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Abstract
Visual short-term tracking in a long sequence of images with a lot of pose variations, target deformations and different types 
of occlusion is one of the harshest tasks in image processing. Overcoming such challenges can be performed in a superior 
way by combining different trackers. In this paper, we propose a method that combines different algorithms for tracking the 
given target. The algorithms are KCF (Henriques et al. in IEEE Trans Pattern Anal Mach Intell 37(3):583–596, 2014), MIL 
(Babenko et al. in Visual tracking with online multiple instance learning. In: 2009 IEEE conference on computer vision and 
pattern recognition. IEEE, 2009), CSR-DCF (Lukezic et al. in Discriminative correlation filter with channel and spatial reli-
ability. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017) and MOSSE (Bolme et al. 
in Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition. IEEE, 2010) trackers. In this method, these algorithms can continuously correct each other’s faults. 
They also implicitly search for the target even when they are tracking it, to make sure the object they are tracking is the real 
target. Thus, they outperform many of the state-of-the-art trackers as well as their components when they work independently. 
In this paper, we examine three trackers which we made in such way. Two of these trackers run at speeds close to real-time 
on a CPU and so we compare them with some famous wide-spread tracking algorithms both in terms of accuracy and speed.

Keywords  Visual object tracking · Correlation filters · Combined trackers · Self-correcting tracking

1  Introduction

The controversial task of short-term visual object tracking 
in any sequence of images has always been an important 
one through the history of image processing with so many 
different applications in robotics, artificial intelligent, traffic 
control, shop and factory security etc. Background clutters, 
partial and full occlusion, illumination variation, deforma-
tion, camera motion and many other variations can cause 
serious problems for trackers’ performance (Wu et al. 2015). 
Most of the recent tracking algorithms are based on deep 
learning approaches. Even though they can address these 
problems, they are computationally expensive.

One of the oldest and yet most famous ways of tracking 
an object in any sequence of images is tracking via Kalman 
filter (Kalman 1960). In control system theory, Kalman filter 

can be used for linear systems to estimate their states when 
noise has a Gaussian distribution and the filter is based on 
prediction and correction parts (Kalman 1960; Patel and 
Thakore 2013; Yilmaz et al. 2006). In image processing, 
it can be used for object tracking and predicting the next 
position of the target. Another method for object tracking is 
through the Mean Shift algorithm, which shifts every data 
point to the mean of data points in its neighborhood itera-
tively (Cheng 1995). There is also the CAMSHIFT (Con-
tinuously Adaptive Mean Shift) algorithm that develops the 
Mean Shift algorithm so that it can deal with probability 
distributions which change and move dynamically in time, 
and make it able to track moving objects in video frames 
(Bradski 1998a, b). In this method, one can set the color of 
the target to be tracked.

For having a more robust tracker, a lot of researchers tried 
to extract the features of the target during the process and 
learn from them. In (Grabner et al. 2006), by using classi-
fiers, an algorithm is designed to track the target in real-time 
as well as on-line learning in order to handle appearance 
changes and separate it from the background. A long term 
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tracker is represented by Kalal et al. (2011) which is con-
sisted of three parts: tracking, learning and detection. The 
tracker follows the target in every frame whereas the two 
other parts try to minimize its failures.

Many of the new tracking algorithms are based on deep 
neural networks and convolutional ones. Bertinetto et al. 
(2016) introduced a tracking algorithm with a novel fully-
convolutional Siamese network, which despite its great sim-
plicity and being made based on deep learning algorithms, 
it outperforms many short-term and real-time trackers both 
in speed and accuracy. He et al. (2018) designed a twofold 
Siamese network for real-time object tracking. Their net-
work benefits from the heterogeneity of semantic features 
and appearance features and by designing a channel atten-
tion module to achieve target adaptation, they achieved great 
results both on OTB and VOT benchmarks. Lee et al. (2018) 
proposed a long term tracker using deep convolutional fea-
tures and a human-based memory model for storing the fea-
tures of the target. They also used a detector to realize the 
existence of the object and find it when it is not followed by 
the tracker. They divided the memory management part into 
a short term memory and a long term memory, each with 
limited capacity for storing the target’s specific Siamese and 
semantic features.

Although most of the trackers which use deep learning 
algorithms are more accurate and robust than the rest, they 
usually have been unable to track their target in real-time 
applications. Held et al. (2016) created one of the earliest 
real-time trackers using neural networks. The method they 
used was not based on on-line learning but off-line training 
instead. An example of fast short-term object tracker with 
high accuracy and robustness based on Siamese network 
was performed by Li et al. (2018), achieving the processing 
speed of 160 frames per second and leading performance 
in VOT2015 (Kristan et al. 2015), VOT2016 (Kristan et al. 
2016) and VOT2017 (Kristan et al. 2017) in the real-time 
challenges.

Some trackers use adaptive, kernelized or discriminative 
correlation filters such as Henriques et al. (2014), Bolme 
(2010) and Lukezic et al. (2017). Since the method used 
in this article is based on the last three works, in the next 
part they will be discussed with more details. Bochinski and 
Eiselein (2017) created an algorithm for tracking objects 
without using image information by considering the overlap 
of detections between time steps. By using this simple and 
efficient method, they achieved the tracking speed of 100 K 
fps and their algorithm outperformed state-of-the-art track-
ers on the DETRAC vehicle tracking dataset.

Some other tracking algorithms are combination of other 
methods. Akshay et al. (2016) made a tracker combining 
Kalman filter, Gaussian mixture model and Optical flow in 
order to achieve better tracking result. Tran (2015) used a 
combination of Generalized Hough Transform, and Particle 

filter in order to make a tracker robust to appearance vari-
ations such as scaling, rotation, non-rigid deformation or 
illumination changes.

In this paper, we propose a method for combining differ-
ent trackers and then we introduce an algorithm in which 
they can minimize their faults and correct each other. We 
also implicitly search for the target when we are tracking it 
to make sure the real target is being tracked rather than any 
other similar object. In this way, we can track any object 
through literally challenging obstacles such as pose vari-
ation, target deformation and different types of occlusion 
with or without similar objects around for short-term visual 
tracking.

The idea of this method arose noticing the fact that if 
many trackers follow one object at the same time, as long 
as they are doing their job correctly, their regions of interest 
must be close to each other and have similar coordinates. But 
when one of those trackers offers a different bounding box 
than that of many other trackers, it probably has failed rec-
ognizing the target and must be corrected. With this intuitive 
and reasonably important assumption in mind, we propose 
two trackers ACI (Auto-Correct-Integrated) and ACI with 
memory of first frames.

In this new method, we use three tracking algorithms to 
estimate the position of the target in every picture. Each of 
these three is good in its own way and fails toward different 
reasons. The trackers used in the ACI algorithm are KCF 
(Henriques et al. 2014), MOSSE (Bolme 2010) and CSR-
DCF (Lukezic et al. 2017) which is also known as CSRT. All 
these trackers are based upon correlation filters which can 
have a much faster performance than many other methods. 
More information on how they track, their main qualities 
and their practical issues for each of them is available in 
the next part.

Many other researchers have tried to combine different 
tracking algorithms such as Akshay et al. (2016) and Tran 
(2015). We tested our method on a database containing 7355 
frames with different targets to track in different areas and 
then compared the performance of these three new trackers 
with some others given the same bounding boxes in the first 
frame. All of our trackers outperform their components and 
also all the trackers in OpenCV in terms of accuracy while 
being computationally more efficient and less complex than 
many of them.

In the following, we try to clearly describe our method 
with enough details in Sect. 2. In Sect. 3 after that we 
evaluate our trackers with their components and also eight 
OpenCV trackers. The results of this comparison is collected 
in Table 1. Finally, in conclusion we briefly overview the 
advantages of this method.
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2 � Proposed method

In this work we use four tracking algorithms and design 
a method so that these trackers can evaluate each other’s 
performance and correct each other for overcoming a bigger 
range of challenges. Three of these methods use correlation 
filters and one of them uses multiple instant learning for 
training a classifier to separate the target from background. 
Each of them have specific strengths and weaknesses and in 
this new combination of them, we tried to use their advan-
tages to cover their weaknesses.

A.	 MOSSE tracker:
	   While being the fastest one among all these four track-

ers, it is able to handle variations in lighting, scale, pose, 
and non-rigid deformations. The tracker can follow the 
object given to it at speeds over 1.4 K FPS using an Intel 
Core i5-8250U CPU and 8 Gigabytes of RAM. Accord-
ing to our experiments, its robustness is not as good as 
the CSRT, but yet better than KCF tracker. This one also 
has a good performance when it comes to redetecting 
the target after full occlusions even sometimes in the 
presence of similar objects around.

	   The tracker is based upon adaptive correlation filters 
for modeling the target, and convolutional filters in order 
to track. It operates on the gray-scale images and if the 
images given are not so, it converts them to that form. 
The tracker uses the model to find the target in the new 
frame and then it updates the filter. For speeding up the 
process, the algorithm computes the correlation in the 
Fourier domain as Fast Fourier Transform (FFT).

B.	 KCF tracker:
	   In terms of accuracy and drawing a bounding box 

which contains the whole target without assigning too 
many other pixels of the image as the target and fitting it 
the most, the KCF tracker performs better than the other 
three. Using the same system mentioned above for the 
MOSSE tracker, its tracking speed is around 150 fps. 
Although it may not be as robust as the other ones, its 
high speed, accuracy and the ability to handle full occlu-
sions can come handy for correcting the other trackers 
in a short time.

	   According to (Henriques et al. 2014), for tracking the 
target, the tracker trains a model with an image patch 
which is larger than the target which provides more con-
text, by having the bounding box given in the first frame. 
Then, after getting the next frame, they look for the pix-
els having the most similarity to the previous patch. 
After that, the algorithm trains a new model having the 
information of both the new position and the previous 
one. In this way, the data of all images are used.

C.	 CSR-DCF tracker
	   This is also known as CSRT among trackers of 

OpenCV (Open Source Computer Vision Library). 
According to our tests, this one can handle partial occlu-
sion, change in object appearance, scale and posing 
variations. But it is much slower than KCF and MOSSE 
with processing speed of almost 29 fps using the same 
system as the other three trackers. Despite its unhurried 
performance, it was the most robust one not only in com-
parison with the other two, but also among the rest of 
OpenCV trackers. The problems we faced working with 
this tracker other than its speed were for the full occlu-
sions having similar objects close to the target. Also it 
sometimes drew inaccurate bounding boxes when the 
number of frames got too many and there was also a lot 
of pose variation.

	   This tracker is based upon two main steps: the locali-
zation step and the update step. In the first step, using the 
correlation filters by having the position of the object in 
the previous frame and image patch features, the loca-
tion of the target in the new frame is estimated. After 
that, it estimates the detection reliability by using Per-
channel filter responses. Finally, scale is being estimated 
by a correlation filter as in Danelljan et al. (2014). In 
the next step, which is the updating step, we extract and 
update the foreground and background histograms, esti-
mate the reliability map and use it to estimate a new 
filter and update it. After that, we estimate the learning 
channel reliability, and then calculate channel reliability 
and update it. More information can be acquired through 
(Lukezic et al. 2017).

D.	 MIL tracker:
	   This tracker can handle partial occlusions better than 

KCF and MOSSE, but does not have a good perfor-
mance handling full occlusions or redetecting targets. 
It is slower than CSRT but it is more robust than KCF 
and MOSSE. Similar to KCF and MOSSE, it does not 
change the scale of given bounding box. It loses the tar-
get when it is occluded either by a similar object or when 
there is a similar object close to the target.

	   This tracker takes the given bounding box and com-
putes the feature vectors. Then it uses a classifier to esti-
mate the target. After updating the target’s location, it 
updates its appearance model (classifier) by labeling a bag 
of the target’s features positive and the area around them 
negative. By extracting a bag of positive examples instead 
of only one positive example in each frame, this method 
can better train its classifier to address occlusions. That is 
how Multiple Instance Learning avoids the drift problem 
for a robust tracking (Babenko and Yang 2009).

E.	 Our method:
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	   The basis of our algorithm is by taking advantage of 
the fact that in the first frame, we give the same bound-
ing box to all these three trackers. Each of these trackers 
extract different features from the target and background. 
Thus, they offer different bounding boxes for the loca-
tion of what they follow in the next frame. Having the 
exact coordinates of all bounding boxes, we define an 
average bounding box and consider it as the main bound-
ing box. After that, we measure the distance between the 
bounding boxes proposed by the trackers and the average 
bounding box. Now if each of these trackers propose a 
bounding box for an object far from the average bound-
ing box or finds its tracking reliability lower than its 
threshold, we conclude that this tracker’s results cannot 
be trusted and it needs correction. The main reason for 
the success of this method is that the algorithm continu-
ously corrects its trackers. So if each one of them fails, 
ACI corrects it and it can later correct ACI by correcting 
its other trackers too.

For correcting them, first we calculate the average box 
without considering the wrong tracker, which means we only 
calculate the mean of the other boxes. After that, if a specific 
number of frames have passed and the tracker has not rede-
tected the target yet, we reinitialize the wrong one and give 
it the coordinates of the new average box. That tracker will 
treat the new bounding box as a new object which must be 
tracked. But we also keep the information extracted in the 
first frames until a specific number of mistakes of all track-
ers in order to have more features to look for. In this way, 
despite much bigger changes in the appearance or pose, the 
target can still be tracked.

Sometimes three of the trackers suddenly make different 
mistakes and either get far different results from the main 
box, or have tracking reliabilities lower than their thresholds. 
In such cases, if the problem is caused by having tracking 
reliabilities lower than threshold, since each of those wrong 

trackers are trying to redetect the target on their own, we give 
them a limited number of frames to try to find it in them. 
While they are looking for the target, the average bounding 
box is considered the bounding box of the only tracker which 
has tracking reliability higher than its threshold. If even after 
that number of frames they all fail, they get reinitialized and 
get the object in the main box as the new object to track. 
The reason that we did not quickly try to fix them all is that 
such cases usually happen due to full occlusion, and that one 
tracker which has tracking reliability more than its threshold 
is wrong. So we give them some time to keep searching for 
the target in the coming frames and when we are almost able 
to conclude this situation has not occurred because of full 
occlusion, we reinitialize those trackers. We do not choose 
the searching time to be too long too. Since if the situation 
has not happened out of full occlusion, then it means that 
tracking the target has become really difficult. In such cases, 
if we do not reinitialize them quickly, that one tracker which 
is successfully doing its job might lose it as well.

Also there are times when each of them are tracking dif-
ferent objects with different coordinates and all are having 
tracking reliabilities higher than their thresholds without 
even two of them offering close bounding boxes. For such 
situations we set the main box to be the bounding box of the 
CSR-DCF tracker but we do not reinitialize the other ones. 
Because according to our experiments, even though CSR-
DCF is the most robust one it is not immune to mistakes 
and it fails handling full occlusions which others do not and 
those they are able to correct it. In such cases, the wrong 
ones will slowly find their tracking reliabilities below the 
threshold and they will start searching for the target. That is 
just like the condition mentioned above which was the time 
when only one tracker has its tracking reliability above its 
threshold. A briefer and clearer description of the process is 
summarized in Algorithm 1 and Fig. 1.
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Algorithm 1: The Auto-Correct-Integrated (ACI) tracker with memory of first frames algorithm using CSR-DCF, 
KCF and MOSSE
Initial settings:

TR = Threshold of trackers tracking reliability 
Counter = 0
C = Height, width and distance difference from the main bounding box
T = The set threshold for C 
NF = Number of frames which trackers can track alone before calling the other ones
TTE = Total number of trackers' errors
TTET = Total number of trackers' errors threshold 

Inputs:
New frame
The previous location of the target (previous main box)
The trackers previous bounding boxes
Trackers tracking reliability in the last frame (TRL)

Outputs:
New main box
New trackers bounding boxes if available

while (the frame is not the last frame)
{Get the new frame
Update all trackers by having their previous bounding boxes
if (C < T in all trackers)

{main box = mean of all the bounding boxes
Counter = 0}

else if (C < T in two trackers)
{main box = mean of those two trackers' bounding boxes
Reinitialize the wrong one and give it the main box to track
Counter = 0}

else if (TRL > TR in only one tracker)
{main box = bounding box of that tracker
Counter = Counter + 1
Other trackers search for the features extracted in the first frames and their last track for redetecting the 
target
//In ACI without memory of first frames, trackers only look for the extracted features in their last track
if (Counter >= NF)

{Reinitialize other trackers giving them the main box to track}}
else if (TRL > TR and C >T in all trackers)

{main box = bounding box of CSR-DCF
Counter = 0}

if (TTE < TTET) //This if statement is not implemented in ACI without memory of first frames
{Store extracted features} //This if statement is not implemented in ACI without memory of first frames

Draw the main box}

In the algorithm above, we update the trackers in each 
frame and calculate the average bounding box. If the height, 
width and coordinates of bounding boxes for each tracker is 
close enough to the average bounding box, the main box is 
the average bounding box. C, T, TTE and TTET are calcu-
lated in the following manner:

(1)

C =

{
|||
Xtracker−Xaverage

|||
,
|||
Ytracker−Yaverage

|||
,

|||
Wtracker−Waverage

|||
,
|||
Htracker−Haverage

|||

}

(2)T =

{

� ×

(
Haverage +Waverage

2

)

, � ×

(
Haverage +Waverage

2

)

, � ×Waverage, � × Haverage

}
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where X and Y are bounding boxes’ coordinates, H and W 
are its height and width, α is distance rate, n is number of 
trackers and β is a constant. C1,1 and C1,2 correspond to the 
distance of the first tracker’s bounding box from main box. 
T1,1 and T1,2 are distance thresholds of the first tracker’s 
box from the main box. C1,3 and C1,4 demonstrate the size 
difference between the first tracker’s bounding box and the 
main box. T1,3 and T1,4 state the thresholds for difference 
in first tracker’s bounding box size than the main box. For 
each one of the trackers we count the number of mistakes 
and then we calculate the total number of mistakes for all 
trackers thorough Eq. (3). TR and TRL are calculated in dif-
ferent ways for each of these trackers and it is better not to 
change their default way of calculating them. When α is set 
too high, it decreases the ACI algorithm’s ability to detect 
and correct the wrong trackers. When it is set too low, ACI 
keeps reinitializing the trackers that are relatively correct, 
which leads to having less tracking features.

Then if two of the trackers’ bounding boxes are close to the 
average bounding box, we set the main box as the average of 
these two trackers and correct the false one. If only one tracker 
has its tracking reliability over its set threshold, then the main 
box is that tracker’s bounding box. Then we wait for other 
trackers to search and find the target in the next NF frames; 
which means we both search and track. If after NF frames 
they fail to find the target, we reinitialize them and give them 

(3)TTE =

n∑

i=1

4∑

j=1

{
1, Ci,j > Ti,j
0, Ci,j < Ti,j

(4)TTET = � × n.

the main box to track. NF is chosen based on experience. If 
trackers have bounding boxes too far from each other, we set 
the CSR-DCF’s bounding box as the main box. This is mainly 
because in this case we must choose one tracker over the other 
ones, and since in this work we valued robustness over rede-
tection, we chose CSR-DCF’s bounding box. One can choose 
other trackers’ bounding boxes to increase other capacities of 
the algorithm. But we should keep in mind that because this 
condition happens only when all trackers are tracking different 
objects, it occurs fewer times than other else if blocks. Finally, 
if we are in the beginning of tracking and TTE is not higher 
than TTET, we store features extracted from the target so that 
later on trackers can look for extracted features from both the 
first and last frames. It must be noticed that the reason why 
we do not store the features of the last tracking frames is that 
the trackers do it implicitly during their updates.

Next, we examine how we can combine four trackers 
by ACI algorithm. As the number of trackers increases, 
the algorithm gets more complicated due to the frustrating 
increase in the number of if-statements. For simplicity and 
better performance, it is advised to combine trackers in the 
following manner:

First we locate the area with highest number of bounding 
boxes close to each other. Then in each frame for those track-
ers that have tracking reliability below their set threshold 
or they have a bounding box too far from the main box we 
only increase their mistakes number by one and calculate 
the main box without considering them. It is important not 
to reinitialize them quickly because whenever we reinitial-
ize each of them, that tracker loses its data. Only when their 
mistakes numbers have achieved their thresholds, we can 
reinitialize the trackers.

Fig. 1   ACI with memory of first frames in practice. Black box: Main 
box—Blue box: KCF’s Box—Red box: MOOSE’s Box—Green box: 
CSR-DCF’s box. ACI keeps tracking the red runner until the yellow 

runner occludes the target and it mistakenly tracks the yellow one but 
after a few frames, it redetects the red runner by using its memory 
and continuous tracking him (color figure online)
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Algorithm 2: The Auto-Correct-Integrated (ACI) tracker without memory of first frames algorithm using MIL, 
CSR-DCF, KCF and MOSSE
Initial settings:

TR = Threshold of trackers tracking reliability 
C = Height, width and distance difference from the main bounding box
T = The set threshold for C 
TTM = Total number of a tracker's errors
β = Total number of a tracker's errors threshold 

Inputs:
New frame
The previous location of the target (previous main box)
The trackers previous bounding boxes
Trackers tracking reliability in the last frame (TRL)

Outputs:
New main box
New trackers bounding boxes if available

while (the frame is not the last frame)
{Get the new frame
Update all trackers by having their previous bounding boxes
if (C < T in all trackers)

{main box = mean of all the bounding boxes
TTE of all trackers = 0}

else if (C < T in three trackers)
{main box = mean of those three trackers' bounding boxes
TTM of that wrong tracker = TTM of that wrong tracker + 1
If (TTM of that wrong tracker >= β of that wrong tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (C < T in two trackers)
{main box = mean of those two trackers' bounding boxes close to the main box
TTM of those two wrong trackers = TTM of those two wrong trackers + 1
if (TTM of any of the wrong trackers >= β of that tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (TRL > TR in only one tracker)
{main box = bounding box of that tracker
TTM of those three wrong trackers = TTM of those three wrong trackers + 1

if (TTM of any of the wrong trackers >= β of that tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (TRL > TR and C > T in all trackers)
{main box = bounding box of CSR-DCF}

Draw the main box}

In this algorithm, for each tracker TTM is calculated as 
the following:

More trackers can be added using the algorithm 2 just by 
adding the number of else-if blocks.

(5)TTM =

4∑

j=1

{
1, Cj > Tj
0, Cj < Tj

.

Since we use only the output of those tracking algorithms, 
any tracker can be replaced with the ones used in ours. This 
can clearly result in different performances and by imple-
menting this method, if we choose trackers in a way which 
can extract a bigger variety of features, then we can have a 
more robust and accurate tracker. The code is written in pure 
Python and is publically available at (https​://githu​b.com/

https://github.com/AliSekhavati/ACI-trackers/blob/master/README.md
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AliSe​khava​ti/ACI-track​ers/blob/maste​r/READM​E.md) as 
well as the videos.

3 � Evaluation

This part focuses on practical issues of the ACI tracker and 
how and why it has become different than its components. 
We first compare the performance of the ACI tracker with 
the trackers used to create it just to show how better the new 
one can track and why it does not make some of the mistakes 
which they might make while they are tracking targets alone. 
After that, we compare it with some of the OpenCV trackers 
both in speed and accuracy to have a better understanding of 
other trackers as well.

A.	 Comparison with MOSSE tracker
	   MOSSE is the fastest of all these four due to using 

Fast Fourier Transform, correlation filters and the track-
er’s simple architecture. But according to our experi-
ments, when it comes to dealing with big occlusions 
which might cover around one-third of the target, its 
tracking reliability decreases below its threshold until 
that partial occlusion is passed. That is for the big 
change in the target which does not fit the tracker’s filter. 
Then it may redetect the target. If this type of occlusion 
happens while pose variation is occurring, such as what 
happens in “nascar_02” video, it totally stops tracking 
until it redetects the same or a similar pose of the tar-
get, which might not happen in many cases. Because the 
filter was made based on the another pose of the target 
which cannot be seen after pose variation and occlusion. 
Our method successfully continued tracking every time 
by using CSR-DCF and MIL’s robustness.

	   Another problem that MOSSE tracker suffers from is 
its dependency on the target’s high level of appearance 
change in the first frames. In other words, the appear-
ance of the target must not change suddenly in the begin-
ning frames which the algorithm has just started learn-
ing. The reason for this is because this tracker is mainly 
depended on correlation filters which cannot handle big 
appearance changes at first. Such problem was observed 
tracking five out of eight runners in the “race” video 
and it caused the tracker to fail at the very beginning 
and never be able to find the target again. While in the 
ACI tracker, given the exact same bounding box at the 
first frame, it successfully tracked all the runners in that 
video. The CSR-DCF and MIL’s robustness and the 
accuracy of KCF combined with the redetecting ability 
of KCF and MOSSE were big helps dealing with these 
type of issues.

	   This tracker is not immune to big pose variation dur-
ing scale change of the target for the same reasons men-

tioned above. In “nascar_01” it tracks the target for 81 
frames out of 135 and then fails according to this prob-
lem. Also, not being able to make big changes in the size 
of bounding box, for almost 20 of those 81 frames it only 
tracks half of the car.

B.	 Comparison with KCF tracker:
	   KCF has difficulty dealing with partial occlusion. For 

instance, in “nascar_02” video, when the followed car 
passes a thin column, the KCF suddenly loses it and 
fails in redetection phase. This problem is caused by its 
too high redetection threshold. Whereas in ACI tracker, 
it tracks the car during different partial occlusions in 
the whole movie because of CSR-DCF and MIL’s per-
formance during such occlusions and MOSSE’s perfor-
mance afterward.

	   Such occlusions affect the tracker’s performance in 
“american_pharoah” and “race” videos too. In the for-
mer, an occlusion occurs after 35 frames and KCF which 
was properly tracking the target, stops tracking and fails 
in redetection phase for the rest of the video. But in ACI, 
because of the MOSSE’s better redetection ability and 
CSR-DCF’s continuous tracking ability, KCF quickly 
gets corrected by the other three algorithms and keeps 
accurately tracking it in the whole video.

	   In the “race” video, showing a better performance 
than MOSSE in some cases, it handles the redetect-
ing difficulties for most of the time other than the final 
frames and thus, tracks the target in 79 frames out of 
339. The occlusions were mostly for the runners who 
were covering some parts of the target runner. While it 
does prove a better performance than many other new 
trackers, the ACI tracker outperforms this by accurate 
tracking in more than 325 frames.

	   In “nascar_01” video, it follows the target in the first 
67 frames but after that, the camera zooms in while the 
target car is passing the camera and so pose variation 
takes place as well, which makes it pretty difficult to 
track using correlation filters alone. The ACI tracker 
does track it in all the 136 frames. But since none of 
its component trackers are adaptive enough to the scale 
variation, it fails in drawing a bounding box covering the 
whole car, and just approximately considers half of the 
car instead.

C.	 Comparison with CSR-DCF tracker
	   Sometimes there are objects similar to the target when 

the it gets occluded. This occlusion can take place by 
that resembling object too. In such cases, CSR-DCF 
tracker can easily get confused and misses the real tar-
get following the similar one while KCF and MOSSE 
tracking methods can come in hand and correct it if pos-
sible. For instance, in the “american_pharoah” video, in 
some experiments we set the bounding box to be only 
the body of horses. During occlusions, the CSR-DCF 

https://github.com/AliSekhavati/ACI-trackers/blob/master/README.md
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tracker lost the target and started following the body 
of the horse behind or other horses until the end of the 
video. That is because its tracking reliability did not get 
below its threshold and so it tracked the wrong object. 
But this issue also causes more robustness for the tracker 
when it is facing other problems. In ACI tracker, after 
such occlusions the algorithm restarts tracking the real 
target thanks to the KCF and MOSSE redetection phase. 
For this video, when bounding box is just the body of 
the horse, the CSR-DCF tracker fails because of occlu-
sions and other ones quickly correct it. But in that video, 
when the bounding box is the whole horse and its rider, 
CSR-DCF tracks it and the only problem was proposing 
a bounding box bigger than target. This was caused by 
long sequence of frames.

	   In the “race” video tracking one of the runners, after 
huge partial occlusion, CSR-DCF mistakenly tracks the 
runner who was in the way of the target. But MOSSE 
and KCF redetect the real target, fix CSR-DCF and con-
tinue tracking it.

D.	 Comparison with MIL tracker
	   MIL tracker can handle big partial occlusions better 

than the other three. But it usually fails handling full 
occlusions. The main reason for this problem is that dur-
ing full occlusions, the tracker still tries to update its 
classifier by new online features it extracts. However, 
because during full occlusions the target is not visible 
the classifier of the tracker gets updated with wrong 
online features. Thus, after full occlusions there is a high 
probability that the tracker tracks the occluding object 
instead of the target. In “american_pharoah” video it 
first tracks the target during huge partial occlusions that 
none of the other three trackers do it. This success is 

for the trackers multiple online learning. In the “race” 
video anytime another runner fully or partially occludes 
the tracking runner, this tracker’s classifier mistakenly 
considers the occluding runner instead of the real tar-
get. Figure 2 shows how ACI algorithm with 4 trackers 
works in practice. 

E.	 Statistically comparison with other trackers
	   In this part, we generally compare the ACI tracker 

in speed and accuracy with the trackers implemented 
in OpenCV for being able to briefly compare all these 
trackers at once. For this purpose, we examine the ability 
of Boosting, MIL, KCF, TLD, Median Flow, GOTURN, 
CSRT (CSR-DCF), MOSSE and our proposed method 
(ACI) as Table 1 illustrates.

	   As the table above demonstrates, the ACI trackers 
both using and not using the data of the first frames 
outperform all the trackers implemented in OpenCV in 
terms of accuracy and two of them are faster than many 
others. We used python version of these trackers and 
gathered the information above by tracking different tar-
gets in 7355 frames in 4 videos. This table shows add-
ing the fourth tracker which is fundamentally different 
increases the algorithm’s capacity for better addressing 
different problems, resulting an accuracy much better 
than adding first frames’ memory. The only problem is 
the decrease of the average speed which is caused by 
MIL’s low processing speed. Another thing which can 
be understood from results of KCF tracker is that it has 
a really high accuracy when it detects the target, but 
most of the time it suffers from a poor performance in 
the detection phase. For overcoming the issue, this track-
er’s reliability threshold must decrease. We also faced a 
problem using the GOTURN tracker and it was for the 

Fig. 2   ACI algorithm with 4 trackers, correcting its components and its components correcting it. Black box: Main box—Blue box: KCF’s 
Box—Red box: MOOSE’s Box—Green box: CSR-DCF’s box—white box: MIL’s Box (color figure online)
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times when it was unable to separate the object from 
background. In such cases, its region of interest would 
keep expanding and it made the task pretty challeng-
ing. For instance, in the “american_pharoah” video that 
is consisted of 3183 frames, the processor could only 
compute in the first 211 frames and after that it stopped 
the program for being computationally too expensive. 
In the first frames, the ACI with memory is saving data 
and so its processing speed is almost as half as ACI. But 
after a while when it has saved the features required, it 
achieves the speed of normal ACI. Figure 3 compares 
Boosting, MIL, KCF, TLD and ACI algorithm with 3 
trackers without memory of first frames.

4 � Conclusion

In this article we proposed a method of combining trackers 
for using strengths of them all covering each other’s weak-
nesses. In this method trackers can correct each other and 
thus, they are able to deal with more difficult obstacles. The 
results of such combination both using and not using the fea-
tures extracted in the first frames outperformed all the track-
ers used for making the ACI and also all the other trackers 
in OpenCV. Since any tracker can be combined in this way, 
it seems to be a good idea to use different feature extractors 
together such as algorithms based on neural networks or 
other methods mentioned in Sect. 1.

Table 1   Comparing ACI trackers with eight OpenCV trackers

Tracker’s name Average processing 
speed (FPS)

Frames with tracking reliabil-
ity over threshold (%)

Accuracy when target 
is detected (%)

Overall 
accuracy 
(%)

Boosting 26.32 100 6.42 6.42
MIL 13.55 100 44.19 44.19
KCF 143.13 11.63 98.87 11.17
TLD 7.97 97.43 11.58 11.36
Median flow 109.98 72.54 12.86 7.07
GOTURN 11.07 100 33.33 33.33
CSR-DCF 29.27 99.43 56.70 56.68
MOSSE 1450.46 82.71 94.92 78.52
ACI without memory of first frames (3 trackers) 22.59 100 87.19 87.19
ACI with memory of first frames (3 trackers) 20.29 100 88.88 88.88
ACI without memory of first frames (4 trackers) 8.49 100 93.10 93.10

Fig. 3   Comparison with some other trackers: ACI algorithm with 3 trackers without memory of first frames. Black box—Boosting tracker: Red 
box—MIL tracker: Purple box—KCF tracker: Cyan box—TLD tracker: Orange box (color figure online)
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