
Vol.:(0123456789)1 3

International Journal of Intelligent Robotics and Applications (2020) 4:191–201
https://doi.org/10.1007/s41315-020-00137-0

REGULAR PAPER

Auto‑correct‑integrated trackers with and without memory of first
frames

Ali Sekhavati1  · Najmeh Eghbal1

Received: 3 December 2019 / Accepted: 15 May 2020 / Published online: 2 June 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract
Visual short-term tracking in a long sequence of images with a lot of pose variations, target deformations and different types
of occlusion is one of the harshest tasks in image processing. Overcoming such challenges can be performed in a superior
way by combining different trackers. In this paper, we propose a method that combines different algorithms for tracking the
given target. The algorithms are KCF (Henriques et al. in IEEE Trans Pattern Anal Mach Intell 37(3):583–596, 2014), MIL
(Babenko et al. in Visual tracking with online multiple instance learning. In: 2009 IEEE conference on computer vision and
pattern recognition. IEEE, 2009), CSR-DCF (Lukezic et al. in Discriminative correlation filter with channel and spatial reli-
ability. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017) and MOSSE (Bolme et al.
in Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. IEEE, 2010) trackers. In this method, these algorithms can continuously correct each other’s faults.
They also implicitly search for the target even when they are tracking it, to make sure the object they are tracking is the real
target. Thus, they outperform many of the state-of-the-art trackers as well as their components when they work independently.
In this paper, we examine three trackers which we made in such way. Two of these trackers run at speeds close to real-time
on a CPU and so we compare them with some famous wide-spread tracking algorithms both in terms of accuracy and speed.

Keywords  Visual object tracking · Correlation filters · Combined trackers · Self-correcting tracking

1  Introduction

The controversial task of short-term visual object tracking
in any sequence of images has always been an important
one through the history of image processing with so many
different applications in robotics, artificial intelligent, traffic
control, shop and factory security etc. Background clutters,
partial and full occlusion, illumination variation, deforma-
tion, camera motion and many other variations can cause
serious problems for trackers’ performance (Wu et al. 2015).
Most of the recent tracking algorithms are based on deep
learning approaches. Even though they can address these
problems, they are computationally expensive.

One of the oldest and yet most famous ways of tracking
an object in any sequence of images is tracking via Kalman
filter (Kalman 1960). In control system theory, Kalman filter

can be used for linear systems to estimate their states when
noise has a Gaussian distribution and the filter is based on
prediction and correction parts (Kalman 1960; Patel and
Thakore 2013; Yilmaz et al. 2006). In image processing,
it can be used for object tracking and predicting the next
position of the target. Another method for object tracking is
through the Mean Shift algorithm, which shifts every data
point to the mean of data points in its neighborhood itera-
tively (Cheng 1995). There is also the CAMSHIFT (Con-
tinuously Adaptive Mean Shift) algorithm that develops the
Mean Shift algorithm so that it can deal with probability
distributions which change and move dynamically in time,
and make it able to track moving objects in video frames
(Bradski 1998a, b). In this method, one can set the color of
the target to be tracked.

For having a more robust tracker, a lot of researchers tried
to extract the features of the target during the process and
learn from them. In (Grabner et al. 2006), by using classi-
fiers, an algorithm is designed to track the target in real-time
as well as on-line learning in order to handle appearance
changes and separate it from the background. A long term

 *	 Ali Sekhavati
	 al.sekhavati903@sadjad.ac.ir

1	 Sadjad University of Technology, Mashhad, Iran

http://orcid.org/0000-0002-4554-2749
http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-020-00137-0&domain=pdf

192	 A. Sekhavati, N. Eghbal

1 3

tracker is represented by Kalal et al. (2011) which is con-
sisted of three parts: tracking, learning and detection. The
tracker follows the target in every frame whereas the two
other parts try to minimize its failures.

Many of the new tracking algorithms are based on deep
neural networks and convolutional ones. Bertinetto et al.
(2016) introduced a tracking algorithm with a novel fully-
convolutional Siamese network, which despite its great sim-
plicity and being made based on deep learning algorithms,
it outperforms many short-term and real-time trackers both
in speed and accuracy. He et al. (2018) designed a twofold
Siamese network for real-time object tracking. Their net-
work benefits from the heterogeneity of semantic features
and appearance features and by designing a channel atten-
tion module to achieve target adaptation, they achieved great
results both on OTB and VOT benchmarks. Lee et al. (2018)
proposed a long term tracker using deep convolutional fea-
tures and a human-based memory model for storing the fea-
tures of the target. They also used a detector to realize the
existence of the object and find it when it is not followed by
the tracker. They divided the memory management part into
a short term memory and a long term memory, each with
limited capacity for storing the target’s specific Siamese and
semantic features.

Although most of the trackers which use deep learning
algorithms are more accurate and robust than the rest, they
usually have been unable to track their target in real-time
applications. Held et al. (2016) created one of the earliest
real-time trackers using neural networks. The method they
used was not based on on-line learning but off-line training
instead. An example of fast short-term object tracker with
high accuracy and robustness based on Siamese network
was performed by Li et al. (2018), achieving the processing
speed of 160 frames per second and leading performance
in VOT2015 (Kristan et al. 2015), VOT2016 (Kristan et al.
2016) and VOT2017 (Kristan et al. 2017) in the real-time
challenges.

Some trackers use adaptive, kernelized or discriminative
correlation filters such as Henriques et al. (2014), Bolme
(2010) and Lukezic et al. (2017). Since the method used
in this article is based on the last three works, in the next
part they will be discussed with more details. Bochinski and
Eiselein (2017) created an algorithm for tracking objects
without using image information by considering the overlap
of detections between time steps. By using this simple and
efficient method, they achieved the tracking speed of 100 K
fps and their algorithm outperformed state-of-the-art track-
ers on the DETRAC vehicle tracking dataset.

Some other tracking algorithms are combination of other
methods. Akshay et al. (2016) made a tracker combining
Kalman filter, Gaussian mixture model and Optical flow in
order to achieve better tracking result. Tran (2015) used a
combination of Generalized Hough Transform, and Particle

filter in order to make a tracker robust to appearance vari-
ations such as scaling, rotation, non-rigid deformation or
illumination changes.

In this paper, we propose a method for combining differ-
ent trackers and then we introduce an algorithm in which
they can minimize their faults and correct each other. We
also implicitly search for the target when we are tracking it
to make sure the real target is being tracked rather than any
other similar object. In this way, we can track any object
through literally challenging obstacles such as pose vari-
ation, target deformation and different types of occlusion
with or without similar objects around for short-term visual
tracking.

The idea of this method arose noticing the fact that if
many trackers follow one object at the same time, as long
as they are doing their job correctly, their regions of interest
must be close to each other and have similar coordinates. But
when one of those trackers offers a different bounding box
than that of many other trackers, it probably has failed rec-
ognizing the target and must be corrected. With this intuitive
and reasonably important assumption in mind, we propose
two trackers ACI (Auto-Correct-Integrated) and ACI with
memory of first frames.

In this new method, we use three tracking algorithms to
estimate the position of the target in every picture. Each of
these three is good in its own way and fails toward different
reasons. The trackers used in the ACI algorithm are KCF
(Henriques et al. 2014), MOSSE (Bolme 2010) and CSR-
DCF (Lukezic et al. 2017) which is also known as CSRT. All
these trackers are based upon correlation filters which can
have a much faster performance than many other methods.
More information on how they track, their main qualities
and their practical issues for each of them is available in
the next part.

Many other researchers have tried to combine different
tracking algorithms such as Akshay et al. (2016) and Tran
(2015). We tested our method on a database containing 7355
frames with different targets to track in different areas and
then compared the performance of these three new trackers
with some others given the same bounding boxes in the first
frame. All of our trackers outperform their components and
also all the trackers in OpenCV in terms of accuracy while
being computationally more efficient and less complex than
many of them.

In the following, we try to clearly describe our method
with enough details in Sect. 2. In Sect. 3 after that we
evaluate our trackers with their components and also eight
OpenCV trackers. The results of this comparison is collected
in Table 1. Finally, in conclusion we briefly overview the
advantages of this method.

193Auto‑correct‑integrated trackers with and without memory of first frames﻿	

1 3

2 � Proposed method

In this work we use four tracking algorithms and design
a method so that these trackers can evaluate each other’s
performance and correct each other for overcoming a bigger
range of challenges. Three of these methods use correlation
filters and one of them uses multiple instant learning for
training a classifier to separate the target from background.
Each of them have specific strengths and weaknesses and in
this new combination of them, we tried to use their advan-
tages to cover their weaknesses.

A.	 MOSSE tracker:
	  While being the fastest one among all these four track-

ers, it is able to handle variations in lighting, scale, pose,
and non-rigid deformations. The tracker can follow the
object given to it at speeds over 1.4 K FPS using an Intel
Core i5-8250U CPU and 8 Gigabytes of RAM. Accord-
ing to our experiments, its robustness is not as good as
the CSRT, but yet better than KCF tracker. This one also
has a good performance when it comes to redetecting
the target after full occlusions even sometimes in the
presence of similar objects around.

	  The tracker is based upon adaptive correlation filters
for modeling the target, and convolutional filters in order
to track. It operates on the gray-scale images and if the
images given are not so, it converts them to that form.
The tracker uses the model to find the target in the new
frame and then it updates the filter. For speeding up the
process, the algorithm computes the correlation in the
Fourier domain as Fast Fourier Transform (FFT).

B.	 KCF tracker:
	  In terms of accuracy and drawing a bounding box

which contains the whole target without assigning too
many other pixels of the image as the target and fitting it
the most, the KCF tracker performs better than the other
three. Using the same system mentioned above for the
MOSSE tracker, its tracking speed is around 150 fps.
Although it may not be as robust as the other ones, its
high speed, accuracy and the ability to handle full occlu-
sions can come handy for correcting the other trackers
in a short time.

	  According to (Henriques et al. 2014), for tracking the
target, the tracker trains a model with an image patch
which is larger than the target which provides more con-
text, by having the bounding box given in the first frame.
Then, after getting the next frame, they look for the pix-
els having the most similarity to the previous patch.
After that, the algorithm trains a new model having the
information of both the new position and the previous
one. In this way, the data of all images are used.

C.	 CSR-DCF tracker
	  This is also known as CSRT among trackers of

OpenCV (Open Source Computer Vision Library).
According to our tests, this one can handle partial occlu-
sion, change in object appearance, scale and posing
variations. But it is much slower than KCF and MOSSE
with processing speed of almost 29 fps using the same
system as the other three trackers. Despite its unhurried
performance, it was the most robust one not only in com-
parison with the other two, but also among the rest of
OpenCV trackers. The problems we faced working with
this tracker other than its speed were for the full occlu-
sions having similar objects close to the target. Also it
sometimes drew inaccurate bounding boxes when the
number of frames got too many and there was also a lot
of pose variation.

	  This tracker is based upon two main steps: the locali-
zation step and the update step. In the first step, using the
correlation filters by having the position of the object in
the previous frame and image patch features, the loca-
tion of the target in the new frame is estimated. After
that, it estimates the detection reliability by using Per-
channel filter responses. Finally, scale is being estimated
by a correlation filter as in Danelljan et al. (2014). In
the next step, which is the updating step, we extract and
update the foreground and background histograms, esti-
mate the reliability map and use it to estimate a new
filter and update it. After that, we estimate the learning
channel reliability, and then calculate channel reliability
and update it. More information can be acquired through
(Lukezic et al. 2017).

D.	 MIL tracker:
	  This tracker can handle partial occlusions better than

KCF and MOSSE, but does not have a good perfor-
mance handling full occlusions or redetecting targets.
It is slower than CSRT but it is more robust than KCF
and MOSSE. Similar to KCF and MOSSE, it does not
change the scale of given bounding box. It loses the tar-
get when it is occluded either by a similar object or when
there is a similar object close to the target.

	  This tracker takes the given bounding box and com-
putes the feature vectors. Then it uses a classifier to esti-
mate the target. After updating the target’s location, it
updates its appearance model (classifier) by labeling a bag
of the target’s features positive and the area around them
negative. By extracting a bag of positive examples instead
of only one positive example in each frame, this method
can better train its classifier to address occlusions. That is
how Multiple Instance Learning avoids the drift problem
for a robust tracking (Babenko and Yang 2009).

E.	 Our method:

194	 A. Sekhavati, N. Eghbal

1 3

	  The basis of our algorithm is by taking advantage of
the fact that in the first frame, we give the same bound-
ing box to all these three trackers. Each of these trackers
extract different features from the target and background.
Thus, they offer different bounding boxes for the loca-
tion of what they follow in the next frame. Having the
exact coordinates of all bounding boxes, we define an
average bounding box and consider it as the main bound-
ing box. After that, we measure the distance between the
bounding boxes proposed by the trackers and the average
bounding box. Now if each of these trackers propose a
bounding box for an object far from the average bound-
ing box or finds its tracking reliability lower than its
threshold, we conclude that this tracker’s results cannot
be trusted and it needs correction. The main reason for
the success of this method is that the algorithm continu-
ously corrects its trackers. So if each one of them fails,
ACI corrects it and it can later correct ACI by correcting
its other trackers too.

For correcting them, first we calculate the average box
without considering the wrong tracker, which means we only
calculate the mean of the other boxes. After that, if a specific
number of frames have passed and the tracker has not rede-
tected the target yet, we reinitialize the wrong one and give
it the coordinates of the new average box. That tracker will
treat the new bounding box as a new object which must be
tracked. But we also keep the information extracted in the
first frames until a specific number of mistakes of all track-
ers in order to have more features to look for. In this way,
despite much bigger changes in the appearance or pose, the
target can still be tracked.

Sometimes three of the trackers suddenly make different
mistakes and either get far different results from the main
box, or have tracking reliabilities lower than their thresholds.
In such cases, if the problem is caused by having tracking
reliabilities lower than threshold, since each of those wrong

trackers are trying to redetect the target on their own, we give
them a limited number of frames to try to find it in them.
While they are looking for the target, the average bounding
box is considered the bounding box of the only tracker which
has tracking reliability higher than its threshold. If even after
that number of frames they all fail, they get reinitialized and
get the object in the main box as the new object to track.
The reason that we did not quickly try to fix them all is that
such cases usually happen due to full occlusion, and that one
tracker which has tracking reliability more than its threshold
is wrong. So we give them some time to keep searching for
the target in the coming frames and when we are almost able
to conclude this situation has not occurred because of full
occlusion, we reinitialize those trackers. We do not choose
the searching time to be too long too. Since if the situation
has not happened out of full occlusion, then it means that
tracking the target has become really difficult. In such cases,
if we do not reinitialize them quickly, that one tracker which
is successfully doing its job might lose it as well.

Also there are times when each of them are tracking dif-
ferent objects with different coordinates and all are having
tracking reliabilities higher than their thresholds without
even two of them offering close bounding boxes. For such
situations we set the main box to be the bounding box of the
CSR-DCF tracker but we do not reinitialize the other ones.
Because according to our experiments, even though CSR-
DCF is the most robust one it is not immune to mistakes
and it fails handling full occlusions which others do not and
those they are able to correct it. In such cases, the wrong
ones will slowly find their tracking reliabilities below the
threshold and they will start searching for the target. That is
just like the condition mentioned above which was the time
when only one tracker has its tracking reliability above its
threshold. A briefer and clearer description of the process is
summarized in Algorithm 1 and Fig. 1.

195Auto‑correct‑integrated trackers with and without memory of first frames﻿	

1 3

Algorithm 1: The Auto-Correct-Integrated (ACI) tracker with memory of first frames algorithm using CSR-DCF,
KCF and MOSSE
Initial settings:

TR = Threshold of trackers tracking reliability
Counter = 0
C = Height, width and distance difference from the main bounding box
T = The set threshold for C
NF = Number of frames which trackers can track alone before calling the other ones
TTE = Total number of trackers' errors
TTET = Total number of trackers' errors threshold

Inputs:
New frame
The previous location of the target (previous main box)
The trackers previous bounding boxes
Trackers tracking reliability in the last frame (TRL)

Outputs:
New main box
New trackers bounding boxes if available

while (the frame is not the last frame)
{Get the new frame
Update all trackers by having their previous bounding boxes
if (C < T in all trackers)

{main box = mean of all the bounding boxes
Counter = 0}

else if (C < T in two trackers)
{main box = mean of those two trackers' bounding boxes
Reinitialize the wrong one and give it the main box to track
Counter = 0}

else if (TRL > TR in only one tracker)
{main box = bounding box of that tracker
Counter = Counter + 1
Other trackers search for the features extracted in the first frames and their last track for redetecting the
target
//In ACI without memory of first frames, trackers only look for the extracted features in their last track
if (Counter >= NF)

{Reinitialize other trackers giving them the main box to track}}
else if (TRL > TR and C >T in all trackers)

{main box = bounding box of CSR-DCF
Counter = 0}

if (TTE < TTET) //This if statement is not implemented in ACI without memory of first frames
{Store extracted features} //This if statement is not implemented in ACI without memory of first frames

Draw the main box}

In the algorithm above, we update the trackers in each
frame and calculate the average bounding box. If the height,
width and coordinates of bounding boxes for each tracker is
close enough to the average bounding box, the main box is
the average bounding box. C, T, TTE and TTET are calcu-
lated in the following manner:

(1)

C =

{
|||
Xtracker−Xaverage

|||
,
|||
Ytracker−Yaverage

|||
,

|||
Wtracker−Waverage

|||
,
|||
Htracker−Haverage

|||

}

(2)T =

{

� ×

(
Haverage +Waverage

2

)

, � ×

(
Haverage +Waverage

2

)

, � ×Waverage, � × Haverage

}

196	 A. Sekhavati, N. Eghbal

1 3

where X and Y are bounding boxes’ coordinates, H and W
are its height and width, α is distance rate, n is number of
trackers and β is a constant. C1,1 and C1,2 correspond to the
distance of the first tracker’s bounding box from main box.
T1,1 and T1,2 are distance thresholds of the first tracker’s
box from the main box. C1,3 and C1,4 demonstrate the size
difference between the first tracker’s bounding box and the
main box. T1,3 and T1,4 state the thresholds for difference
in first tracker’s bounding box size than the main box. For
each one of the trackers we count the number of mistakes
and then we calculate the total number of mistakes for all
trackers thorough Eq. (3). TR and TRL are calculated in dif-
ferent ways for each of these trackers and it is better not to
change their default way of calculating them. When α is set
too high, it decreases the ACI algorithm’s ability to detect
and correct the wrong trackers. When it is set too low, ACI
keeps reinitializing the trackers that are relatively correct,
which leads to having less tracking features.

Then if two of the trackers’ bounding boxes are close to the
average bounding box, we set the main box as the average of
these two trackers and correct the false one. If only one tracker
has its tracking reliability over its set threshold, then the main
box is that tracker’s bounding box. Then we wait for other
trackers to search and find the target in the next NF frames;
which means we both search and track. If after NF frames
they fail to find the target, we reinitialize them and give them

(3)TTE =

n∑

i=1

4∑

j=1

{
1, Ci,j > Ti,j
0, Ci,j < Ti,j

(4)TTET = � × n.

the main box to track. NF is chosen based on experience. If
trackers have bounding boxes too far from each other, we set
the CSR-DCF’s bounding box as the main box. This is mainly
because in this case we must choose one tracker over the other
ones, and since in this work we valued robustness over rede-
tection, we chose CSR-DCF’s bounding box. One can choose
other trackers’ bounding boxes to increase other capacities of
the algorithm. But we should keep in mind that because this
condition happens only when all trackers are tracking different
objects, it occurs fewer times than other else if blocks. Finally,
if we are in the beginning of tracking and TTE is not higher
than TTET, we store features extracted from the target so that
later on trackers can look for extracted features from both the
first and last frames. It must be noticed that the reason why
we do not store the features of the last tracking frames is that
the trackers do it implicitly during their updates.

Next, we examine how we can combine four trackers
by ACI algorithm. As the number of trackers increases,
the algorithm gets more complicated due to the frustrating
increase in the number of if-statements. For simplicity and
better performance, it is advised to combine trackers in the
following manner:

First we locate the area with highest number of bounding
boxes close to each other. Then in each frame for those track-
ers that have tracking reliability below their set threshold
or they have a bounding box too far from the main box we
only increase their mistakes number by one and calculate
the main box without considering them. It is important not
to reinitialize them quickly because whenever we reinitial-
ize each of them, that tracker loses its data. Only when their
mistakes numbers have achieved their thresholds, we can
reinitialize the trackers.

Fig. 1   ACI with memory of first frames in practice. Black box: Main
box—Blue box: KCF’s Box—Red box: MOOSE’s Box—Green box:
CSR-DCF’s box. ACI keeps tracking the red runner until the yellow

runner occludes the target and it mistakenly tracks the yellow one but
after a few frames, it redetects the red runner by using its memory
and continuous tracking him (color figure online)

197Auto‑correct‑integrated trackers with and without memory of first frames﻿	

1 3

Algorithm 2: The Auto-Correct-Integrated (ACI) tracker without memory of first frames algorithm using MIL,
CSR-DCF, KCF and MOSSE
Initial settings:

TR = Threshold of trackers tracking reliability
C = Height, width and distance difference from the main bounding box
T = The set threshold for C
TTM = Total number of a tracker's errors
β = Total number of a tracker's errors threshold

Inputs:
New frame
The previous location of the target (previous main box)
The trackers previous bounding boxes
Trackers tracking reliability in the last frame (TRL)

Outputs:
New main box
New trackers bounding boxes if available

while (the frame is not the last frame)
{Get the new frame
Update all trackers by having their previous bounding boxes
if (C < T in all trackers)

{main box = mean of all the bounding boxes
TTE of all trackers = 0}

else if (C < T in three trackers)
{main box = mean of those three trackers' bounding boxes
TTM of that wrong tracker = TTM of that wrong tracker + 1
If (TTM of that wrong tracker >= β of that wrong tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (C < T in two trackers)
{main box = mean of those two trackers' bounding boxes close to the main box
TTM of those two wrong trackers = TTM of those two wrong trackers + 1
if (TTM of any of the wrong trackers >= β of that tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (TRL > TR in only one tracker)
{main box = bounding box of that tracker
TTM of those three wrong trackers = TTM of those three wrong trackers + 1

if (TTM of any of the wrong trackers >= β of that tracker)
{Reinitialize that wrong tracker
TTM of that wrong tracker = 0}}

else if (TRL > TR and C > T in all trackers)
{main box = bounding box of CSR-DCF}

Draw the main box}

In this algorithm, for each tracker TTM is calculated as
the following:

More trackers can be added using the algorithm 2 just by
adding the number of else-if blocks.

(5)TTM =

4∑

j=1

{
1, Cj > Tj
0, Cj < Tj

.

Since we use only the output of those tracking algorithms,
any tracker can be replaced with the ones used in ours. This
can clearly result in different performances and by imple-
menting this method, if we choose trackers in a way which
can extract a bigger variety of features, then we can have a
more robust and accurate tracker. The code is written in pure
Python and is publically available at (https​://githu​b.com/

https://github.com/AliSekhavati/ACI-trackers/blob/master/README.md

198	 A. Sekhavati, N. Eghbal

1 3

AliSe​khava​ti/ACI-track​ers/blob/maste​r/READM​E.md) as
well as the videos.

3 � Evaluation

This part focuses on practical issues of the ACI tracker and
how and why it has become different than its components.
We first compare the performance of the ACI tracker with
the trackers used to create it just to show how better the new
one can track and why it does not make some of the mistakes
which they might make while they are tracking targets alone.
After that, we compare it with some of the OpenCV trackers
both in speed and accuracy to have a better understanding of
other trackers as well.

A.	 Comparison with MOSSE tracker
	  MOSSE is the fastest of all these four due to using

Fast Fourier Transform, correlation filters and the track-
er’s simple architecture. But according to our experi-
ments, when it comes to dealing with big occlusions
which might cover around one-third of the target, its
tracking reliability decreases below its threshold until
that partial occlusion is passed. That is for the big
change in the target which does not fit the tracker’s filter.
Then it may redetect the target. If this type of occlusion
happens while pose variation is occurring, such as what
happens in “nascar_02” video, it totally stops tracking
until it redetects the same or a similar pose of the tar-
get, which might not happen in many cases. Because the
filter was made based on the another pose of the target
which cannot be seen after pose variation and occlusion.
Our method successfully continued tracking every time
by using CSR-DCF and MIL’s robustness.

	  Another problem that MOSSE tracker suffers from is
its dependency on the target’s high level of appearance
change in the first frames. In other words, the appear-
ance of the target must not change suddenly in the begin-
ning frames which the algorithm has just started learn-
ing. The reason for this is because this tracker is mainly
depended on correlation filters which cannot handle big
appearance changes at first. Such problem was observed
tracking five out of eight runners in the “race” video
and it caused the tracker to fail at the very beginning
and never be able to find the target again. While in the
ACI tracker, given the exact same bounding box at the
first frame, it successfully tracked all the runners in that
video. The CSR-DCF and MIL’s robustness and the
accuracy of KCF combined with the redetecting ability
of KCF and MOSSE were big helps dealing with these
type of issues.

	  This tracker is not immune to big pose variation dur-
ing scale change of the target for the same reasons men-

tioned above. In “nascar_01” it tracks the target for 81
frames out of 135 and then fails according to this prob-
lem. Also, not being able to make big changes in the size
of bounding box, for almost 20 of those 81 frames it only
tracks half of the car.

B.	 Comparison with KCF tracker:
	  KCF has difficulty dealing with partial occlusion. For

instance, in “nascar_02” video, when the followed car
passes a thin column, the KCF suddenly loses it and
fails in redetection phase. This problem is caused by its
too high redetection threshold. Whereas in ACI tracker,
it tracks the car during different partial occlusions in
the whole movie because of CSR-DCF and MIL’s per-
formance during such occlusions and MOSSE’s perfor-
mance afterward.

	  Such occlusions affect the tracker’s performance in
“american_pharoah” and “race” videos too. In the for-
mer, an occlusion occurs after 35 frames and KCF which
was properly tracking the target, stops tracking and fails
in redetection phase for the rest of the video. But in ACI,
because of the MOSSE’s better redetection ability and
CSR-DCF’s continuous tracking ability, KCF quickly
gets corrected by the other three algorithms and keeps
accurately tracking it in the whole video.

	  In the “race” video, showing a better performance
than MOSSE in some cases, it handles the redetect-
ing difficulties for most of the time other than the final
frames and thus, tracks the target in 79 frames out of
339. The occlusions were mostly for the runners who
were covering some parts of the target runner. While it
does prove a better performance than many other new
trackers, the ACI tracker outperforms this by accurate
tracking in more than 325 frames.

	  In “nascar_01” video, it follows the target in the first
67 frames but after that, the camera zooms in while the
target car is passing the camera and so pose variation
takes place as well, which makes it pretty difficult to
track using correlation filters alone. The ACI tracker
does track it in all the 136 frames. But since none of
its component trackers are adaptive enough to the scale
variation, it fails in drawing a bounding box covering the
whole car, and just approximately considers half of the
car instead.

C.	 Comparison with CSR-DCF tracker
	  Sometimes there are objects similar to the target when

the it gets occluded. This occlusion can take place by
that resembling object too. In such cases, CSR-DCF
tracker can easily get confused and misses the real tar-
get following the similar one while KCF and MOSSE
tracking methods can come in hand and correct it if pos-
sible. For instance, in the “american_pharoah” video, in
some experiments we set the bounding box to be only
the body of horses. During occlusions, the CSR-DCF

https://github.com/AliSekhavati/ACI-trackers/blob/master/README.md

199Auto‑correct‑integrated trackers with and without memory of first frames﻿	

1 3

tracker lost the target and started following the body
of the horse behind or other horses until the end of the
video. That is because its tracking reliability did not get
below its threshold and so it tracked the wrong object.
But this issue also causes more robustness for the tracker
when it is facing other problems. In ACI tracker, after
such occlusions the algorithm restarts tracking the real
target thanks to the KCF and MOSSE redetection phase.
For this video, when bounding box is just the body of
the horse, the CSR-DCF tracker fails because of occlu-
sions and other ones quickly correct it. But in that video,
when the bounding box is the whole horse and its rider,
CSR-DCF tracks it and the only problem was proposing
a bounding box bigger than target. This was caused by
long sequence of frames.

	  In the “race” video tracking one of the runners, after
huge partial occlusion, CSR-DCF mistakenly tracks the
runner who was in the way of the target. But MOSSE
and KCF redetect the real target, fix CSR-DCF and con-
tinue tracking it.

D.	 Comparison with MIL tracker
	  MIL tracker can handle big partial occlusions better

than the other three. But it usually fails handling full
occlusions. The main reason for this problem is that dur-
ing full occlusions, the tracker still tries to update its
classifier by new online features it extracts. However,
because during full occlusions the target is not visible
the classifier of the tracker gets updated with wrong
online features. Thus, after full occlusions there is a high
probability that the tracker tracks the occluding object
instead of the target. In “american_pharoah” video it
first tracks the target during huge partial occlusions that
none of the other three trackers do it. This success is

for the trackers multiple online learning. In the “race”
video anytime another runner fully or partially occludes
the tracking runner, this tracker’s classifier mistakenly
considers the occluding runner instead of the real tar-
get. Figure 2 shows how ACI algorithm with 4 trackers
works in practice.

E.	 Statistically comparison with other trackers
	  In this part, we generally compare the ACI tracker

in speed and accuracy with the trackers implemented
in OpenCV for being able to briefly compare all these
trackers at once. For this purpose, we examine the ability
of Boosting, MIL, KCF, TLD, Median Flow, GOTURN,
CSRT (CSR-DCF), MOSSE and our proposed method
(ACI) as Table 1 illustrates.

	  As the table above demonstrates, the ACI trackers
both using and not using the data of the first frames
outperform all the trackers implemented in OpenCV in
terms of accuracy and two of them are faster than many
others. We used python version of these trackers and
gathered the information above by tracking different tar-
gets in 7355 frames in 4 videos. This table shows add-
ing the fourth tracker which is fundamentally different
increases the algorithm’s capacity for better addressing
different problems, resulting an accuracy much better
than adding first frames’ memory. The only problem is
the decrease of the average speed which is caused by
MIL’s low processing speed. Another thing which can
be understood from results of KCF tracker is that it has
a really high accuracy when it detects the target, but
most of the time it suffers from a poor performance in
the detection phase. For overcoming the issue, this track-
er’s reliability threshold must decrease. We also faced a
problem using the GOTURN tracker and it was for the

Fig. 2   ACI algorithm with 4 trackers, correcting its components and its components correcting it. Black box: Main box—Blue box: KCF’s
Box—Red box: MOOSE’s Box—Green box: CSR-DCF’s box—white box: MIL’s Box (color figure online)

200	 A. Sekhavati, N. Eghbal

1 3

times when it was unable to separate the object from
background. In such cases, its region of interest would
keep expanding and it made the task pretty challeng-
ing. For instance, in the “american_pharoah” video that
is consisted of 3183 frames, the processor could only
compute in the first 211 frames and after that it stopped
the program for being computationally too expensive.
In the first frames, the ACI with memory is saving data
and so its processing speed is almost as half as ACI. But
after a while when it has saved the features required, it
achieves the speed of normal ACI. Figure 3 compares
Boosting, MIL, KCF, TLD and ACI algorithm with 3
trackers without memory of first frames.

4 � Conclusion

In this article we proposed a method of combining trackers
for using strengths of them all covering each other’s weak-
nesses. In this method trackers can correct each other and
thus, they are able to deal with more difficult obstacles. The
results of such combination both using and not using the fea-
tures extracted in the first frames outperformed all the track-
ers used for making the ACI and also all the other trackers
in OpenCV. Since any tracker can be combined in this way,
it seems to be a good idea to use different feature extractors
together such as algorithms based on neural networks or
other methods mentioned in Sect. 1.

Table 1   Comparing ACI trackers with eight OpenCV trackers

Tracker’s name Average processing
speed (FPS)

Frames with tracking reliabil-
ity over threshold (%)

Accuracy when target
is detected (%)

Overall
accuracy
(%)

Boosting 26.32 100 6.42 6.42
MIL 13.55 100 44.19 44.19
KCF 143.13 11.63 98.87 11.17
TLD 7.97 97.43 11.58 11.36
Median flow 109.98 72.54 12.86 7.07
GOTURN 11.07 100 33.33 33.33
CSR-DCF 29.27 99.43 56.70 56.68
MOSSE 1450.46 82.71 94.92 78.52
ACI without memory of first frames (3 trackers) 22.59 100 87.19 87.19
ACI with memory of first frames (3 trackers) 20.29 100 88.88 88.88
ACI without memory of first frames (4 trackers) 8.49 100 93.10 93.10

Fig. 3   Comparison with some other trackers: ACI algorithm with 3 trackers without memory of first frames. Black box—Boosting tracker: Red
box—MIL tracker: Purple box—KCF tracker: Cyan box—TLD tracker: Orange box (color figure online)

201Auto‑correct‑integrated trackers with and without memory of first frames﻿	

1 3

References

Akshay, S., Sajin, T., Ram Prashanth, A.: Improved multiple object
detection and tracking using KF-OF method. Int. J. Eng. Technol.
8 (2016)

Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online
multiple instance learning. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE (2009)

Bertinetto, L., et al.: Fully-convolutional siamese networks for object
tracking. In: European Conference on Computer Vision. Springer,
Cham (2016)

Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detec-
tion without using image information. In: 2017 14th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). IEEE (2017)

Bolme, D.S., et al.: Visual object tracking using adaptive correlation
filters. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE (2010)

Bradski, G.R.: Computer vision face tracking as a component of a per-
ceptual user interface. In: Workshop on Applications of Computer
Vision, Princeton, NJ (1998–10) (1998a)

Bradski, G.R.: Real time face and object tracking as a component of
a perceptual user interface. In: Proceedings Fourth IEEE Work-
shop on Applications of Computer Vision. WACV’98 (Cat. No.
98EX201). IEEE (1998b)

Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pat-
tern Anal. Mach. Intell. 17(8), 790–799 (1995)

Danelljan, M., et al.: Accurate scale estimation for robust visual track-
ing. In: British Machine Vision Conference, Nottingham, Septem-
ber 1–5, 2014. BMVA Press, (2014)

Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line
boosting. Bmvc 1(5), 6 (2006)

He, A., et al.: A twofold siamese network for real-time object tracking.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018)

Held, D., Thrun, S., Savarese, S.: Learning to track at 100 fps with
deep regression networks. In: European Conference on Computer
Vision. Springer, Cham (2016)

Henriques, J.F., et al.: High-speed tracking with kernelized correlation
filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596
(2014)

Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection.
IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)

Kalman, R.E.: A new approach to linear filtering and prediction prob-
lems. J. Basic Eng. 82(1), 35–45 (1960)

Kristan, M., et al.: The visual object tracking vot2015 challenge results.
In: Proceedings of the IEEE international conference on computer
vision workshops (2015)

Kristan, M., et al.: The visual object tracking vot2016 challenge results.
In: ECCV Workshop, vol. 2. no. 6. (2016)

Kristan, M., et al.: The visual object tracking vot2017 challenge results.
In: Proceedings of the IEEE International Conference on Com-
puter Vision (2017)

Lee, H., Choi, S., Kim, C.: A memory model based on the siamese
network for long-term tracking. In: Proceedings of the European
Conference on Computer Vision (ECCV). (2018)

Li, B., et al.: High performance visual tracking with siamese region
proposal network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2018)

Lukezic, A., et al.: Discriminative correlation filter with channel and
spatial reliability. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2017)

Patel, H.A., Thakore, D.G.: Moving object tracking using kalman filter.
Int. J. Comput. Sci. Mob. Comput. 2(4), 326–332 (2013)

Tran, A., Manzanera, A.: A versatile object tracking algorithm com-
bining particle filter and generalised Hough transform. In: 2015
International Conference on Image Processing Theory, Tools and
Applications (IPTA). IEEE (2015)

Wu, Yi, Lim, Jongwoo, Yang, Ming-Hsuan: Object tracking bench-
mark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848
(2015)

Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Com-
put. Surv. (CSUR) 38(4), 13 (2006)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ali Sekhavati  received his B.S.
in Electrical Engineering from
Sadjad University of Technol-
ogy, Iran in 2020. He is mainly
interested in doing research on
the subject of Machine Vision
and Machine Learning.

Najmeh Eghbal  received the B.S.
and M.S. degrees and also her
Ph.D. in electrical engineering
from Ferdowsi University of
Mashhad, Iran, in 2001, 2004
and 2012, respectively. She is an
assistance professor at Sadjad
University of Technology. Her
main research interests are mod-
elling and control of hybrid sys-
tems and machine vision.

	Auto-correct-integrated trackers with and without memory of first frames
	Abstract
	1 Introduction
	2 Proposed method
	3 Evaluation
	4 Conclusion
	References

