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Abstract
In this paper, a new multi-robot task allocation (MRTA) algorithm inspired by the Newtonian law of gravity is proposed. In 
the proposed method, targets and robots are considered as fixed objects and movable objects, respectively. For each target, 
a constant mass is assigned, which corresponds to its quality. The fixed objects (which refer to targets) apply a gravitational 
force to the movable objects (which are considered as robots) and change their positions in the feasible search space and 
therefore, the best target allocation of robots is determined by employing the law of gravity. In the proposed scenario, task 
allocation consists of assigning the robots to the found targets in a 2-D feasible area. The expected distribution is obtained 
from the targets’ qualities that are represented as scalar values. Decision-making is a distributed mechanism and robots choose 
their assignments, taking into account targets’ qualities and distances. Moreover, a control parameter is planned to make a 
remarkable balance between exploration and exploitation ability of the proposed algorithm. A self-adaptive mechanism is 
proposed to adjust the value of the exploration parameter automatically, aiming to maintain the balance between exploration 
and exploitation ability of robots. Furthermore, in order to decrease the time of reaching the target and accelerate computa-
tion, a selection memory is designed. In the experiments, we examine the scalability of the proposed method in terms of the 
number of robots and the number of targets and speed of algorithm to deliver robots to the desired targets with comparison to 
other competitors. The simulation results show the scalability of the algorithm, comparing the existing methods. Moreover, 
some non-parametric statistical tests are utilized to compare the results obtained in experiments. The statistical comparisons 
confirm the superiority of the proposed method compared over the existing methods.
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1  Introduction

Multi-robot systems (MRSs) are a group of robots that are 
designed to perform some collective behavior. By this col-
lective behavior, some goals that are impossible for a single 
robot to achieve become feasible and attainable. One of the 
most important reasons that the topic of MRSs has become 
more popular is the various future advantages of MRSs 

compared with single robot systems. These benefits include, 
but are not limited to, decreased task complexity, improving 
the system’s performance, decreasing the completion time 
for the defined tasks, improving reliability and simplicity in 
design (Nunes et al. 2017).

These benefits have attracted many researchers from aca-
demia and industry to investigate the applicability of MRSs 
in many applicable areas of industrial and commercial 
importance such as intelligent security, search and rescue, 
surveillance, and health care (Koes et al. 2006; Jahanshahi 
et al. 2017).

In order to develop and deploy robust MRSs in real-world 
applications, several challenging problems need to be solved. 
These problems include, but are not limited to, task alloca-
tion, group formation and self-organization, to name just a 
few (Schwarzrock 2018; Wang et al. 2016). In this paper, the 
task allocation problem as one of the challenging problems 
of MRSs is discussed in detail.
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Multi-robot task allocation (MRTA) problem can be seen 
as an optimal assignment problem where the objective is to 
optimally assign a set of robots to a set of tasks in such a 
way that optimizes the overall system performance subject 
to a set of constraints (Lee 2018).

To study the MRS task allocation problem as an optimi-
zation problem, at first fitness function (or cost function) and 
the problem constraints should be defined.

Given a robot r and a task t , if r is capable of executing 
t , then one can define, the values Qrt and Crt are defined by 
the robot as the quality and cost of doing the task. It should 
be noted that the quality of a target is an application-specific 
scalar value that may represent the target’s priority or com-
plexity, where a higher value requires more robots to be allo-
cated. For example, it could represent the number of injured 
people in need of assistance in urban search and rescue sce-
narios. As another example, it could represent the richness 
of the mineral or water source on a planet that we want to 
harness. The medium by which these values are obtained 
is not considered in this paper. In other words, the quality 
values of the targets are deemed to be known and given.

Moreover, the cost of doing the task could be considered 
as distance or time of doing a task or the power that will be 
required to move and do a particular task.

Hence, we first need to express the unit definition for the 
fitness or utility function as follows (Gerkey and Matarić 
2004):

where Urt = Qrt − Crt if the robot can perform the task t  . 
Otherwise, the value of −∞ is attributed to the fitness func-
tion (Gerkey and Matarić 2004).

In order to solve the optimization problem, different 
methods have been proposed that can be categorized in gen-
eral terms into three groups of the mathematical methods 
(Ren 2017), the use of game theory (Jang et al. 2018; Tang 
and Parker 2007), and using of heuristic search algorithms 
(Jang et al. 2018).

Most of the mathematical methods use the set theory 
principle to solve MRTA problems. Because of computa-
tional complexity, the mathematical problems have been less 
welcomed. The second one is based on game theory, which 
can be referred to as a distributed market-based approach 
(Kanakia et al. 2016). From another perspective, the use of 
heuristic or meta-heuristic algorithms is utilized considering 
the simplicity and acceptable accuracy of solving problems, 
and somewhat due to the similarity to multi-robot systems.

Each MRTA method has its advantages and disadvantages 
in task allocation of different types of problems. Therefore, 
many MRTA methods have been proposed to rectify the dis-
advantages of these algorithms. Also, some researchers tried 

(1)

Urt =

{
Qrt − Crt if the robot r has the ability to perform the taskt

−∞ otherwise

to suggest new algorithms inspired by nature. In this paper, a 
nature inspired MRTA algorithm is introduced by employing 
the Newtonian law of gravity. In the following, the related 
works are reviewed.

1.1 � Related works

By reviewing the literature, it was found that different opti-
mization approaches have been used in order to solve the 
general task allocation problems and MRTA problem.

Gerkey and Mataric (Gerkey and Matarić 2004) provide 
a taxonomy for MRTA problems based on the number of 
tasks, the number of robot, and the schedule for allocation. 
Based on Gerkey and Matarić (2004), there is some group 
such as Single-Task or Multiple-Task (ST-MT) robots, Sin-
gle-Robot or Multiple-Robot (SR-MR) Tasks, and Instanta-
neous or Time extended Allocation (IA-TA).

Authors in Khamis et al. (2015) describe three of the 
most commonly used MRTA approaches: namely game 
theory-based approaches, mathematical optimization-based 
approaches, and heuristic-based approaches. Market-based 
approach as a game theory approach gained considerable 
attention within the robotics research community because 
of several desirable features, such as efficiency in satisfying 
the objective function, robustness, and scalability (Jang et al. 
2018; Zlot and Stentz 2006). The market-based approach, 
which can be considered as a game theory approach, is an 
economically inspired approach that provides a way to coor-
dinate the activities between robots/agents. Market-based 
approach is mainly based on the concept of auctions. Based 
on economic theory principles, an auction is defined by any 
mechanism of trading rules for exchange (Lagoudakis, et al. 
2006; Guerrero and Oliver 2003). In other words, an auction 
can be considered a process of assigning a set of goods or 
services to a set of bidders according to their bids and the 
auction criteria. It can be concluded that auctions are simple 
and conventional ways of performing resource allocation in 
a multi-agent system.

It is worth mentioning that although market-based 
approaches have many advantages, they are not without their 
disadvantages. The lack of formalization in designing appro-
priate cost and revenue functions to capture design require-
ments can be considered the biggest drawback of market-
based approaches (Korsah et al. 2013; Zlot et al. 2002).

Mathematical optimization-Based Approaches are the 
branch of applied mathematics focusing on solving a spe-
cific problem to find the optimum solution for this problem 
out of a set of possible solutions (Parker and Tang 2006). A 
set of possible solutions is restricted by a set of constraints, 
and the optimum solution is chosen within these constrained 
solutions according to specific criteria. This criterion 
defines the objective function of the problem that quantita-
tively describes the system (Lerman 2002). There is a wide 
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variety of optimization approaches available, and the use of 
these approaches depends on the nature and the degree of 
complexity of the problem to be optimized (Lenagh 2013). 
Deterministic techniques include numerical and classical 
methods such as graphical methods, gradient, and Hes-
sian based methods, derivative-free approaches, quadratic 
programming, sequential quadratic programming, penalty 
methods, etc. (Balas and Padberg 1976). In Atay and Bayazit 
(2006), a mixed-integer linear programming optimization 
approach was used in order to allocate heterogeneous robots 
for maximizing the coverage area of the regions of interest. 
Also, in Darrah et al. (2005), a mixed-integer linear pro-
gramming approach was used for solving the task allocation 
problem in the context of UAV cooperation.

More and more attention has been given to using nature-
based inspired algorithms to solve MRTA problems (Mosteo 
2010). Moreover, many MRTA methods have been made 
by hybridizing different types of evolutionary algorithms 
(Yi 2017).

Heuristic search algorithms always have some random-
ness. These techniques can be classified into trajectory-
based and population-based algorithms. A trajectory-based 
meta-heuristic algorithm, such as Simulated Annealing (SA) 
uses a single agent or solution which moves through the 
design space or search space in a piece-wise style. On the 
other hand, population-based algorithms such as Genetic 
Algorithms (Gas), Ant Colony Optimization (ACO), Par-
ticle Swarm Optimization (PSO), Gravitational Search 
Algorithm (GSA) and Immune Optimization Algorithm 
(IOA) use multiple agents to search for an optimal or near-
optimal solution (Benabderrahmane 2017). In Mosteo and 
Montano (2006), SA approach was used to solve the alloca-
tion of MRS through formulating the MRTA problem as a 
Travel Salesman Problem (TSP). In Juedes et al. (2004) and 
Kmiecik et al. (2010), SA incorporated with other heuristic 
approaches was used to allocate a set of tasks to several 
processors in computer system problems.

The GA was used in Shea et al. (2003) to provide a feasi-
ble solution for group tracking, which is capable of tracking 
several targets rather than individual targets. GA was also 
used in Jones et al. (2011) to provide a solution for the time 
extended task allocation of multi-robots in an application 
of simulated disaster scenarios. ACO algorithm as another 
technique of the population-based optimization approaches 
was used in Zlot and Stentz (2006) to solve the task allo-
cation problem of MRSs. In Ding et al. (2003), ACO was 
used in the context of multi-robot cooperation to solve the 
task allocation problem. The task allocation problem was 
also solved using hybrid optimization approaches such as 
tabu search with random search method in Liu and Kula-
tunga (2007). In Liu and Kulatunga (2007), a simultane-
ous approach for solving the path planning and task allo-
cation problems for an MRS is proposed, where SA and 

ACO approaches were investigated and applied for solving 
the problem. In Huang et al. (2018), a niching immune-
based optimization algorithm based on Softmax regression 
(sNIOA) is presented to handle MRTA problem. Further-
more, a guiding mutation operator inspired by the base pair 
in the theory of gene mutation is introduced into sNIOA to 
strengthen its search ability.

In Jevtic et al. (2011), the Distributed Bee Algorithm 
(DBA) has been used to solve MRTA. In Jevtic et al. (2011), 
a scenario consisting of a community of homogeneous 
robots in terms of hardware and software (or some distinct 
groups of robots), the number of targets and their location 
in the environment are identified for robots. Also, each robot 
is unaware of the size of the community and the distribution 
of other robots, and each robot at any moment can perform 
a maximum of one of the tasks. In Tkach et al. (2018) the 
Modified Distributed Bee Algorithm (MDBA) has been used 
to solve MRTA problem for the general problem of hetero-
geneous robots and target quality.

In summary, the scenario can be defined as finding targets 
with the least energy loss due to the unnecessary rotation of 
robots in the environment and the absorption of robots in 
proportion to the target’s values.

1.2 � Challenges and motivation

Some of the significant challenges in MRTA algorithms are 
the ability to deal with the variable number of robots and 
targets as well as imbalanced targets qualities i.e. the scal-
ability of the algorithm. The aim of this paper is to propose 
a nature-inspired MRTA algorithm, which can overcome 
some problems like imbalanced targets qualities, different 
numbers of robots and sensitivity to the initial position of 
robots. In the proposed MRTA algorithm, we consider the 
targets as fixed celestial objects with the pre-determined 
mass (based on quality of target) to apply a gravitational 
force to movable objects (robots) and change their positions 
in the feasible search space. The aim is to find the best allo-
cation of robots where each robot is modeled by a movable 
agent with the unity mass. The robots move around the fea-
sible search space in the influence of the gravitational force 
exerted by the celestial objects to find the best position. One 
can expect that the robots assign optimally to the targets. 
Moreover, in order to decrease time of delivering robots 
to targets and accelerate procedure of algorithm, selection 
memory is designed.

The rest of the paper is organized as follows. In the next 
Section, the basic concepts of multi-robot task allocation 
and the Newton’s law of universal gravitation are reviewed 
and their properties are discussed. Section 3 is devoted to 
describing the proposed gravity algorithm. A comparative 
experimental study is given in Sect. 4. Finally, we conclude 
the paper in Sect. 5.
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2 � Basic concepts

2.1 � Problem definition

Based on the represented taxonomy in Gerkey and Matarić 
(2004), the multi-robot system, which is used in this 
paper, is categorized as homogeneous and distributed, 
using broadcast communication. In other words, we tend 
to address the problem of single-task robots, multi-robot 
tasks and instantaneous assignment (ST-MR-IA) (Gerkey 
and Matarić 2004). In the utilized task allocation scenario, 
the setting that contains variety of tasks is considered that 
could be of same or completely different importance and 
robots that are equally capable of performing each task but 
each one can only be assigned to one at any given time. It 
should be noted that the quality of a target is a scalar value 
that represents the target’s priority or complexity, where a 
higher value requires more robots to be allocated. In this 
paper, we do not consider how these values are obtained. 
The proposed scenario in this paper is found under the 
following assumptions:

•	 All the targets are made accessible to all the robots. To 
reach this aim, the broadcast communication range set-
ting of the robots cover the entire feasible search space.

•	 Robots make decisions among all the targets in the fea-
sible area simultaneously. The total number of targets 
and the positions of the targets are saved in robots’ 
internal memory and they are changed based on the 
experimental setup.

•	 Reallocation to a different target is not allowed for each 
time step of the robot’s movement.

Note that the above assumptions are considered for sim-
plicity and can be modified based on problem definition.

Consider a population of R robots to be allocated among 
T  targets. Let Q ∈ {q1, ..., qT} represents the set of normal-
ized qualities of all accessible targets, ntitr, t ∈ {1, ..., T} 
as a nonnegative integer shows the number of robots allo-
cated to target t  in iteration of itr (i.e. time slot of robot 
movement).

Note that, the normalized qualities of all targets are evalu-
ated as follows: 

 where Qt is the quality of t-th target and T  is the number 
of targets.

It should be considered that for the proposed scenario, 
the combined utilities of the robots are unknown as robots 
have no knowledge of the decisions taken by other robots, 

(2)qt =
Qt

∑T

t=1
Qt

therefore, the system optimization based on the maximum 
utility cannot be applied.

2.2 � Newton’s law of universal gravitation

The gravitation is the tendency of masses to accelerate 
toward each other. Newtonian law of universal gravity is 
one of the most important laws in all scientific subjects. 
Newtonian law of universal gravity states that any two 
objects in the universe attract each other with a force that is 
directly proportional to the product of their objectives and 
inversely proportional to the square of the distance between 
them (Benabderrahmane 2017; Rashedi et al. 2009). This is 
a general physical law derived from empirical observations 
by what Newton called induction. Every point mass attracts 
every single other point mass by a force pointing along the 
line intersecting both points as follows:

where F is the gravitational force between two point objects, 
m1 and m2 are the masses of two objects, d is the Euclid-
ean distance between m1 and m2 , and G is the gravitational 
constant.

3 � Gravity based MRTA algorithm: GBMRTA​

In order to start the basic idea of paper, consider a popu-
lation of R movable robots to be allocated among T  fixed 
targets. Let Q ∈ {q1, ..., qT} denotes the set of normalized 
qualities of all available targets. Moreover, it is assumed that 
each individual robot is located at position Pr , in a 2-dimen-
sional search space. The main idea in the proposed algorithm 
is to consider a movable gravity object (robot) as a movable 
mass and each target as a fixed gravity object. In this grav-
ity system, the fixed objects (i.e. targets) apply the gravita-
tional force to the movable objects (i.e. robots) and change 
their positions in the feasible search space. The proposed 
algorithm is able to deal with different numbers of robots 
and targets without any sensitivity to their initial distribu-
tions and it has an excellent performance to handle unbal-
anced targets. This is due to the nature of Newton’s gravity 
law in which the gravitational force between two objects is 
inversely proportional to the distance between them. There-
fore, the initial distributions of robots and targets have no 
significant effects on the final allocation of robots to targets. 
Furthermore, the comprehensive description of the problem 
definition is depicted in Fig. 1.

In this figure, two types of objects are shown in stars, and 
circles instances for the robots (or movable objects/agents) 
and targets (fixed objects/masses), respectively. Arcs out of 
the star also represent gravitational forces that are applied by 

(3)F
(
m1,m2

)
= G

m1m2

d2
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fixed objects. Decision making of each robot is proportional 
to the value of the total force exerted on the agent (robot) by 
the fixed objects (targets). It is expected that agents move 
towards the fixed mass of gravity and stop in an area where 
the robot reaches the selected target. It should be noted that 
targets as fixed objects are not allowed to apply force to 
each other.

The proposed MRTA algorithm is explained with the fol-
lowing steps:

Step 1: Initialize the algorithm parameters including the 
number of robots ( R ), the number of targets ( T ), mass of tar-
gets ( mt) , maximum number of iteration ( ITR ) (total time), 
parameters used in the law of gravity ( G0 ) and robot position 
P = {P1,… ,PR}.

Step 2: Generate randomly positions initial of R robots 
P = {P1,… ,PR} and set mass values of these objects to 
one. In other words, the robots positions 

{
P1,… ,PR

}
 are 

randomly initialized where Pr is a 2-dimensional parameter 
in search space which is shown by ( xr, yr).

Step 3: Repeat the following until the maximum number 
of iterations is reached.

3-1: The gravitational force applied to the robot r from 
targets t is computed as follows:

where (xt, yt) and (xr, yr) represent target’s and robot’s coor-
dinates in the arena, respectively, and mt and mr present 
mass values of the fixed object t (target) and robot r , respec-
tively; mt is normalized target quality and mr is set to 1 for 

(4)Ft
r
= Gt

mtmr

(dt
r
)� + �

(5)dt
r
=

√(
xt − xr

)2
+
(
yt − yr

)2

r = 1,… ,R , dt
r
 is the Euclidean distance between agent r and 

target t defined as Eq. (5) and � is a parameter of the algo-
rithm which tunes the effect of distance on the calculation of 
the force. Moreover Gt is a parameter of the algorithm which 
tunes the exploration/exploitation of algorithm. Therefore, 
in our proposed algorithm, the gravitational parameter Gt is 
considered as an adaptive controlling parameter of explora-
tion and exploitation. To design an acceptable gravitational 
parameter Gt two ways are proposed which is explained later.

3-2: All calculated forces to each robot r from targets in 
step 3–1 (Eq. 4) is normalized as follows:

3-3: The wheel-selection rule is applied as a decision-
making mechanism of the proposed GBMRTA.

In wheel-selection rule, as in all selection methods, 
f t
r
 assigns probability value to possible targets. This fitness 

level is used to associate a probability of selection with each 
individual target. In other words, If Ft

r
 is the effected force 

of target t  to robot r then the probability of being selected 
for target t is f t

r
.

It should be considered that if selection procedure is done 
in each iteration, it will confuse the robot and increases the 
number of iterations that is needed to reach the target. To 
solve this issue, the selection procedure is applied every 
Φ iteration which named selection memory of algorithm. 
Note that in order to increase the performance of selection 
memory approach, Φ is considered as an adaptive value and 
evaluate as follow:

where Φi and Φf  illustrate the selection memory of algo-
rithm in the first iteration and in the last iteration respec-
tively (by the condition of Φi ≪ Φf  ) and itr and ITR show 
the current iteration and the maximum number of iteration, 
respectively. Based on simulation results, the selection mem-
ory approach causes a significant decrement in iterations 
which is needed to reach the desired target. It can be con-
cluded that the computational procedure can be accelerated 
through the way of decreasing the time through the selection 
memory approach.

3-4: Then, each agent (robot) r must move toward selected 
target STr based on its determined speed.

3-5: repeat the above steps until the stopping criterion 
is met.

Output of GBMRTA algorithm: optimal partitions 
ST{ST1,… , STR}.

(6)f t
r
=

Ft
r

∑T

t=1
Ft
r

(7)Φ = round

(
Φi ∗

(
Φf

Φi

) itr

ITR

)

Fig. 1   Applied gravitational force to each agent, circles show targets 
and stars show robots
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In this algorithm, if premature convergence happens, 
there will not be any recovery for the algorithm. In other 
words, after becoming converged, the algorithm loses its 
ability to explore and then becomes inactive.

Heuristic algorithms must have an acceptable balance 
between exploration and exploitation (also termed diver-
sification/ intensification) to achieve both efficient global 
and local searches. In this way, they can efficiently solve 
optimization problems. As another point of view, losing the 
balance between exploration and exploitation may lead to 
premature convergence. Exploration is the ability to inves-
tigate the search space for finding new and better solutions, 
and exploitation is the ability to look for the optimal solution 
near a good one. The abilities of exploration and exploita-
tion in every heuristic algorithm are applied with specific 
operators. Since each operator has its abilities of exploration 
and exploitation, the operators should be artfully hybrid-
ized together for a good trade-off between exploitation and 
exploration.

In simple words, all robots are randomly distributed in a 
feasible environment in the first iteration. In the following, 
based on the position and the quality of each target and also 
by applying the proposed GBMRTA algorithm, each robot 
selects a target. In the next iteration, all robots move one 
step toward the selected target and send the report to the 
selected targets. By collecting the information of robot in the 
targets, the ct as a percent of the selected target t ∈ {1, ..., T} 
by robots is calculated for each target. Moreover, the control 
parameter of Gt is evaluated.

By applying the new control parameter of Gt the apply-
ing force by targets are modified in order to decrease the 
difference between mt (expected percent of the selected 
target) and ct.

In can be concluded that, Gt is the control parameter 
that allows us to bias the decision-making mechanism 
toward the quality of the solution or its cost, respectively.

In this paper, to find the best definition of Gt parameter 
two main approaches are proposed that are discussed in 
Appendix A. Fractional and Exponential definition are two 
proposed approach to have a balance between exploration 
and exploitation. Based on experimental results in Appen-
dix A, fractional formulation has better performance in 
comparison with exponential formulation. Consequently, 
Gt = (

mt

ct+�
)
1.35 is considered as the adaptive formulation of 

gravitational parameter, � is a small positive number to 
avoid dividing by zero, ct is the percent of selected target 
or the resulting robots’ distribution and mt is expected per-
cent of selected target or expected robots’ distribution.

In simple words, if ct > mt which means that target t 
attract robots more than it’s requiring. Then Gt = (

mt

ct+�
)
1.35 

is decreased in order to decrease the discrepancy between 
the expected ( mt ) and the resulting robots’ distribution 
( ct ). Moreover, if ct < mt which means that target t  attract 
robots less than it’s requirement. Then Gt = (

mt

ct+�
)
1.35 is 

increased in order to attract more robot to target t .
Algorithm1 illustrate the pseudo code of proposed 

GBMRTA algorithm.

Algorithm 1 The GBMRTA algorithm

1. Randomly initializes a population of  robots and initialize the algorithm parameters 

2.    while stop criterion is not satisfied do

a. The gravitational force applied to the robot is computed by equation (4). 

b. The normalized forces are calculated by equation (6).

c. The decision-making mechanism is applied to select target for each robot through selection memory 

every  iteration by equation (7). 

d. Update  

3.      return the best solution found so far,
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Some notes regarding the proposed algorithm should 
be mentioned as below:

•	 The final robots’ distribution and target selection depend 
on their initial distribution in the feasible search space, 
i.e. their distances from each target prior to the target 
allocation.

•	 Due to the distributed nature of scenario, combined 
robots utility cannot be computed, as a result, the quality 
of the targets is used as the only measure for the expected 
robots’ distribution.

•	 Due to the force applying to each agent (robot) from its 
neighborhood fixed points (targets), it can attract space 
around itself.

•	 To compute the force acting on the agent (robot) in 
Eq. (4), a control term Gt , has been adjusted. We use this 
parameter to control the balance between exploration and 
exploitation of the algorithm. This will helps the algo-
rithm to escape from a local optimum, so the dependency 
on the initial robots’ distribution is reduced.

•	 Control parameter of Gt adjusts the accuracy of the 
search. In other words, this parameter tries to help the 
algorithm to reach the determined quality of targets.

•	 In order to avoid collision between robots, a communi-
cation range is considered for each robot. The main idea 
of the proposed target search algorithm is that if two or 
more robots be in the communication range of each other, 
the nearest robot to the target position will get the highest 
priority. Moreover, when two or more robots have the 
same distance with their selected target position, one of 
them will get the highest priority randomly. It should be 
added that the non-prioritized robot will be idle until the 
prioritized robot passes away from its communication 
range. If the idle time is equal to an iteration, the robot 
rediscovers the target during this iteration; otherwise, it 
moves toward the allocated target in the current iteration.

•	 We assume that a robot is able to check for collisions 
between its own planned path and another robot’s path. 
To facilitate this, we assume all their clocks are synchro-
nized. Messaging delay can be accommodated; however, 
it must be negligible with respect to robot dynamics. We 
assume that robot detections are always happened when 
they come into communication range.

3.1 � Fault handling

Each of the local and global activities in MRS might suffer 
from different faults, which disrupts the entire MRS. Some 
faults which an MRS might encounter can be defined as 
individual robot malfunctions, local perspectives that are 

globally incoherent, inter-robot interference, software errors 
or incompleteness, and communications failures.

In this paper, we focus on two fundamental types of 
faults, which are at the core of the “multi” aspect of multi-
robot systems: the global fault and local fault.

•	 Global fault handling.
	   In the global scope, all robots are randomly distributed 

in a feasible environment in the first iteration. Based on 
the position and the quality of each target and by apply-
ing the proposed GBMRTA algorithm, each robot selects 
a target. In the next iteration, all robots move one step 
toward the selected target and send the report to the 
selected targets. By collecting the information of robot 
in the targets, the ct as a percent of the selected target 
t ∈ {1, ..., T} by robots is calculated for each target.

	   It should be noted that ct and mt (expected percent of 
the selected target) are not the same, which causes the 
global fault in the MRS. To solve this issue, a control 
parameter of Gt is proposed in this paper.

	   By applying the control parameter of Gt the applying 
force by targets are modified in order to decrease the 
difference between mt (expected percent of the selected 
target) and ct.

•	 Local fault handling.

As a local scope in MRS, for a variety of reasons, there 
exists the probability of collision between robots. In order 
to avoid collision between robots and based on practical 
considerations, a communication range is considered for 
each robot. The main idea of the proposed target search 
algorithm is that if two or more robots are in the commu-
nication range of each other, the nearest robot to the target 
position will get the highest priority. Moreover, when two 
or more robots have the same distance with their selected 
target position, each robot will randomly get the highest 
priority.

Nonetheless, to some extent, the general elements of fault 
handling depicted in the following figure (Fig. 2).

In the following section the performance of proposed 
algorithm is evaluated.

4 � Experimental evaluation

In the following, we describe the evaluation criteria, simula-
tion environment and experimental results.
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4.1 � Evaluation criteria

The following performance measures were analyzed to com-
pare the different allocation algorithms:

•	 Tasks completion time or average iteration to reach target 
( AIT).

The overall task completion time Γ is defined as an aver-
age of the individual tasks completion iterations:

where �r is the number of iteration that robot r is needed to 
reach the selected target. In simple words, the task comple-
tion time is derived by the average amount of time elapsed 
from robots that arrive at the selected target. From another 

(8)Γ =
1

R

R∑

r=1

�r

point of view, the average iteration to reach the target (AIT) 
has a direct relation with the number of fitness function 
evaluations.

The number of fitness function evaluations (FEs) can be 
considered as an evaluation criterion for heuristic search 
algorithms. This practice has been advocated in a number 
of competitions to compare the performance of population-
based algorithms and has been used in many articles that 
contain empirical comparisons of algorithms. In this paper, 
average FEs or AIT is considered as a computational crite-
rion for comparing different methods.

•	 Mean absolute error ( MAE ) of the final robots’ distribu-
tion

As mentioned before due to distributed nature of sce-
nario, it is impossible to define the combined robots utility. 
Therefore, we define the mean absolute error ( MAE ) of the 
final robots’ distribution, which is given by:

Fig. 2   The general elements of 
fault handling in the proposed 
method

Table 1   Parameters describing 
the feasible search space and 
the experimental duration in 
Experiments

Area dimensions (m2) 1.5 × 2.125 Target 1 location y(y, y) (m) (− 0.45, 0.75)
Experiment duration (time steps) 400 Target 2 location (x, y) (m) (0.45, − 0.75)
Time step duration (s) 0.1 Target 3 location (x, y) (m) (− 0.45, − 0.75)
Number of iteration 4000 Target 4 location (x, y) (m) (0.45, 0.75)
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As the name suggests, the mean absolute error is the aver-
age value of the absolute distribution error (per target) that 
is the result of discrepancy between the expected ( mt ) and 
the resulting robots’ distribution ( ct).

4.2 � Simulation environment and experimental 
results

Without loss of generality, our simulation platform is a 
specialized multi-robot simulator for the e-puck robots 
described in Jevtic et al. (2011). The e-puck is a small cylin-
drical wheeled mobile robot that holds eight IR1 proximity 
sensors distributed around the body. The e-puck can be mod-
eled as a cylindrical object of 3.5 cm in radius. Based on IR 
proximity sensors, the communication range of the e-puck 
Range was set to cover the whole feasible search space. Note 
that the feasible search space is considered as a rectangle-
shaped 1.5 × 2.125 m2 simulation area, but it can be easily 
extended to relatively complicated geometries.

In order to have a thorough comparison on the perfor-
mance of algorithm, the proposed GBMRTA is compared to 
the original DBA (Jevtic et al. 2011), MDBA (Tkach et al. 
2018), LRDBA, ERDBA, TBDBA, a Greedy Algorithm 
(GrA) (Broadcast of Local Eligibility for Multi-Target Obser-
vation 2002), a Market-Based Algorithm (Zlot et al. 2002) 
and NIOA (Huang et al. 2018) which were implemented to 
fix the task allocation problem, as described in Appendix B.

In Table 1, the feasible search space and the experimental 
duration are defined.

(9)MAE =
1

T

T∑

t=1

|ct − mt|

It should be mentioned that in the proposed GBMRTA 
algorithm the initial and final selection memories are set 
as �i = 10 and �f = 1000 respectively; moreover gravita-
tional parameter of algorithm is evaluated by power for-
mulation as follows Gt = (

mt

ct+�
)
1.35.

Additional experimental setups are explained as 
follows:

In the DBA algorithm the control parameters α and β 
are same ( � = � = 1 ). As the homogeneous property of 
robots in this paper, V�

ik
 = 1 for all robots in MDBA method 

and the deadline for doing a task is evaluated based on 
quality Δi =

1

qi
 . In the tournament based selection strategy 

of TBDBA, the tournament size is defined by 
K = round(T∕2) , where T  is the number of targets (tasks).
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100 robot

Fig. 3   Radar (spider) chart illustrates the MAE comparison for the 
task allocation problem of two targets with the same quality values
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Fig. 4   Radar (spider) chart illustrates the MAE comparison between 
8 methods and proposed GBMRTA method for the task allocation 
problem of two targets with different quality values.
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Fig. 5   Radar (spider) chart illustrates the MAE comparison between 
9 methods [two targets with different quality values (0.1 and 0.9)]

1  Infrared (IR).
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The control parameter of MBA is defined as � = 0.5 and 
the experimental parameters of sNIOA are set based on 
Huang et al. (2018).

Three different experimental setups have been chosen 
to compare and study the performance and scalability of 
the proposed algorithm. The setups were carried out in the 
same feasible search space where the number of robots, the 
number of targets and target’s quality are different.

Fifty experiments were performed for each of the fol-
lowing swarm sizes. For all figures, the number of robots 
is set as 20 robots, 60 robots and 100 robots.

Figure 3 illustrates the radar chart comparison MAE of 
different methods on two targets with the same quality val-
ues. It should be noted that the utilized axis is designed in 
“reverse order” as a result of MAE minimization function.

We can notice that effectiveness of the algorithm 
increases as the size of the robot swarm increases. This 
was expected because of the probabilistic target allocation 
mechanism applied in the proposed algorithm. Moreover, in 

all scenarios which are plotted in Fig. 3 the proposed method 
has a superior performance compared to other algorithms.

In Fig. 4, the radar chart comparison MAE of different 
methods on two targets with different quality values (0.3 
and 0.7) is illustrated.

Based on Fig. 4, the proposed method has a superior per-
formance compared to other algorithms due to the ability 
of gravity rules for solving the task allocation problem and 
tuning parameter of Gt.

Moreover, in Fig. 5, MRTA for two unbalance targets 
with different quality values (0.1 and 0.9) is discussed.

Figure 5 confirms the ability of the algorithm for unbal-
ance targets, which as a result of using the control param-
eter of Gt . It can be verified that by increasing the differ-
ence between the qualities of targets, the performance of 
the proposed method is significant in comparison with other 
methods.

Figure 6 illustrates the radar chart MAE comparison on 
four targets of same quality values. The results show that 
the performance of algorithm increased for larger swarms 
in case of four targets of the same quality.

In order to test the ability of the robot swarm to conform 
to a nonuniform distribution of “tasks” in the feasible search 
space, the experiments were performed for four targets with 
different quality values. To reach this aim, the qualities of 
4 targets are considered 0.1, 0.2, 0.3 and 0.4. The robots’ 
distribution changed according to a new set of targets’ qual-
ity values, as shown in Fig. 7. In the same, figure we can 
also notice that for the DBA algorithm, the resulting robots’ 
distribution, with respect to the expected distribution, is 
slightly in favor of the less valuable targets which happen 
as a result of non-adaptive parameters of DBA algorithm. 
In comparison, the proposed method has the ability to con-
front by non-uniform distribution of targets as a result of the 
control parameter of Gt.

Figure 8 illustrates the radar chart comparison of Γ which 
is named as Average Iteration to reach Target ( AIT  ) (Eq. 8) 
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Fig. 6   Radar (spider) chart illustrates the MAE comparison between 
9 methods for MRTA of four targets with same quality
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Fig. 7   Radar (spider) chart illustrates the MAE comparison between 
8 method and proposed GBMRTA method for MRTA of four non-
uniform quality targets

Proposed

DBA

MDBA

LRDBA

TBDBAERDBA

MBA

GrA

sNIOA

0

500

1000

1500

2000

2500

20 robot

60 robot

100 robot

Fig. 8   Radar (spider) chart illustrates the AIT comparison the task 
allocation problem of two targets with different quality values
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of different methods on two targets with different quality 
values (0.3 and 0.7). It should be noted that the utilized axis 
is designed in reverse order as a result of AIT  minimization 
function.

We can notice that MBA, GrA, sNIOA, and proposed 
method have the ability to deliver robots to the desired 
targets in fewer numbers of iterations in comparison with 
other methods. It should be noted that based on Eqs. (15) 
and (21) MBA and GrA select the target based on a greedy 
approach which cause decreasing in the time of arrival to 
the target and as a drawback causes increasing in MAE 
value. Achieving a less AIT  in sNIOA algorithm is a result 
of selection in the first iteration and not to change it during 
the process of algorithm which causes the increment in 
MAE value similar to MBA and GrA as a main drawback 
of the algorithm.

As mentioned before, the proposed approach in AIT 
comparison has a similar behavior as MBA, GrA, sNIOA 
which is a result of the selection memory parameter. Note 
that selection memory approach has a significant effect on 
decreasing iterations which is needed to deliver robots to 
the desired targets.

Experiment results that are discussed above show that 
the proposed method achieves a lower average MAE rate 
in the vast majority of experiment cases. However, this 
observation-based evaluation does not reflect whether or 

not the differences among the methods are significant. To 
solve this issue, the statistical test is used to make sure 
that the difference is significant, that is, very unlikely to 
be caused by chance—the so-called p-value of the test 
(Sheskin 2007). To evaluate the performance of the pro-
posed method, Friedman test is applied which is a non-par-
ametric statistical analysis based on multiple comparisons 
procedures. In order to perform multiple comparisons, it 
is necessary to check whether all results obtained by the 
algorithms present any inequality. Friedman test ranks the 
algorithms for each data set separately, the best perform-
ing algorithm obtaining the rank of 1, the second-best 
rank 2, and so on. In case of ties, the average ranks are 
assigned. Under the null-hypothesis, it is stated that all the 
algorithms are equivalent, so a rejection of this hypoth-
esis implies the existence of differences among the per-
formance of all the algorithms studied. In simple words, 
Friedman test can be considered as a hypothesis testing 
procedure.

According to statistic principles, hypothesis testing can 
be used to obtain inferences about one or more algorithms 
from the given sample. This can be achieved by defining two 
types of hypothesis, the null hypothesis H0 and the alterna-
tive hypothesis H1 . The null hypothesis is a statement of 
no effect or no difference, whereas the alternative hypoth-
esis represents a significant difference between algorithms. 
Friedman’s test is a comprehensive test which can be used 
to carry out these types of comparison. It allows us to detect 
differences, considering the global set of algorithms. Table 2 
contains the results of Friedman Aligned test. The average 
ranks obtained by each method in the Friedman test are pre-
sented in Table 2.

Note that Friedman test is applied to MAE comparison 
data. It should be noted that in Friedman test, achieving a 
lower-ranking value reflects the superiority of the algorithm. 
As Table 2 shows, the proposed algorithm attains the lowest 
ranking value among other competitors.

In addition, the comparison of the proposed method vs. 
other algorithms by Holm post–hoc procedure for Fried-
man Aligned test is described in Table 3. Table 3 shows 
the p-value with the Holm post-hoc test on a performance 
measure, which determines the validity of the corresponding 
ranks in Table 2.

Holm Post–Hoc procedure is a multiple comparison pro-
cedure that can work with the best algorithm (which is the 
best, according to Friedman rankings computation) and is 
compared with the remaining methods.

It should be mentioned that the proposed method is con-
sidered as the best algorithm according to Table 2.

Note that, a p-value smaller than 0.05 indicates that the 
null-hypothesis can be rejected. In other words, Post-Hoc 
comparison procedure verifies that the proposed method 
performs better than all other approaches, because most 

Table 2   Average rankings 
of the compared algorithms 
(Friedman)

Algorithm Ranking

Proposed GBMRTA​ 1.1111
DBA 5.0556
MDBA 3.8333
LRDBA 6.1111
TBDBA 2.1111
ERDBA 7
MBA 6.8889
GrA 8.6667
sNIOA 4.2222

Table 3   The proposed method vs. other algorithms by Post Hoc com-
parison table for � = 0.05 (Friedman test)

Algorithm z = (R
0
− Ri)∕SE p Li

GrA 5.852508 0 0.029549
ERDBA 4.561514 0.000005 0.029549
MBA 4.475447 0.000008 0.029549
LRDBA 3.872983 0.000108 0.02954
DBA 3.055354 0.002248 0.029549
sNIOA 2.409856 0.015959 0.029549
MDBA 2.108624 0.034977 0.029549
TBDBA 0.774597 0.438578 0.05



60	 M. Soleimanpour‑moghadam, H. Nezamabadi‑pour 

1 3

approaches have a p-value ≤ 0.05 . Moreover, Li ’s procedure 
rejects those hypotheses that have a p − value ≤ 0.029549.

This test also verifies the effectiveness of the proposed 
method. It is clearly shown in Table 3 that our proposed 
method can reject the other algorithms with most of the time 
significant difference.

In Friedman Aligned test, the proposed method achieved 
the best ranking with the obvious differences with other 
methods. The Friedman Aligned test emphasizes that the 
proposed method of this paper can outperform other com-
pared algorithms in the defined multi-robot task allocation 
scenario.

5 � Conclusion

In this paper, a new nature inspired multi-robot task allo-
cation algorithm based on Newtonian law of gravity was 
presented. Various applications for large MRS require effi-
cient task allocation in terms of individual and combined 
robots’ utilities. The quality of the solution is analyzed using 
a defined performance metrics, which in our case was MAE 
(a mean absolute error of the resulting robots’ distribution 
with respect to the qualities of the available targets in the 
robot feasible search space) and AIT (Average Iteration to 
reach Target). In the case of large, autonomous, multi-robot 
systems, the scalability and the ability to adapt to different 
environments are the features of utmost importance. Our 
experiments through simulation showed that the proposed 
GBMRTA provides the robot swarm with scalability in 
terms of the number of robots and the number of targets. 
The proposed GBMRTA has an acceptable exploration and 
exploitation ability. The importance of the control param-
eter, Gt is that it provides a mechanism to adjust the robot 
swarm behavior depending on the quality of tasks. Further-
more, the proposed selection memory approach has the abil-
ity of decreasing time of reaching target and accelerating 
computation. It can be concluded that simulation results 
clearly demonstrated the high performance and efficiency of 
our proposed method. Moreover, this claim was confirmed 
by the results of Friedman test as a nonparametric compari-
son approach.

Appendix A

Performance evaluation of two proposed 
gravitational parameters

In order to find the best definition of Gt parameter two main 
approaches are proposed that are discussed in detail:

(A) Fractional definition

To strive for a balance between exploration and exploita-
tion in the optimization process of the proposed method, we 
propose a self-adaptive mechanism which can get feedback 
from the current population to control the value of Gt . Gt 
is the control parameter that allows us to bias the decision-
making mechanism toward the quality of the solution or its 
cost, respectively.

To evaluate adaptive, firstly, ct as a percent of the selected 
target t ∈ {1, ..., T} by robots is calculated as follows:

(10)ct =
nt

R
t ∈ {1, ..., T}

Fig. 9   MAE versus varying value of alpha for fractional formulation 
of gravitational parameter

Fig. 10   MAE versus varying value of beta for power formulation of 
gravitational parameter
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where nt present the number of robots which select the 
target t and R is the total number of robots.

It should be explained that based on MRTA problems, 
MAE is one of the most crucial criterion. In order to 
decrease the MAE value, the difference between ct(percent 
of selected target or the resulting robots’ distribution) and 
mt (expected percent of selected target or expected robots’ 
distribution) should be decreased.

To reach this aim in our proposed algorithm, the gravita-
tional parameter Gt is considered as an adaptive controlling 
parameter which is evaluated as follows:

where � is a small positive number to avoid dividing by zero 
and � is a parameter of the algorithm which tunes the effect 
of Gt on the calculation of the force.

(B) Exponential definition

In the following, the performance of two proposed gravi-
tational parameters are evaluated. To reach this aim, Figs. 2 
and 3 illustrate the MAE versus variable value of alpha for 
gravitational constant 1 and 2 when the number of robot is 
100.

It can be concluded from Figs. 9 and 10 that the best val-
ues of � and � occur in 1.35 and 0.74, respectively. Moreo-
ver, the MAE value of fractional formulation is less than 
power formulation. To have a more precise investigation, the 
average and the maximum values of MAE obtained for setup 
1 (number of targets is two with similar qualities) and setup 
2 (four targets with same qualities) from the experiments 
are presented in Table. Based on Table 4, the performance 
of Gt based on fractional formulation is better than power 
formulation.

As a result power formulation Gt =
(

mt

ct+�

)1.35

 is consid-
ered as the gravitational parameter of algorithm.

Appendix B

Discussion of algorithms for comparison

Distributed bees algorithm (DBA)

In Jevtic et al. (2011), the task allocation problem is solved 
with a swarm-based meta-heuristic technique named DBA 
algorithm which is inspired by the intelligent behavior of 
the “bees” to optimize their search for “food” resources. In this 

(11)Gt =

(
mt

ct + �

)�

(12)Gt = �ct−mt
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algorithm, each robot is represented as a ‘bee’, and task utility, 
pik , is defined as a probability that the task k is allocated to the 
task i and depends on both target’s quality and the distance of 
the task from the robot:

where qi and Dik shows the quality or priority of target i and 
distance between target i and robot k , respectively. Moreo-
ver, � and � are control parameters that bias importance of 
the priority and distance, respectively, ( �, 𝛽 > 0; �, � ∈ R).

In DBA algorithm, roulette wheel selection method is cho-
sen in which a target with a probabilistic procedure is selected 
by each robot. In other words, in DBA the selection probability 
of target is proportional to their fitness value.

The probabilities pik are normalized, and it is easy to show 
that:

Modified distributed bees algorithm (MDBA)

In the MDBA, the original DBA robot utility function is 
modified to take advantage of heterogeneous robots or tar-
gets with different performances aiming to improve system 
performance by correlating the robot’s utility with their 
performances. In order to apply MDBA to heterogeneous 
robots or targets, a control parameter was defined in Tkach 
et al. (2018) as a function of the robot’s performance on a 
target. In simple words, when a robot receives information 
about an available target, it calculates its performance for 
that task. The robot’s utility function is updated accordingly, 
and depends on the target quality, the distance from the task 
and the robot’s performance on that task:

where χ is a control parameter that biases the importance of 
the robots performance and Vik is the performance of robot k 
on task i . Moreover, each task has a time limit, or a deadline 
which is evaluated as follows:

(13)pik =
q�
i

�
1

Dik

��

∑M

j=1
q�
j

�
1

Djk

��

(14)
M∑

i=1

pik = 1

(15)pik =
q𝛼
i

�
1

Dik

�𝛽

V
𝜒

ik

∑M

j=1
q𝛼
j

�
1

Djk

�𝛽

V
𝜒

jk

if Δi > 0

(16)Δi =
1

qi
> 0, qi > 0

The MDBA decision-making mechanism applies the 
same wheel-selection rule that is used in DBA to choose 
from a set of available tasks.

Linear ranking for distributed bees algorithm (LRDBA)

LRDBA shows a linear ranking selection for DBA. In order 
to do linear ranking selection, each target is defined by its 
fitness score which is named as "rank of target". In other 
words, the selection probability of each target ( Probi ) in 
linear ranking selection is evaluated as follows:

where q and q0 are probability of selection of the best target 
and the worst target. Moreover Ri is the rank of target i and 
T  shows the total number of targets.

Exponential ranking for distributed bees algorithm (ERDBA)

In ERDBA an exponential ranking selection for DBA is uti-
lized. This technique is different from linear ranking selec-
tion technique in a way that the probabilities of ERDBA are 
exponentially weighted as follows:

Tournament based for distributed bees algorithm (TBDBA)

TBDBA is a tournament based selection strategy for DBA. 
Tournament Selection is a selection procedure used for 
selecting the fittest candidates from the current generation. 
These selected candidates are then passed on to the next 
generation. In a K-way tournament selection, k-individuals 
are selected and run a tournament among them. Only the fit-
test candidate among those selected candidates is chosen and 
is passed on to the next generation. In this way many such 
tournaments take place and the final selection of candidates 
who move on to the next generation are given.

Market‑based algorithm (MBA)

A market-based algorithm used in Zlot et al. (2002) for dis-
tributed system was applied with application specific modi-
fications. In this approach, the bid of robot k to task i is 
defined as (19):

(17)Probi = q −
(
q − q0

)
×
Ri − 1

T − 1

(18)Probi = q(1 − q)Ri−1
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where qik serves as the reservation price of task i , and � is a 
control parameter with values between 0 and 1. A task i is 
selected by robot k if it maximizes its bid value:

Greedy algorithm (GrA)

A greedy algorithm that was used previously for a multi 
target observation problem with broadcast messaging 
(Broadcast of Local Eligibility for Multi-Target Observation 
2002) was modified to fit the described problem. The greedy 
algorithm was set to perform task allocation based on the 
best possible allocation of each individual robot to task that 
maximizes Vik

Dik

 , where Vik is the k-th robot’s performance on 
the i-th task and Dik is the Euclidean distance between the 
robot and the task:

where taskk is the task chosen by the k-th robot, i shows 
the index of task, and Z is the set of tasks within k-th robot 
range. Note that Z is a subset of all M available tasks.

Niching immune‑based optimization algorithm based 
on softmax regression (sNIOA)

The sNIOA presents a niching immune-based optimization 
algorithm based on Softmax regression (sNIOA) to han-
dle it (Huang et al. 2018). A pre-judgment of population 
is done before entering an evaluation process to reduce the 
evaluation time and to avoid unnecessary computation. Fur-
thermore, a guiding mutation operator inspired by the base 
pair in theory of gene mutation is introduced into sNIOA to 
strengthen its search ability. It should be mentioned that in 
Huang et al. (2018), a discrete version of immune optimiza-
tion algorithm is used in which each antibodies is utilized to 
present the allocated robot to defined tasks.
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(19)Bidik = qik + �

(
Vik

Dik

− qik

)

(20)select = max(Bidik)

(21)taskk = max

(
Vik

Dik

)
i ∈ Z
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