threats.

4.	 A real urban environment test is performed in addition 
to the simulation experiments to evaluate the efficiency 
of the MOHPP method in the real world.

This paper is structured as follows: in Sect. 2, we discuss 
the related work. In Sect. 3, we present the generic basics 
on which the proposed method is based. The detailed design 
and implementation of our method is presented in Sect. 4. 
We give the experimental results in Sect. 5 and conclude the 
paper in Sect. 6.

2 � Related work

Recently, several works have been developed to address the 
multi-objective path planning problem for UAVs, and dif-
ferent path planning algorithms have been proposed. For 
example, in Wu et al. (2018), Yang et al. (2015), Macharet 
et al. (2010), Fu et al. (2012), multi-objective path planning 
methods (MOPP) for UAVs based on the evolutionary algo-
rithms are proposed to find a path avoiding static obstacles in 
the environment. In Mittal and Deb (2007), authors proposed 

Fig. 1   Classification of path planning methods
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a 3D path planner for UAVs using multi-objective Evolu-
tionary algorithms. Particularly, the NSGA-II algorithm 
with an objective function which considers the length and 
safety of the path. Meanwhile, a B-spline curved is applied 
to represent the generated path, making the control points 
as the decision variable of the genetic algorithm. In Rob-
erge et al. (2013), authors attempted to compute the quasi-
optimal paths in 3D complex environment using the genetic 
algorithm (GA) and the particle swarm optimization (PSO), 
reducing the execution time by adopting the “single pro-
gram, multiple-data” parallel programming technique, which 
ensures a real-time solution. A multi-objective A∗ is applied 
in Hernández-Hernández et al. (2014) to plan routes of UAV, 
where travel time, path angle, energy consumption and area 
deviation are considered. Authors in González et al. (2016) 
proposed a multi-objective approach for UAVs to find the 
optimal path in a 3D environment with static obstacles using 
the FM2 method. In addition, authors in Chen et al. (2016) 
applied modified central force optimization algorithm to 
solve the MOPP problem in 3D environment. Furthermore, 
authors in Hao et al. (2017) developed a multi-objective path 
planner in 2D space where the elastic constraint method for 
multi-objective optimization is applied to find an optimal 
solution towards the travel time and the energy consumption.

These proposed methods (Wu et al. 2018; Yang et al. 
2015; Macharet et al. 2010; Fu et al. 2012; Mittal and Deb 
2007; Roberge et al. 2013; Hernández-Hernández et al. 
2014; González et al. 2016; Chen et al. 2016; Hao et al. 
2017) are practical to plan path but they consider only static 
obstacles without dynamic ones.

Other works are proposed to extend the solution to MOPP 
in dynamic environment. In Wu et al. (2011), a grid based 
multi-step A ∗ is proposed for path planning in dynamic 4D 
environment (three spatial and one time dimensions) using 
a variable successor operator to find the least cost paths 
enabling the track length, angle and velocity trajectory. 
Furthermore, by leveraging variable successor operator to 
impose the multi-resolution lattices structure on the search 
space. Authors in Wen et al. (2017) considered uncertain-
ties of threats, vehicles’ motions and observations, and 
then designed an online path planning framework by inte-
grating a sub goal selector, a sub task allocator and a local 
path planner. In Lin and Saripalli (2015), a multi-objective 
online path planning algorithm is proposed for UAVs colli-
sion avoidance. The algorithm is based on sampling inter-
mediate way-point randomly and collision check using the 
reachable set.

All these methods (Wu et al. 2011; Wen et al. 2017; Lin 
and Saripalli 2015) focus only on the online path plan-
ning and do not explore offline informations as the geog-
raphy map. Hence, the optimality of the global path is not 
guaranteed.

An hybrid path planning (offline and online) is proposed 
in Yang and Yoo (2018), authors developed a new optimal 
flight path planning mechanism for UAV data acquisi-
tion in wide IoT sensor networks by using multi-objective 
bio-inspired algorithms. In Pehlivanoglu (2012), authors 
proposed an evolutionary algorithm based Offline/Online 
path planner for UAV navigation in 3D rough terrain envi-
ronment. In addition, in Primatesta et al. (2018) a hybrid 
approach is proposed to find minimum risk path for UAVs. A 
risk-map with assessment method combining layers related 
to the population density, the sheltering factor, no-fly zone 
and obstacles is generated to quantify the risk of a specific 
area. A risk-aware path planning based on the well-known 
Optimal Rapidly-exploring random tree is applied to retrieve 
the optimal path combining offline and online search. Fur-
thermore, A multi-objective path planning (MOPP) frame-
work is proposed in Yin et al. (2018) to explore a suitable 
path for a UAV operating in a dynamic urban environment.

Evolutionary algorithms cited in Yang and Yoo (2018), 
Pehlivanoglu (2012) suffer from the premature convergence 
problem, since the first population generates randomly the 
individuals (solutions) which lead to large quantities of 
unfeasible paths, and they cause more computational time or 
meaningless work. The computational time of the method in 
Primatesta et al. (2018) is high due to the Rapidly-exploring 
Random Tree (RRT​∗ ) method’s characteristics. In Yin et al. 
(2018) the resulted path is zigzagging and not smooth, this 
causes the loss of efficiency of the method in the real world.

It can be seen that these proposed methods do not fully 
address the multi-objective path planning problem under 
the real urban environment. In order to remedy this, in 
our approach, multi-objective cost-determinant variables 
are taken into account (safety, travel time, and distance for 
online search). An hybrid (offline/online) path search mecha-
nism is developed to derive the set of optimal paths consid-
ering both the static and dynamic obstacles of the real world.

3 � Preliminaries

In this section, we define some generic bases on which the 
proposed method is based. We explain the model of the envi-
ronment, the multi-objective path planning problem formu-
lation and the Fast Marching Method, which is a base for the 
definition of the optimal path.

3.1 � Environment modeling

The environment is described by a 2-D space graph repre-
sented by a three-tuple ⟨G,Pstart,Ptarget⟩ , where G = (N,A, c) 
represents the space graph, N denotes a set of nodes (points) 
and Pstart ∈ N  and Ptarget ∈ N  are, respectively, the set of 
the start nodes and target nodes. A is the set of arcs between 
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nodes of G, and c ∶ A ⟶ Rk represents the path cost func-
tion, where K is the number of objective functions. A uni-
form Cartesian deterministic sampling scheme is utilized 
to construct the graph G. As a result, each node p ∈ N  is 
mapped uniquely to a cell of the grid. Hence, the p refers 
simultaneously to both the cell and to a point located in the 
center of the cell (see Fig. 2).

3.2 � Multi‑objective path planning problem

The path planning under dynamic urban environment is con-
strained by a set of internal conditions (energy consump-
tion, sensor’s capacities,...) and a set of external conditions 
(buildings, no-fly zones, other UAVs, Birds,...). In our case, 
we chose to deal with these issues targeting two key objec-
tives: safety and travel time.

Safety The safety objective is defined in this paper with 
the collision avoidance criterion which needs a separation 
distance from obstacles to provide a safe path to the UAV. 
So, the closer the point is from the obstacle, the lowest the 
safety level is. Furthermore, there is uncertainty in the posi-
tion, velocity and direction of the dynamic obstacle because 
of potential sensor error which may lead to collision risk.

Travel time This is another crucial objective for the mis-
sion itself. The plan of the mission should be the shortest 
in time. The travel time is restricted typically by the cruise 
velocity at each node.

The solution to the multi-objective optimization prob-
lem (with two objectives) is to find a path p ,in a graph 
G = (N,A, c) , between a source and target points with 
the minimal total cost W. Let ci,1 and ci,2 be, respectively, 
the safety and travel time cost functions at arc i ∈ A . Let 
lj(p) =

∑
i∈p ci,j, j ∈ {1, 2} , be the total cost in a path for the 

jth objective.
For p to be an optimal path compared to any other path q 

in G, the following conditions should be verified:

Solutions that are not dominated by any other solutions are 
Pareto Optimal (denoted by a Pareto set P). p is a Pareto 
optimal path of the Pareto optimal set P, which has the mini-
mal total cost W with a weight coefficient �:

3.3 � The fast marching method (FMM)

The fast marching method (FMM) is a particular case of the 
Level Set Methods developed initially by Osher and Sethian 
(1988). It is an efficient computational algorithm for mod-
eling and tracking the motion of a physical wave interface 
(front) denoted as Γ . Within FMM, the front is called inter-
face. The interface can be a flat curve [two-dimensional 
(2-D)] or a three-dimensional (3-D) surface, but the math-
ematical model can be generalized to n dimensions.

Considering a gridmap representing the real environment 
where obstacles are labeled 0 and free spaces 1. The FMM 
calculates the time T required for a wave to reach each point 
on the gridmap. The wave can be originated from more than 
one point, and each point generates a wave. The point where 
the wave is originated has a time T = 0.

In the context of Fast Marching, the front Γ is supposed 
to move in the normal direction with a non-negative speed 
value which can vary over time. At each instant, the front’s 
motion is described with the Eikonal equation (Osher and 
Sethian 1988):

where x is the position, F(x) is the expansion speed at that 
position, and T(x) is the time the wave interface needs to 
reach x.

The magnitude of the gradient of the time function is 
inversely proportional to the velocity

The T(x) function generated by a wave that expands from 
one source point has one global minima at the source and 
no local minima. As the expansion speed is positive ( F > 0 ), 
the wave only grows. Hence, points farther from the source 
have a greater T (T is single valued as F > 0).

Osher and Sethian (1988) proposed a discret solution for 
the Eikonal equation. In 2-D, the area is discretized using a 
grid map. The intersection of row i and column j of the grid 
corresponds to a point p(xi, yj) of the real environment, and 
the discretization of the gradient ∇T , according to Osher and 
Sethian (1988), leads to the following equation:

(1)
∀j ∈ {1, 2}, lj(p) ≤ lj(q), and

∃i ∈ {1, 2}, li(p) < li(q)

(2)W = min
p∈P

�.l1(p) + (1 − �).l2(p)

(3)1 = F(x)|∇T(x)|

(4)
1

F
= |∇T|

Fig. 2   2-D space graph
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According to Osher and Sethian (1988), a simpler but less 
accurate solution of (5) can be expressed as follows:

where

�x and �y are the spacing grid in the x and y directions. Sub-
stituting (7) in (6) and letting

We can rewrite the Eikonal equation in a discretized 2-D 
space as follows:

As we assume that the speed of the front is positive ( F > 0 ), 
T must be greater than Tx and Ty whenever the front wave has 
not already passed the coordinates i, j.

We can solve (9) in three steps. First, we solve the fol-
lowing quadratic

If T > Tx and T > Ty [taking the greater value of T when 
solving (10)], the obtained value is the correct solution for 
equation (9). Else, if T < Tx or T < Ty , from equation (9), 
the corresponding member of ( T−Tx

�x
, 0) is 0, and hence, (9) 

is reduced to

depending on the final value of T.
The equation (9) can be solved iteratively over a gridmap. 

To do so, the cells of the gridmap must be labeled as one of 
the following types:

(5)

⎧
⎪⎨⎪⎩

max
�
D−x

ij
T , 0

�2

+ min
�
D+x

ij
T , 0

�2

+max
�
D

−y

ij
T , 0

�2

+ min
�
D

+y

ij
T , 0

�2

⎫
⎪⎬⎪⎭
=

1

F2
ij

(6)

{
max

(
D−x

ij
T ,−D+x

ij
T , 0

)2

+ max
(
D

−y

ij
T ,−D

+y

ij
T , 0

)2
}

=
1

F2
ij

(7)
D−x

ij
=

Ti,j − Ti−1,j

�x
D+x

ij
=

Ti+1,j − Ti,j

�x

D
−y

ij
=

Ti,j − Ti,j−1

�y
D

+y

ij
=

Ti,j+1 − Ti,j

�y

(8)T = Ti,j Tx = min
(
Ti−1j, Ti+1j

)
Ty = min

(
Tij−1, Tij+1

)

(9)max

(
T − Tx

�x
, 0

)2

+ max

(
T − Ty

�y
, 0

)2

=
1

F2
ij

(10)

(
T − Tx

�x

)
+

(
T − Ty

�y

)
=

1

F2
ij

(11)
(
T − Tx

�x

)
=

1

Fij

(12)
(
T − Ty

�y

)
=

1

Fij

–	 Unknown Cells with unknown value of T (the wave has 
not reached the point).

–	 Narrow or Narrow band Candidate cells to be part of 
the front wave in the next iteration. They are assigned a 
T value that can still change in the future iterations of the 
algorithm.

–	 Frozen Cells that have been passed over by the wave and, 
hence, their T value is fixed.

The algorithm (see Algorithm1) has the following steps (an 
illustration is associated to it in Fig. 3):

–	 Initialization The algorithm defines T = 0 for the set of 
cells where the wave is originated, these cells are labeled 
Frozen. Afterward, it labels all the Manhattan neighbors 
as Narrow, computing T for each of them.

–	 Main loop: In each iteration, the algorithm solves the 
Eikonal equation (9) for the Manhattan neighbors of the 
narrow cell (that are not Frozen) with the lesser T value, 
then label this cell Frozen. The narrow band maintains 
an ascendent ordered list of its cells according to the 
value T.

–	 Finalization When all the cells are Frozen (the narrow 
band list is empty), the algorithm finishes.

Fig. 3   Iterative wave expansion with one point source
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Algorithm 1: FMM (Fast Marching Method) algorithm
input : Gridmap G of size n ∗m; The set of origin cells (Ori) where the wave is

originated
output: The gridmap G with the T value set for all cells

/*noitazilaitinI*/

1 for gij ∈ Ori do
2 gij .T ← 0;
3 gij .state ← Frozen;
4 for gkl ∈ gij .neighbours do
5 if gkl.state NOT Frozen then
6 gkl.T ← SolveEikonal(gkl); // Calculate the arrival time value for

node gkl
7 if gkl.state = Narrow then
8 NarrowBand.updatePosition(gkl);// update the gkl position in

the list according to its T value
9 else

10 gkl.state = Narrow ;
11 NarrowBand.InsertInPosition(gkl);// insert gkl in the list

according to T value

/*poolniaM*/
12 while NarrowBand NOT EMPTY do
13 gij ← NarrowBand.PopF irst() ;
14 for gkl ∈ gij .neighbours do
15 if gkl.state NOT Frozen then
16 gkl.T ← SolveEikonal(gkl) ;
17 if gkl.state = Narrow then
18 NarrowBand.UpdatePosition(gkl) ;
19 else
20 gkl.state = Narrow ;
21 NarrowBand.InsertInPosition(gkl) ;

4 � Proposed method

The MOHPP method introduces first the cost distribution 
map which defines the velocity and the cost of each point in 
the environment. This map is used to plan a path that meets 
two objectives: the safety and the travel time. The cost dis-
tribution map is exploited by the offline search mechanism. 
The dynamic risk map is constructed online when detecting 
unexpected obstacles concerning both the range perception 
and the safety margin of the UAV. The dynamic risk map is 
used with the online search mechanism.

The solution for the multi-objective (Safety and Travel 
time) optimization problem is to find an optimal path p 
between two points on the graph G(N, A, c). Every arc of A 
has two non-negative costs denoted ci,t and ci,s representing 
the travel time and the safety respectively. This is possible 
by exploiting the FM2 and the A ∗ algorithm for offline search 
and online search respectively.

4.1 � Cost distribution map

The safety of the travel is an important criterion to ensure the 
completion of the mission. For this aim, we need to define 
the different obstacles that appear in the map considering the 
static ones. Hence, we attribute the allowed velocity and the 
cost at each point of the grid map. To solve this problem, we 
use a variant of the Fast Marching Method over the original 

map (grid map) which is the Fast Marching Square method 
(FM2 ) (Valero-Gomez et al. 2013).

The result of FMM is a gridmap with T assigned for each 
point, but the value of the speed of each point remains zero 
(0) at obstacles, and one (1) in free spaces. However, we 
need different velocities on the different points: if the UAV 
passes near an obstacle, it requires a lower speed for the 
security. The Fast Marching Square (FM2 ) assumes the rela-
tion between security distance and velocity.

The operating principle of the FM2 , as given in Valero-
Gomez et al. (2013), lies in the fact that it applies the FMM 
twice. In the first application, over the gridmap, the FM2 
attributes a speed value for each point in the map (the line 
1–2 of Algorithm 2). All the vertices of the obstacles are 
the wave source, and the T value represents the velocity. As 
result, a grid map with a relative speed value assigned to 
each point of the graph.

We need to define a separation distance from obstacles 
where the velocity should be reduced to guarantee the 
safety of the UAV. To do, we use a saturation coefficient � 
( 0.00 < 𝛼 < 1.00 ) to define the safety level. By varying the 
value of � , the separation distance varies proportionally to 
the farthest distant point from obstacles (point with highest 
T value in the first execution of FMM). When � = 1.00 , the 
separation distance should be the same as the farthest distant 
point (the highest safety level considered). When � = 0.00 
implies that the safety level consideration is zero.



125Multi‑objective offline and online path planning for UAVs under dynamic urban environment﻿	

1 3

If we suppose that the T value of each point in the 
obtained map is the corresponding velocity (V), the latter 
should be scaled and normalized according to the maximum 

Fig. 4   Process of CDM construction

allowed speed ( Vmax ) and the safety level. The scale formula-
tion is given in Eq. (13) and the normalization in Eq. (14).

where P is the set of the points in the map, pi a point in P, 
Tpi the related defined velocity, Vpi the scaled velocity and 
Velpi is the normalized velocity.

The code implementation is given in line 3–11 of 
Algorithm 2.

The second application is to assign the arrival time 
(denoted T ′ ) for each point over the gridmap, after the sat-
uration process, from a source point ps until reaching the 
destination pd (line 12 in Algorithm 2). The arrival time 
value ( T ′ ) of obstacles is infinity. The hole process of cost 
distribution map (CDM) construction is illustrated in Fig. 4.

(13)∀pi=0,N ∈ P, Vpi =
Tpi

Tmax

(14)Velpi =

⎧
⎪⎨⎪⎩

Vpi

𝛼
∗ Vmax ifVpi < 𝛼

Vmax otherwise

Algorithm 2: construction of the velocity and cost distribution map
CostDistributionMap
input : Gridmap G of size n ∗m; the set of origine cells (Ori) where the wave is

originated, set containing the obstalces of the map obstacleSource, start
point Start, goal point Goal, saturation coefficient Alpha, maximum speed
of the UAV VELOCITY

output: the grid map with velocities point defined
1 obstacleSource = set countaining the obstacles of the gridmap;
2 MapV elocity = FMM(obstacleSource,−1, G;) // set velocity at each point

/* The saturation process */
3 Tmax = the maximum T value of the grid map;
4 for node in the map do
5 velocity = ( node.T / Tmax );
6 if velocity < Alpha then
7 node.velocity = (velocity/Alpha) * V ELOCITY ;
8 else
9 node.velocity = V ELOCITY ;

10 node.T = INFINITY ;
11 node.state = UNKNOWN ;
12 CDM = FMM(Goal, Start,MapV elocity;)// CostDistributionMap after

saturation
13 return CDM ;

4.2 � Dynamic risk map

The computational time of the process of defining static 
obstacles is relatively high for real time treatments. Hence, 
it is not suitable in case of dynamic and unexpected obsta-
cles that need a real time reaction of the UAV. The solution 
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is to construct a dynamic risk map in real time, with low 
computation time, where the new obstacles will be spotted.

We construct a dynamic risk map (DRM) according to 
two criteria: the perception range and the safety margin. 
We define the dynamic risk map as a set of nodes, within 
the perception range of the UAV, that are identified as new 
threats by the embedded sensors. In addition, we defined 
a safety margin from the new obstacles at which the UAV 
should brake to avoid the collision. The process is illustrated 
in Fig. 5

1.	 Perception range UAV needs to detect surrounding 
environment while performing its mission. Let us denote 
R the perception range radius of the embedded sensors 
centered at the UAV. It can take the following form 

 where (x, y) is an arbitrary point within R, and (xc, yc) 
the current position of the UAV.

2.	 Safety Margin when an unexpected obstacle is detected 
the UAV takes an emergency brake as avoiding meas-
urement. We call the emergency brake distance Safety-
Margin (denoted dsm ). Next, the dynamic risk map is 
constructed according to the security distance: 

 where dc is the straight distance between the UAV and 
the unexpected obstacle, I is the danger index (points 
that have distance dc ≤ dsm take the highest value).

4.3 � Offline search

To compute the global optimal path between pstart and pgoal 
over the cost distribution map, the maximum gradient direc-
tion should be followed from pstart to pgoal . As every cell has 
the lowest possible value Ti assigned, the path returned will 
be optimal. The maximum gradient direction is computed 
applying the Sobel operator over the grid map, and this from 
the start point until reaching the global minima which is the 
goal point.

Starting at the initial point, the path is calculated itera-
tively, the Sobel Operator calculates approximations of 
the gradients on the horizontal and vertical orientations 
(Eq. 17).

(15)
(
xc − x

)2
+
(
yc − y

)2 ≤ R

(16)I =

{
+∞ dc ≤ dsm
0 else

where T is the cost, gradx and grady are the gradient values 
on the two dimensions x and y respectively.

At each point pi , the gradient is computed on the X-direc-
tion ( gradix ) and Y-direction (grad iy), thus the magnitude 
and the direction ( modi and �i in Eq. 18) can be computed. 
From pi is computed pi+1 successively until reaching the 
goal following the direction in which the time is increased 
the most.

A highlight result is given in Fig. 6 where the maximum gra-
dient is followed from a start point marked with black “X” 
in direction to the global minima marked with white “O”.

4.4 � Online search

The offline search mechanism guarantees the optimality of 
the path whatever the type of the static obstacle in the envi-
ronment. However, when an unexpected obstacle appears in 
the detection area, the path will be ineffective and should 
be re-planned. The primary aim in this case is to generate 
quickly a path to avoid the unexpected obstacles. So, the 
best way to get the UAV out of the danger zone is to gener-
ate a local optimal path of avoiding. The offline search is 
done over the global map (without new obstacles), and, its 
computational time is relatively high which is not suitable 
for the real time treatments. As a solution, we developed 
an online search mechanism to generate a path of avoiding 
the dynamic threats within the detected area. The online 

(17)

gradx =

⎡⎢⎢⎣

−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎦
∗ T grady =

⎡⎢⎢⎣

−1 − 2 − 1

0 0 0

1 2 1

⎤⎥⎥⎦
∗ T

(18)

modi =

√
grad2

ix
+ grad2

iy
�i = arctan

(
gradiy

gradix

)

p(i+1)x = pix + step. cos(�i) p(i+1)y = piy + step. sin(�i)

Fig. 6   generated path by applying gradient descent

Fig. 5   Process of DRM construction
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search is based on the A∗ algorithm, the cost distribution 
map informations to guide the search direction instead of the 
straight-line search, and a cut down mechanism to accelerate 
the search efficiency.

The A∗ algorithm uses a cost heuristic function denoted 
f(p) to identify the order in which the search treats the points 
in a tree, which is computed with

where g(p) is the real cost from the start to the current point, 
h(p) is a heuristic cost from the current to the goal. The clas-
sic A∗ utilizes a straight-line to the goal for the heuristic h(p). 
In our case, we attribute to h(p) the costs of nodes generated 
by the offline process. In addition, a search space cut-down 
mechanism is proposed to guarantee the efficiency of A∗ 
within the ONPS mode even when the geography map is 
large, and the start point is far from the goal point.

(19)f (p) = g(p) + h(p)

We use a two-steps cut down mechanism: If the straight-
line between the current point and the goal does not inter-
sect with the dynamic threat zones generated by unexpected 
obstacles, then check if there is no dynamic obstacles within 
the UAV’s safety range ( dsm ). Hence, terminate the online 
search process. If the UAV’s safety range ( dsm ) contains 
the dynamic threats, the ONPS mode will re-plan a path to 
get far from that zone. When the goal point is far from the 
start point, the search space is reduced and the efficiency of 
online search process is enhanced. The pseudo-code of the 
online search process is summarized in Algorithms 3 and 4.

Algorithm 3: A∗ algorithm (AStar)
input: start point Start, goal point Goal, cost distribution map CDM, new

unexpected obstacle zone DynamicRiskMap, cut-down mode

/* Initialization of different parameters and lists. */
1 ClosedList = empty set;
2 OpenedList = priority queue containing START;
3 InvertedPath = empty set;

// List of path’s nodes
4 G[Start] = 0;
5 F [Start] = Start.T ;

/* mode of cut down mechanism */
6 Function cut down condition(mode):
7 if mode =1 then
8 return Intersect(current, Goal, DRM);
9 else

10 return within dynamic threats(current, Safety margin, DRM);
/* the main loop of the A* */

11 while OpenedList is not empty do
12 current = pop lowest rank item from OpenedList;
13 if current = Goal or cut down condition(mode) then
14 return inverted InvertedPath;
15 add current to ClosedList;
16 for n in neighbors of current do
17 if n is not an obstacle then
18 TentativeG = current.T + cost(current, n) ;
19 n if n in OpnenedList and TentativeG < G[n] then
20 remove n from OpenedList;
21 else if n in ClosedList and TentativeG < G[n] then
22 remove n from ClosedList;
23 else if n not in OpenedList and not in ClosedList then
24 G[n] = TentativeG;
25 F [n] = G[n] + CDM[n];
26 add n to OpenedList;
27 InvertedPath[n] = current;
28 return Failure;
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Algorithm 4: Online Path Search algorithm (ONPS)
input : start point Start, goal point Goal, cost distribution map CDM, new

unexpected obstacle zone DRM, detected new obstacle tragger
isDetected, the global path PathGlobal, security margin SecMar

output: current position

1 OnlinePath = empty set;
2 current = Start;
3 OnlinePath = AStar(current,Goal, CDM,DRM,mode = 1);
4 while DRM not empty do
5 if OnlinePath not empty then
6 current = pop the first element from OnlinePath;
7 add current to PathGlobal;
8 DRM, isDetected = TheDetectedArea(current, SecMar);
9 if isDetected and OnlinePathcrossed by a dynamic threat then

10 OnlinePath = AStar(current,Goal, CDM,DRM,mode = 1);
11 else
12 OnlinePath = AStar(current,Goal, CDM,DRM,mode = 2);
13 if OnlinePath is empty then
14 DRM = empty set;
15 isDetected = false;
16 break;

17 return the current position;

The global method (as given in Algorithm 5) which 
groups the different algorithms to plan the path takes as 
inputs the geographic map, the start and goal points’ coor-
dinates, the maximum velocity of the UAV, the desired satu-
ration coefficient, and the safety margin for the dynamic risk 
map. The first step consists of generating the cost distribu-
tion map by the first execution of the FMM method. After 
that, the offline search generates the global optimal path, 
the start point is added to the executed path, current posi-
tion is initialized to start and the boolean variable which 
defines if an unexpected obstacle is detected is set to false. 

Then the first movement is done by the UAV (lines 2–4 
in Algorithm 5). The while loop is the main process that 
allows the UAV to move to the target position (lines 7–19 of 
Algorithm 5). In this loop, a process of checking the pres-
ence of unexpected obstacles in the sensed environment is 
done. If no unexpected obstacle appears, the next position 
is the one given by the offline search. Else we construct the 
corresponding dynamic risk map and switch to the online 
search, hence the UAV will follows the different positions 
calculated in real time until it avoids the new obstacles or 
reaches the goal.
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Algorithm 5: Main MOPP method

input: start point S, goal point G, binary grid map MAP, the maximum velocity
VMax, saturation to obstacles SAT, safety margin SafMar

1 CDMAP=CostDistributionMap(MAP,ObstacleSource, S,G, SAT, V Max);
2 P lanPath = OFPS(S, G,CDMAP );
3 ExecutedPath = queue containing Start;
4 current = S;
5 isReplanned= False;

6 while current is not G do
7 if isReplanned = False then
8 current = pop from P lanPath;
9 else

10 isReplanned = False;
11 P lanPath = OFPS(current, G,CDMAP );
12 continue;

13 append current to Executed;
14 DynamicRiskMap = empty set;
15 isDetected = False;
16 DynamicRiskMap, isDetected = TheDetectedArea(current, SafMar);

17 if isDetected then
18 current =

ONPS(current, Goal, CDMAP,ExtendedNewObstalces, SafMar);
19 isReplanned = True;

Fig. 7   Quadri-rotors model X

Fig. 8   Communication scheme

1  https://​www.​youtu​be.​com/​chann​el/​UCnO1​PwAHU-​SP2jD​Yca36​
nww

5 � Experimental results

In this section, we discuss results obtained from different 
experiments that have been done as part of the evaluation 
of our approach. Namely, the synthetic simulation on the 
graphical interface, and the Software-In-The-Loop experi-
ment on a quadri-rotors. In addition, a real test is done with a 
real quadri-rotors model X (video available in1). We use spe-
cific parameter setting for each environment and a quadri-
rotors model X for real tests.

5.1 � Parameter setting

We conducted two types of experiments to evaluate our 
method. The Algorithms are programmed with Python 
language in both cases. The implementation steps are as 
follows:

Setup for simulated scene

•	 Hardware We used a computer desktop with Intel(R) 
Core(TM) i5-7400 CPU @ 3.00GHz and 16 GB of mem-
ory.

•	 Simulated environment ad map generation The oper-
ating system used was Linux Ubuntu 16.04 LTS. We 
used TKinter library from Python to generate the simu-
lated environments, where two binary maps with 200 × 
150 lattices are generated with resolution of Dx:Dy = 
1:1 pixel (corresponding to 1:1 m). We used matplotlib 

https://www.youtube.com/channel/UCnO1PwAHU-SP2jDYca36nww
https://www.youtube.com/channel/UCnO1PwAHU-SP2jDYca36nww
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library in Python to visualize the different simulation 
results (velocity profile, travel time and safety level).

•	 Parameters setup for the MOHPP method Our method 
takes as parameters a saturation coefficient to define a 
safety level (0.00 < 𝛼 < 1.00), maximum velocity as the 
property of the maximum speed of the UAV (set to 1 
m/s) and a safety margin that the UAV should take when 
detecting an unexpected obstacle (set to 4 m).

Setup for the real scene

•	 Hardware We used a quadri-rotors model X equipped 
with a Pixhawk card controller and Ardupilot system as 
firmware. A Raspberry-Pi (RPi3 Model B) as a com-
panion computer. We use the DroneKit-API on the RPi3 
to communicate commands with the Pixhawk controller 
via MAVlink messages. The MOHPP method is imple-
mented on the companion computer. To visualize and 
track the UAV movements, we used the telemetry radio 
to send messages to the Mission Planner ground control 
station. Pictures of the UAV are given in Figs. 7 and 8 
illustrates the communication scheme, and Table 1 gives 
the details of the hardware components.

•	 Realistic environment definition In this setup, the envi-
ronment is a region on the Satellite Map with resolu-
tion of 200 ×150 m. We extracted a binary map from the 
Satellite map and divided it into disjoint lattices with 
resolution set to Dx:Dy=1:1 pixel (corresponding to 1:1 
meter of the Satellite map). All the buildings are pointed 
out as static obstacles.

•	 Parameters setup for the MOHPP method Our method 
takes the same number of parameters as in the simulated 
scene; a saturation coefficient to define a safety level 
(0.00 < 𝛼 < 1.00), maximum velocity as property of the 
maximum speed of the UAV (set to 1 m/s) and a safety 
margin at which the UAV should brake when detecting 
unexpected obstacle (set to 5 m). The coordinates of the 
start and end points are fixed, respectively to (75, 99) and 
(50, 20).

5.2 � Evaluation

In the following, we evaluate the ability of our approach 
to deal with the static and dynamic obstacles of the urban 
environment. First, we evaluate the influence of the satura-
tion coefficient on the safety level and the travel time over 
the static obstacles. Second, we evaluate the effect of the 
perception range on the online search mechanism to avoid 
the unexpected obstacles.

5.2.1 � The simulated scene

In this setup, we generate two binary maps of scale 200 lat-
tices × 150 lattices, the lattice resolution is 1:1 m.

- Effects of the saturation In this experiment we con-
structed a cost distribution map with different saturation 
values � (the original map is shown in Fig. 9a) in order to 
evaluate the influence of the saturation on the velocity and 
the length of the path. The result shown in Fig. 10 illustrates 
the final result of the first wave propagation of FM2 and the 
saturation process (formulated in Eqs. 13 and 14) to define 
the relative speed at each point in the map according to the 
value of � (we precise that the lighter the color is, the closer 
the velocity is to the maximum allowed value). In Fig. 10a 
with �=0.15, we can observe that the points closest to the 
obstacles in the map have a reduced velocity and the others 
at the maximum velocity. Compared to results in Fig. 10c 
with � = 0.75 , more points have reduced velocity, this is 
due to the larger separation distance defined by � where the 
velocity should be reduced.

We called the MOHPP method hundred (100) times with 
different � values to obtain the safety level and the travel 
time tradeoff curve shown in Fig. 11 where the X-coordi-
nates are the safety level and the Y-coordinates represents 
the travel time profile. The blue curve in Fig. 11 is the effi-
cient path set P got from the execution of the MOHPP, and 
the red curve is the Pareto-optimal path set. The safety index 
of a point n (denoted In ) is calculated according to the first 
propagation of the wave. Indeed, as the obstacles are the 
wave source expansion, the value of In is 0 and increases 
proportionally to the wave propagation. Thus the farthest 
point has the highest safety index. The total safety index of 
a path p ∈ P is expressed as follows:

Furthermore, we calculate the risk index as: log10(Ip).
The total travel time t of a path p (with distance d = 1 ) is 

expressed as follows:

where Veln is the cruise velocity at point n.
Figure 12 shows the final Cost Distribution Map (after the 

second application of the FM2 over the velocity map illus-
trated in Fig. 10) with the arrival time T set for each point. 
The coordinates of the start point (marked with the red ’X’) 
and the goal (marked with pink ’X’) are respectively (90, 10) 
and (70, 120). We can see the effect of the defined veloc-
ity on the wave propagation speed. Indeed, when �==0.15 
(shown in Fig 10a), most of the points are at their maximum 
velocity, this allows a high wave propagation speed which 

Ip =
∑
p
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tp = ∫p

1
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makes the arrival time cost T low. Compared to results in 
Fig. 12c, the propagated wave takes a longer time to arrive 
at the destination, this is due to the reduced cruise velocity 
assigned to the points (Fig. 10c) which reduces the speed of 
the wave propagation.

The results of the execution of OFPS algorithm over the 
illustrated cost distribution maps in Fig. 12 are plotted in 
Fig. 13. The blue curve in the figure is the trajectory and 
the cyan circle is the detection range of the UAV. The cor-
responding travel time for the different saturation coefficient 
is given in Table 2. As shown, different trajectories with 
their velocity profiles are computed depending on the value 
of � . Indeed, the aim of the OFPS is to follow the maxi-
mum gradient direction from a start point to the destination 
with the global minima T = 0 . To do so, the direction that 
reduces the T value should be chosen at each step, which 
is referred, simultaneously, to the neighbor with the high-
est cruise velocity. We can see in Fig. 13a, with � = 0.15 , 
the path goes near obstacles as the maximum gradient is 
achieved at a low separation distance. In addition, the cruise 
velocity profile (shown in Fig. 13d) is almost at the maxi-
mum allowed (1 m/s) due to the high consideration of travel 
time criterion in relation to safety level. That leads to shorter 

Table 1   UAV components 
details 1-Pixhawk controller 3-GPS module 5-RPi3 model B 7-Safety switch

2-Telemetry radio 4-Brushless motors 920KV 6-LiPo battery 8-Buzzer

Fig. 9   On (a), a binary map with static obstacles (black). On (b), a 
binary map with both static and dynamic (grey) obstacles

Fig. 10   Saturated velocity map 
according to values of �

Fig. 11   Travel time and safety 
level tradeoff curve under a 
synthetic obstacles scenario
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travel time (290s) and high risk index (17.70). Compared to 
Fig 13c, the path goes far from obstacles, as � defines a large 
safety distance which implies the maximum gradient to be 
achieved only with points that are far from obstacles as they 
have the lowest T and the highest cruise velocity. Further-
more, the cruise velocity profile, in Fig 13f, is almost under 
the maximum allowed (1 m/s), due to the high safety level 
consideration. This results in longer travel time and path 
length (1167 s) with a low risk index (5.86).

We can resume that shorter travel time leads to higher risk 
level, and high coefficient value results to safer trajectory 
with longer travel time which is due to the contradiction of 
two objectives. Fortunately, the MOHPP method can effec-
tively return an optimal path that corresponds to the needed 
criteria weighting.

- Effects of the perception range In this experiment, we 
evaluate the ability of our approach to deal with unexpected 

obstacles. The original map is given in Fig. 9b where an 
unexpected obstacle is involved. The coordinates of the start 
and the end points are respectively (85,50) and (85,180). In 
addition, we set � to 0.3.

Figure 14, Fig. 15 depict intermediate results of avoid-
ing known and unexpected obstacles by MOHPP method. 
In these figures, the circle with cyan color is the percep-
tion range, with safety margin of 4 m. The black color indi-
cates the presence of static obstacles, the grey color is the 
unexpected obstacle, and the maroon color is the detected 

Fig. 12   CDM map with arrival 
time T assigned at each point

Fig. 13   OFPS results and the 
corresponding velocity profiles

Table 2   Travel time and Risk index numerical results

Saturation � = 0.15 � = 0.35 � = 0.75

Travel time 290 S 546 S 1167 S
Risk index 17.70 12.62 5.86
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dynamic threat zone. The blue curve is the offline generated 
path and the magenta color is the online path followed by 
the UAV. The red lines denote the computed trajectory by 
A∗ algorithm.

The results show that the method can effectively avoid 
known and unknown obstacles, as we can see, the UAV 
succeeds to detect the unexpected obstacle and re-plan a 
path that keeps a safety distance which is defined as safety 
margin.

We note that the surface of the detected area influences 
directly the online search process. Actually, the ONPS algo-
rithm computes a local optimal path of avoiding the obstacle 
depending on the perception range radius. When the sensed 
area is large, more nodes are updated and defined. If they 
are obstacles, then, the ONPS mechanism computes a path 
of bypassing with few iterations by executing A∗ algorithm 
(see Fig. 15). With a small sensed area, more iterations are 
necessary to re-plan the bypassing path which is became 
unfeasible when new the threats are detected (see Fig 14).

Table 3 highlights the correlation between the number 
of iterations and the computation time of the A ∗ , and the 

computation time of constructing the DRM map within the 
ONPS mode when the perception range changes. We can 
see that the number of iterations decreases and the com-
putation time of A ∗ and DRM increases depending on the 
perception range. This is due to the number of nodes in the 
sensed area on which ONPS invokes A ∗ . From range of 30 
m, the number of iterations and the run-time of A ∗ remains 
the same, because the whole threat is identified. In addition, 
the computation time of A∗ in one iteration within the ONPS 
mode is less than 3 ms.

In summary, the ONPS mode depends on the perception 
range of the embedded sensors. The higher the radius, the 
better we detect the unexpected obstacle and walk around 
it with few iterations. This implies more computation time. 
The smaller the radius, the better we reduce the computation 
time. This implies, more iterations as a small surface can 
be detected. The efficiency of the cut-down mechanism in 
ONPS is that the user can choose the desired sensors regard-
less the real-time constraint since the computation time is 
always low. That proves the efficiency of our method to deal 
with the dynamic obstacles in real-time.

Fig. 14   Process of exploring a 
path with perception range = 
10 m
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5.2.2 � Evaluation of MOHPP in a real scene

In this setup, we conducted this experiment under an emu-
lated urban scene using SITL (Software In The Loop) tech-
nology, as illustrated in Fig. 16, to certify the feasibility of 
the MOHPP method in the real world. This scenario is a 
region’s plan of Satellite Map (33◦36′56.9′′ N 117◦06′47.9′′ 
W). The map is divided into disjoint lattices with resolu-
tion of 1:1 m and all the buildings are extracted. We built a 
scheme from the real map as shown in Fig. 17. We set the 
coordinates of the starting point of the UAV to (75th vertex, 
99th vertex) and the target point of the UAV at (50th vertex, 
20th vertex).

We executed MOHPP hundred (100) times with differ-
ent � value ( � from 0.01 to 0.99) to test the effect of the 
saturation coefficient through the realistic obstacles. In this 
experiment, the offline search process is tested. We extracted 

the results to the tradeoff curve in Fig. 18. Two paths are 
illustrated in Figs. 19 and 20, while the numerical results 
are reported in Table4.

Figures 19 and 20 show the experimental test results ver-
sus the simulated scene with saturation value of 0.2 and 0.4 
respectively. Figure 19a and 20a are the outputs (from the 
GCS interface) of the followed paths by the quadri-rotors, 
whilst Figs. 19b and 20b are the outputs of the simulation 
tests.

The OFPS search produces interesting results. The real 
UAV succeeds to follow the same trajectory as the one gen-
erated from the schematic diagram for the simulated scene 
according to the saturation coefficient. In addition, the 
defined cruise speed at each point is almost respected (with 
negligible errors) as illustrated in Fig 21. With �=0.2, a short 
path is generated at a small distance from buildings with the 
most of points at their maximum velocity (Fig. 21a). With �

Fig. 15   Process of exploring a 
path with perception range = 
30 m

Table 3   Running time of the A ∗ and DRM process

Perc. range Max runtime DRM Calling 
times(A∗ ) in 
ONPS

Max runtime(A∗)

10 m 0.037 ms 38 0.31 ms
20 m 0.062 ms 8 1.02 ms
30 m 0.071 ms 3 2.79 ms
40 m 0.212 ms 3 2.79 ms
50 m 0.371 ms 3 2.79 ms
60 m 0.480 ms 3 2.79 ms
70 m 0.532 ms 3 2.79 ms
80 m 0.617 ms 3 2.79 ms
90 m 0.807 ms 3 2.79 ms
100 m 0.898 ms 3 2.79 ms Fig. 16   Map from Google maps
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=0.4, a longer path is computed far enough from buildings, 
and a low cruise velocity is set (Fig. 21b).

Numerical results in Table4 support that a small value of 
� generates a path with a minimum travel time and a higher 
risk index. In other hands, a minimum risk index leads to a 
longer travel time. In addition, the UAV flight time is little 
higher than the theoretical computed one, this is due to the 
accumulated small errors of the UAV’s cruise speed (see 

Fig 21), also, the data exchange process between the com-
panion computer and the flight controller.

Comparing our solution with the proposed one by Yin 
et al. (2018) it’s clear that our method is best in term of cor-
relation between the set of criteria and the smoothness of the 
path. Indeed, the method in Yin et al. (2018) uses the simple 
bi-variate Gaussian model and the FM method to define the 
cost of points. The omitted results show that their solution 
is unable to define a sufficient distance from obstacles even 
when the safety is highly considered. Moreover, the gener-
ated path is zigzagging near obstacles which make it unfea-
sible. Our approach clearly assumes the needed safety and 
travel time thanks to the saturation mechanism and the FM2.

5.2.3 � Discussion of the results

As a summary of the tests done, we can note the following 
observations:

•	 MOHPP method needs the coefficient � to determine 
the non-dominated solution over the travel time and the 
safety level criteria according to Eqs. 1 and 2. Explicitly, 
high value of � implies high security and longer travel 
time. Low value of � corresponds to shorter travel time 
and low security level.

•	 According to the results of the real experiment done 
with a micro quadrotor (the most used UAVs’ category 
in smart cities) with low acceleration, the theoretical cal-
culated paths and the followed ones are restrictively the 
same in term of positioning and localisation (as shown 
in Figs. 19 and 20). A small error is observed for the real 
flight in relation to the cruise velocity which is due to 
the embedded material estimation error. Nevertheless, 
embedding MOHPP into a micro quad UAV guarantees 
better experience within real smart cities as the similar-
ity=98.3% between the real flight time and the simulated 
one.

•	 The introduction of the enhanced cut-down mechanism 
to reduce the space search, also by exploring the offline 

Fig. 17   schematic diagram of the realistic obstacles

Fig. 18   Travel time and safety level tradeoff curve under a realistic 
obstacles scenario

Fig. 19   Generated path: Experi-
mental test vs. Simulation test 
with �=0.2
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cost to orient the search within the ONPS (discussed in 
Sect. 5.2.1), can lead the UAV rapidly finding the optimal 
local path with less memory occupation and low compu-
tation time. As supported by results in Table 3, with max 
run-time of DRM (< 1 ms) and A ∗ (< 3 ms) the agility of 
the UAV will be in real-time with the unexpected threats.

•	 The method relies heavily on the on-board sensors to 
avoid the unexpected obstacles. Indeed, the detection 
area depends on the type of sensors and their perception 
range. If the perception range is larger, then the detected 
area is large and the probability to find an optimal local 
path with few online process iterations is high.

•	 The changing of the perception range has no effect on the 
UAV path obtained through the CDM because the OFPS 
mechanism uses the prior complete knowledge of known 
obstacles to generate a global optimal path. Nevertheless, 

the computational time of the online search mechanism is 
affected by the perception range; as the number of itera-
tions is reduced when the detection range is high, and 
vice versa.

•	 The MOHPP method can always determine an optimal 
path whatever the types of obstacles (static and dynamic). 
For example, when the UAV carries a sensitive or dan-
gerous product, a safe trajectory is suitable; thus, our 
method can find an optimal path set with high safety level 
(Pareto-optimal path set with risk index value under 42 
in Fig. 18). When the delivery concerns a bag of emer-
gencies, the UAV must reach the destination soon while 
guaranteeing a minimum safety level. So, our method 
can also satisfy this requirement as it offers a Pareto-
optimal path set with the shorter travel time (Pareto-
optimal path set with travel time less than 80 seconds in 
Fig. 18). In other hands, when both high safety level and 
optimal travel time are required, our approach can supply 
a Pareto-optimal path set that meets these expectations 
(Pareto-optimal path set in Fig. 11 where risk index is 
between 42 and 45 and travel time is between 80 and 120 
s).

Fig. 20   Generated path: Experi-
mental test vs. Simulation test 
with �=0.4

Table 4   Numerical results of the experimental tests

� Solve 
time(FM2)

Path length flight time UAV flight 
time

risk index

0.2 1.59 s 88 88.5 s 91.3 s 44.69
0.4 2.17 s 97 121.2 s 124.7 s 40.78

Fig. 21   Real UAV’s cruise 
speed VS. theoretical cruise 
speed: Fig. 21a corresponds to 
the test illustrated in Figs. 19, 
and 21b to the one in Fig. 20
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6 � Conclusion

This paper deals with the path planning problem for UAV 
under dynamic urban environment. A method, called 
MOHPP, concerning two objectives, namely travel time and 
safety level, has been proposed. In this method, a cost distri-
bution map is established offline to indicate the main static 
obstacles in the geography map, and define the cost of each 
point in the map. A dynamic risk map is constructed when 
detecting unexpected obstacles during the fly. Then a joint 
offline and online search algorithm has been developed to 
plan a path to the destination. The offline search is exploited 
to find the shortest path with static obstacle avoidance based 
on the offline cost distribution map, and the online search 
is exploited to avoid unexpected obstacles according to the 
temporarily online dynamic risk map. The different results 
of synthetic and realistic experiments (under SITL) show 
that the MOHPP method is efficient to return always the 
optimal path, which meets the safety level and the shortest 
travel time.

As future work, we will focus on the extension of the 
MOHPP method to the dynamic 3D environment. Given the 
large number of nodes to be treated in such an environment, 
it would be necessary to optimize the response time of the 
method. In addition, we will work on enhancing the accu-
racy of the wave propagation along the diagonal direction to 
reduce the errors of the Eikonal equation. Furthermore, we 
will try to integrate other optimization criteria, such as, the 
wind direction and fuel consumption, to allow the method 
to handle more environmental factors and improve its effi-
ciency in a real world environment.
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