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Abstract
Coverage is a basic and critical issue for design and deployment of visual sensor networks, however, the optimization problem 
is very challenging especially when considering coverage of three-dimensional (3-D) scenarios. This paper provides a brief 
survey of mainstream coverage optimization methods for visual sensor networks, including the greedy algorithm, genetic 
algorithm (GA), particle swarm optimization (PSO), binary integer programming (BIP) and differential evolution algorithm 
(DE). We provide an efficient open-source C++ implementation of these algorithms and compare their performance on a 
typical camera deployment problem for coverage of 3-D objects. In order to improve the computational efficiency, a parallel 
visual occlusion detection approach is proposed and implemented with graphic processing units (GPUs), which are then 
integrated into all of the aforementioned optimization approaches for a fair comparison. Evaluation results show that (1) the 
proposed parallel occlusion detection algorithm largely improves the computational efficiency; (2) among the five typical 
approaches, BIP has the best coverage performance yet with the highest time cost, and greedy algorithm is the fastest approach 
at the price of coverage performance; GA, PSO, and DE achieve a compromise between the performance and the time cost, 
while DE has better coverage performance and less time cost than PSO and GA. These results could serve as engineering 
guidelines and baselines for further improvement of coverage optimization algorithms.
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1  Introduction

Visual sensors are widely used nowadays for their attrac-
tive advantages: low cost, light weight, non-contact sensing, 
rich information, etc. Applications with visual sensors are 
almost everywhere (Xu et al. 2011a; Shi et al. 2007; Kang 
and Medioni 2015; Miller et al. 2012). Because the sensing 
range of a single visual sensor is limited, multiple visual 

sensors are usually combined to form a visual sensor net-
work for many tasks, making visual sensor networks (VSNs) 
become a hot topic in recent years. Various applications of 
VSNs emerge such as surveillance (Wang 2013; Singh et al. 
2008; Bodor et al. 2007), industrial inspection (Alarcon-
Herrera et al. 2014a), object tracking Taj and Cavallaro 
(2011), etc. Interested readers are referred to monographs 
and surveys (Aghajan and Cavallaro 2009; Chen et al. 2008, 
2011; Tarabanis et al. 1995; Mulligan and Ammari 2010).

As a prerequisite of many tasks in the field of VSNs, 
coverage has been one of the most fundamental and impor-
tant research topics. Depending on whether the object model 
is known or not, the coverage approaches are classified as 
model-based approaches and non-model-based approaches 
(Chen et al. 2008). This paper focuses on survey and com-
parison of model-based approaches for coverage optimiza-
tion, where the three-dimensional (3-D) object/environment 
model is supposed to be known, as encountered in tasks 
of industrial inspection, dimensional measurement, and so 
on. Model-based coverage optimization is usually solved by 
establishing a coverage model (performance function with 
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constraints) followed by nonlinear coverage optimization 
to obtain the sensor deployment configurations (Chen et al. 
2008; Zhang et al. 2015b; Chen and Li 2004a).

A typical coverage model consists of a performance func-
tion with task and visual constraints, and an extensive survey 
of related works can be found in Mavrinac and Chen (2013). 
The performance function is used to evaluate the coverage 
which could be defined according to task requirements, for 
example, maximizing the covered area is one straightforward 
performance index. The task and visual constraints include 
camera field of view (FOV), resolution, blur, view angle, 
occlusion, etc. Most of these constraints could be formu-
lated in an explicit and analytical form to be easily inte-
grated into the subsequent optimization framework, except 
for occlusion. In practical implementation, the occlusion has 
to be checked one by one for each polygon face of the 3-D 
model, which is time-consuming and dramatically decreases 
the computational efficiency. Hence, fast visual occlusion 
detection is key to accelerate the computation and improve 
the overall efficiency of coverage approach, which will be 
studied in this paper.

Visual coverage optimization is generally modeled as a 
set cover problem based on the discrete representation of 
the 3-D surface model, which is NP-hard. In addition, the 
objective function and constraints are highly nonlinear with 
respect to the sensor configuration parameters including 
the position, orientation, etc, making the optimization even 
more difficult. Due to these two challenges, most coverage 
optimization approaches are based on greedy method (Alar-
con-Herrera et al. 2014b) or metaheuristic approaches, such 
as genetic algorithm (GA) (Chen and Li 2004a) and particle 
swarm optimization (PSO) (Mavrinac et al. 2014; Xu et al. 
2011b), to achieve suboptimal solutions.

In this paper, we will survey and compare five typical vis-
ual coverage optimization approaches including the greedy 
algorithm, GA, PSO, differential evolution (DE), and binary 
integer programming (BIP). We also provide an efficient 
open-source C++ implementation of these algorithms and 
compare their performance on a typical camera deployment 
problem for coverage of 3-D objects. In order to improve the 
computational efficiency, a parallel visual occlusion detec-
tion approach is proposed and implemented with graphic 
processing units (GPUs), which are then integrated into all 
of the aforementioned optimization approaches for a fair 
comparison. Evaluation results show that (1) the proposed 
parallel occlusion detection algorithm largely improves 
the computational efficiency; (2) Among the five typical 
approaches, BIP has the best coverage performance yet with 
the highest time cost, and greedy algorithm is the fastest 
approach at the price of coverage performance; GA, PSO, 
and DE achieve a compromise between the performance and 
the time cost, while DE has better coverage performance and 
less time cost than PSO and GA. These results could serve 

as engineering guidelines and baselines for further improve-
ment of coverage optimization algorithms.

In the remaining part, Sect. 2 gives an overview of related 
works about coverage model and optimization methods. Sec-
tion 3 will give a statement of problem which is used to 
compare different approaches. Section 4 describes the serial 
and parallel approaches of generating discrete solution space 
with occlusion checking. Section 5 introduces five typical 
approaches for selecting cameras from the solution space. 
Section 6 provides the simulation results and Sect. 7 is an 
conclusion.

2 � Survey of related works

VSNs could be viewed as a special kind of wireless sen-
sor networks (WSNs). However, different from traditional 
WSNs whose sensors are usually point sensors to collect 
sensing information at specific points such as temperature 
and pressure, visual sensors capturing information of scenes 
within some area in its field of view rather than single points. 
Therefore, visual sensor networks have features of area sens-
ing and (anisotropic) directional sensing, which makes its 
coverage problem more challenging than traditional WSNs. 
In Soro and Heinzelman (2005), Soro et al. point out and 
explain the important differences between WSNs and VSNs 
and show the differences by applying an algorithm designed 
for traditional WSNs to VSNs. The work in Charfi et al. 
(2009) also points out that the coverage optimization of 
VSNs is more complex than that of traditional WSNs.

Due to abundant applications of VSNs, it has become 
a rapidly developing research area in recent years. Many 
aspects of VSNs, such as data processing, communication, 
resource allocation, and so on Soro and Heinzelman (2009) 
have been investigated in the literature. Among all of these 
research topics, coverage is one of the most fundamental 
and active areas in VSNs. Several surveys have been con-
ducted about coverage problems of visual sensor networks 
(Costa and Guedes 2010; Guvensan and Yavuz 2011; Soro 
and Heinzelman 2009). It is shown from these surveys that 
coverage problems can be classified into different categories 
according to different rules. Some works study about the 
Pan-Tilt-Zoom VSNs (Yen 2014; Loscrí et al. 2012) while 
others focus on VSNs with static cameras (Alarcon-Herrera 
et al. 2014a; Zhang et al. 2015b). Some researchers work on 
mobile targets such as (Azin et al. 2014; Chow et al. 2007) 
while others take into account static scenes (Zhang et al. 
2014, 2015b, a). In addition, the area coverage (Fu et al. 
2014) is also distinguished from the target coverage (Yen 
2013). According to the spatial dimension, the coverage 
problems of VSNs can be divided into 3-D coverage prob-
lems and 2-D coverage problems, in which the complexity 
of three-dimensional coverage problems is much higher than 
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that of 2-D. For example, the sensing models for 3D visual 
coverage problems are more complex. Not only FOV should 
be considered, but also the image blur and resolution con-
straints should be taken into consideration. What’s more, the 
occlusion detection of 3-D coverage problems is also much 
more time-consuming. Therefore, as one typical representa-
tive problem, the surface area coverage problem for a static 
3-D scene or object will be the focus of this paper for subse-
quent comparison of different coverage optimization algo-
rithms, which has vast applications in industrial inspection, 
dimensional measurement, surveillance and monitoring, and 
so on. To solve the coverage problem, a coverage model is 
established first and then nonlinear coverage optimization is 
applied. Hence, this brief survey is divided into two parts: 
coverage model (with special focus on occlusion detection) 
and coverage optimization.

2.1 � Coverage model: occlusion detection

Different from general sensors such as lasers or infrared rays 
(Fanti et al. 2018), the sensing model of a visual camera is 
more complex. A precise model of VSNs will make a solu-
tion of coverage problem practically significant. The previ-
ous work (Mavrinac and Chen 2013) has provided a detailed 
survey about the modeling of visual sensor networks cover-
age, thus this paper will only give a brief introduction of four 
characteristics including FOV, image blur, resolution and 
occlusion in modeling the visual coverage, and in particular 
we will focus on the occlusion detection problem for which 
the existing literature still lacks in-depth survey, though it is 
very important to affect the computational efficiency.

2.1.1 � Field of view

First of all, FOV is one of the most fundamental character-
istics of a visual coverage model, which defines boundary 
of the sensing range. Different from traditional WSNs, the 
sensing range of a camera is an anisotropic area rather an 
isotropic circle or sphere. Thus, some works of two-dimen-
sional (2-D) VSNs consider the directional nature of cam-
eras and represent the FOV by a fan-shaped area (Ai and 
Abouzeid 2006; Yen 2013). In Hörster and Lienhart (2006b), 
(Costa et al. 2017; Jesus et al. 2018), the FOV is represented 
by a triangle. Altahir et al. (2017a, 2018) consider a cover-
age problem where the cameras are deployed in 3-D space to 
monitor a 2-D field so they represent the FOV by a change-
able fan-shaped area. These are simplified representations 
of FOV, which make sense in 2-D scenarios. In 3-D space, a 
pyramid is usually used to describe FOV (Malik and Bajcsy 
2008) whose boundary depends on the maximum angles 
that a camera is able to reach in four directions. Munishwar 
and Abu-Ghazaleh (2013) refer to the general FOV of cam-
eras, which is represented by its angle-of-view (AOV) and 

depth-of-filed. In fact, it is more suitable to call the AOV as 
FOV. The depth-of-field characteristic represents the area of 
the visual scene that is acceptably sharp, which is actually 
depends on the image blur.

2.1.2 � Image blur

The second characteristic is image blur. Points with different 
distances from the image plane result in image blur circles 
of different sizes. Only images that are sharp enough can be 
utilized in the practical applications. Therefore, the image 
blur constraint determines the acceptable maximum distance 
and minimum distance from the camera, thus coming out 
the near plane and far plane of a camera. FOV and the two 
planes determine the visible space which is called view-
ing frustum. 2-D coverage problem usually ignore this con-
straint, but works of 3-D coverage usually take it into con-
sideration for the accuracy of modeling (Park et al. 2006).

2.1.3 � Resolution

Another characteristic of VSNs is resolution. Resolution 
constraint guarantees the ratio between the pixel length and 
the corresponding physical length. In Mavrinac and Chen 
(2013), it is said that resolution is a function of depth along 
the optical axis. For a plane parallel to the image plane, it is 
true that the resolution depends only on the distance between 
them. While for a plane not parallel to the image plane, the 
angle between them should also be taken into consideration. 
Hörster and Lienhart (2006b) give a accurate definition for 
resolution when the object has a surface orthogonal to the 
optical axis and also mention that the resolution is smaller 
if the surface is not orthogonal. But they do not provide the 
specific formula. The work in Zhang et al. (2015b) combines 
the distance criterion and the view angle criterion together 
to form a new resolution criterion. They present the specific 
formula of resolution which account for both orthogonal and 
nonorthogonal situations, which is a more realistic defini-
tion of resolution. In this work, this new resolution criterion 
(Zhang et al. 2015b) will be adopted.

2.1.4 � Occlusion

In addition to the mentioned characteristics above, occlusion 
is also an issue in VSNs and the handling of occlusion con-
straints is usually time-consuming especially for 3-D models 
represented by many small polygon faces. Some works do 
not consider the occlusion constraint in the modeling for 
their special tasks. The work in Malik and Bajcsy (2008) 
considers stereo camera placement for 3-D reconstruction 
and the objective is the coverage of a rectangular space, 
wherein the occlusion is not considered. Abdelkader et al. 
(2008) study coverage of moving target and the occlusion of 
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walls is taken into account but the occlusion between targets 
are not considered because the model of targets are simpli-
fied as points. Some works seek to avoid the computational 
complex occlusion detection by minimizing the probability 
of occlusion due to randomly moving objects by covering 
each priority area using multiple cameras (Indu and Chaud-
hury 2009). This approach has its value in surveillance but 
in inspection of static objects, the accurate computation of 
detection is required. In fact, for most area coverage problem 
in three dimensions, it is necessary to handle the occlusion 
for correct and more precise evaluation of coverage.

The detection of occlusion is usually conducted by check-
ing whether the line of sight connecting the camera origin 
and a single point intersects with any obstacles (Mavrinac 
2012). Since every element of the target could be an obsta-
cle potentially, the occlusion should be checked one by one 
consuming a lot of time. The work in Zhang et al. (2014) 
uses polygon model for the object and detects occlusion by 
judging if the line segment connecting a vertex of triangle 
and the optical center is intersected with other triangles. 
Applications for industrial inspections usually represent 
an object by hundreds of thousands of triangles. To detect 
the occlusion in the view of one specific camera, (n − 1)2 
calculations need to be done (n denotes the total number 
of triangles in the object model), because every triangle 
needs to be detected if it is occluded by any other triangles. 
A kind of commonly used approach of visual coverage is 
the discrete solution space method. Alarcon-Herrera et al. 
(2014b) generate a candidate camera for each triangle to 
form an adjacent matrix. In this case, the computational 
complexity for occlusion detection will be O(n3) . The huge 
computation will result in huge time cost especially when n 
is large. To avoid the high time cost in occlusion detection, 
The work in Chow et al. (2007) checks occlusion posteri-
orly to further update the coverage results. However, tak-
ing occlusion detection in the posterior checking process 
may lead to inaccurate coverage performance especially 
when the object model is complex and a lot of occlusion 
exists. To deal with the high time cost in occlusion detection, 
Zhang et al. (2015b) points out that parallel computation is 
able to be adopted to obtain efficient occlusion detection. 
Although the parallel implementation is not provided in the 
previous work (Zhang et al. (2015b)), it is indeed a feasible 
approach because the occlusion relationship can be judged 
independently.

In computer graphics, ray casting or rasterization is usu-
ally used to display 3-D models (Hughes et al. 2013) in a 
speed quicker than that of human eye’s reaction. These 3-D 
models displayed are surely images after occlusion process-
ing. The key of these approaches to handle the occlusion is 
the use of the depth buffer or z-buffer. For each pixel, only 
the distance of the closest point will be recorded in the depth 
buffer. As a result, points away from the pixel will not be 

displayed. This is a successful implementation of occlusion 
detection. If the indices of triangles which are occluded can 
be obtained, it will be the ideal situation for our coverage 
problem. Although these depth buffer based approaches are 
now supported by special fixed-function units in graphics 
hardware and usually used for shading, there is no access to 
the index of the occluded triangles from the hardware. Thus, 
software methods for parallel occlusion that can return the 
index of occluded triangles still needs to be proposed.

In summary, as the existing hardware approaches can-
not return the indices of occluded triangles in our problem, 
in this paper, a software parallel implementation based on 
GPU is presented to improve the efficiency. Furthermore, to 
reduce the computational complexity, the field of view con-
straint is judged first to filter out part of the triangles which 
lie outside the camera field of view.

2.2 � Coverage optimization

The underlying optimization principle of visual coverage is 
similar to the NP-hard art gallery problem (AGP) (Urrutia 
2000), which aims to monitor an art gallery with the least 
number of guards in order to make sure every point is seen 
by at last one guard. However, the visual coverage optimi-
zation is more complex due to the anisotropic directional 
sensing feature and other vision-related characteristics. The 
aim of camera network deployment is to minimize the num-
ber of cameras needed to fulfill the full-coverage task, or in 
contrast, maximize the covered area or targets with specified 
number of cameras. Hence, the deployment of VSNs is an 
NP-hard problem, which means that, although the best solu-
tion could be find theoretically, the most direct approach, 
simple enumeration or brute force search, is impractical to 
solve this problem. Consequently, how to find a near-optimal 
solution in a reasonable time is the focus of the study. To 
address this issue, different researchers propose a variety of 
algorithms and their variants to solve the coverage problem, 
such as harmony search, simulated annealing (Soltani et al. 
2011; Morsly et al. 2012; Liu et al. 2014), and so on. Chen 
et al. (2014) utilize a mimetic algorithm based scheduling 
strategy and a heuristic recursive algorithm to maintain con-
tinuous coverage of WSNs. Altahir et al. (2017b) propose a 
dynamic programming algorithm for solving visual coverage 
problem and compare the outcomes with some existing opti-
mization techniques such as local, global search and inte-
ger programming methods. All of these approaches can be 
divided into two categories, the centralized approaches and 
distributed approaches (Ai and Abouzeid 2006). The distrib-
uted approaches use more computing resources like memory 
and processors to improve the efficiency, but the overall per-
formance may be degraded since usually only local infor-
mation is used. In contrast, centralized approaches usually 
achieve better performance by sacrificing some efficiency. 
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Due to the space limitation, this paper will focus on central-
ized approaches and review five mainstream optimization 
approaches which are used frequently in visual coverage 
optimization, including greedy algorithm, genetic algorithm 
(GA), particle swarm optimization (PSO), differential evolu-
tion (DE), and binary integer programming (BIP).

Greedy algorithm: Greedy algorithms are the most basic 
approaches with high efficiency because of their simple 
operation. The general practice of greedy algorithms is to 
choose the best solution every single time and repeat the 
process. They can be good choices if the requirement of 
coverage performance is not critical. Ai and Abouzeid 
(2006) utilize different greedy approaches to solve a 2-D 
coverage problem. The aim is to maximize the number of 
targets covered by adjusting the FOV of randomly deployed 
directional sensors whereas the number of sensors to be 
actived is minimized. They first propose a centralized greedy 
algorithm as baseline for comparison and then provide a 
distributed greedy algorithm to improve the performance. 
Later, Munishwar et al. propose their centralized and dis-
tributed force-directed algorithm to further improve the 
performance. The force-directed methods assign weights 
to different FOVs of one camera depending on the force 
exerted by targets on them. The force in a pan is calculated 
as the ratio of the number of targets coverable by the pan to 
the total number of targets coverable by the camera. Pans 
with large forces will be selected with high priority. These 
are typical greedy approaches in 2-D coverage for pan-only 
cameras but also can be used for reference to 3-D camera 
deployment applications.

In 3-D coverage, the greedy algorithm is usually followed 
by generating a coverage matrix first. Alarcon-Herrera et al. 
(2014a) design a greedy algorithm for their vision system 
in industrial inspection. The aim is to maximize the visual 
coverage and to minimize the number of cameras. In their 
approach, the concept of ‘adjacency matrix’ is introduced 
and constructed to show the coverage strength between 
each scene-point and each camera viewpoint, based on 
which a weighted overlap graph is generated for each pair 
of viewpoints. The compounded degree which is the product 
between coverage strength and overlap strength is defined as 
the criterion for viewpoint selection. With this criterion, the 
greedy algorithm selects viewpoint one by one according to 
the sorted list of compounded degree.

To sum up, the biggest advantage of greedy algorithms 
lies in its high computation efficiency with low time cost. 
However, it can not guarantee high coverage performance 
every time. Algorithms with flexibility which can achieve 
better coverage performance are needed.

Genetic algorithm: To achieve a higher coverage rate than 
that of greedy algorithms, many heuristic approaches has 
been reported in the literature as the mainstream approaches. 
As a relatively mature approach, genetic algorithm (GA) 

and its variants have been designed to solve the coverage 
optimization problem (Navin 2015; Indu and Chaudhury 
2009; Heidali and Movaghar 2011; Wang et al. 2009; Yoon 
and Kim 2013). Indu and Chaudhury (2009) apply GA to 
visual surveillance of large spaces and provide maximum 
coverage of the priority areas by PTZ cameras. The work in 
Wang et al. (2009) applies standard GA to optimize cover-
age in VSNs. The work in Yoon and Kim (2013) proposes 
an efficient GA to deal with the sensor deployment problem 
with static sensors. Based on the property that the pheno-
type space of the problem is a quotient space of the geno-
type space in a mathematical view, a Monte Carlo method 
is adopted to design an efficient evaluation function. The 
efficient GA is compared with random deployment and other 
existing methods, and evaluation results demonstrate the 
superior performance of GA in terms of both time efficiency 
and coverage quality. Chen and Li (2004b) design a novel 
hierarchical GA to deal with the automatic sensor placement 
for model-based robot vision. The proposed hierarchical 
chromosome in Chen and Li (2004b) consists of parameter 
genes and control genes showing the topology of viewpoints. 
Topcuoglu et al. (2009) present a hybrid GA to solve the 
sensor placement problem. The hybrid GA includes special-
ized operators for hybridization, which are problem-specific 
heuristics for initial population generation, intelligent varia-
tion operators which comprise problem specific knowledge, 
and a local search phase. As GA has high computational 
complexity, some works begin to find faster approaches. 
Heidali and Movaghar (2011) propose an efficient genetic-
based algorithm to deal with sensor network optimization 
problems that can achieve a good solution quickly. Navin 
(2015) proposes a distributed GA for WSNs to reduce the 
time consumption, and simulation results show that the dis-
tributed genetic algorithm achieves a near-optimal solution 
with better time performance compared with the centralized 
genetic algorithm.

Particle swarm optimization: Some works try other kinds 
of heuristic algorithms instead of GA, for instance, swarm 
intelligence optimization algorithms (Loscrí et al. 2012; 
Kulkarni and Venayagamoorthy 2011a; Konda and Conci 
2013; Fu et al. 2014). PSO is the most common one of swarm 
intelligence optimization algorithms. It is a stochastic opti-
mization technique inspired by flocking of birds, which is 
based on the multi-agent cooperation rather than competition 
in GA. Ready and conci (2012) apply PSO to optimize video 
camera positioning in 2-D indoor environments, which con-
siders both global coverage and local coverage. The work in 
Konda and Conci (2013) points out that there are three main 
advantages of PSO over the GA in terms of computational 
complexity, parameter tunning and prevention of stagnation, 
thus the authors apply the PSO to the coverage optimization 
and reconfiguration. Kulkarni and Venayagamoorthy (2011a) 
apply PSO to address WSN issues including static and mobile 
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WSN deployment and point out the advantages and disadvan-
tages of PSO for optimization problems in WSNs. Variants 
of PSO are also designed for the camera placement problem. 
To improve the performance of the original PSO, Loscrí et al. 
(2012) propose a PSO algorithm for WSNs whose particle 
speed is updated by considering a consensus algorithm based 
on local optimum position. Simulation results show that their 
techniques obtain remarkable results for both coverage and 
energy consumption for movement. The work in Morsly et al. 
(2012) proposes a novel method based on binary particle 
swarm optimization (BPSO) inspired probability technique 
and compares it with the performances of some stochastic var-
iants of optimization based particle swarm algorithms. Simu-
lation results for 2-D and 3-D scenarios show the efficiency 
of their proposed technique. The work in Fu et al. (2014) also 
proposes a probability inspired binary PSO (PI-BPSO) to deal 
with the surveillance task. They assume that the probability 
of choosing each grid is the same and the coverage ratio can 
be determined by sampling. The simulation results show the 
effectiveness of the proposed PI-BPSO algorithm.

Differential evolution: The DE algorithm is one typi-
cal population-based heuristic evolutionary optimization 
method, which is developed for real-valued numerical opti-
mization problems. Similar with GA, the DE algorithm 
contains the mutation, crossover, and selection module, yet 
it has stronger mutation strategies than GA, and the informa-
tion of distance and direction from the current population is 
fully utilized to serve as some guidance in the search process 
(Iwan et al. 2012). Though the DE algorithm is applied in 
many applications including deployment of RFID sensors 
(Seok et al. 2010), design of antennas (Deb et al. 2014), 
object detection (Ugolotti et al. 2013), system modeling 
(Konar and Aytekin 2016), and so on, it is rare to be used 
for coverage optimization of visual sensor networks. Thus, 
we carry out the first trial in our recent work (Zhang et al. 
2016a) to show that the performance of DE is significantly 
better than that of greedy algorithms for visual coverage 
optimization. However, the comparison with other algo-
rithms are not conducted in Zhang et al. (2016a).

Binary integer programming: As coverage optimiza-
tion of visual sensor networks is essentially a mathemati-
cal programming problem, integer linear programming is 
also applied as an effective solution in some works. Hörster 
and Lienhart (2006a) use an integer linear programming 
approach to solve the optimal visual sensor placement prob-
lem in 2-D space. The work in Hörster and Lienhart (2006b) 
considers four different visual sensors placement problems 
and propose the corresponding binary integer programming 
approaches for the problems to obtain the global optimal 
solutions. As the BIP problem is not able to be solved in a 
reasonable amount of time and memory with an arbitrar-
ily large number of variables and constraints, they have to 
keep the number of variables and constraints as small as 

possible and solve the problem using the LINGO package. 
Zhao and Cheung (2009) also adopt BIP to optimize deploy-
ment of visual sensors. The BIP approach seems like the 
best approach because it can provide the exact formulation 
of coverage problems. But in fact, even though the coverage 
problem can be transformed into a BIP problem, it is still an 
NP-hard problem. With the fast development of expensive 
commercial optimization softwares, the BIP can be solved 
efficiently when the scale of the problem is small. However, 
when the problem scale is large, the time cost increase fast 
and the final obtained solution may not be the optimal one.

Summary and comparison of different algorithms: To ana-
lyze the advantages and disadvantages of these optimization 
algorithms, some existing works conduct simulations and 
experiments among different algorithms. Deif and Gadallah 
(2014) discuss the strength and limitations of four mathemat-
ical approaches for WSN deployment: GA, computational 
geometry (CG), artificial potential fields (APF) and PSO. 
According to the work, it is shown that “GA and PSO are 
better suited for deploying WSNs with multiple design objec-
tives than CG and APF approaches”. Morsly et al. (2012) 
apply several PSO based approaches, binary GA, Simulated 
Annealing and Tabu Search to the optimal camera network 
placement. Their results show the binary PSO inspired prob-
ability performs the best in both coverage rate and efficiency. 
Regarding comparison between DE and PSO, there have been 
no results reported for coverage optimization of visual sensor 
networks. However, some results have been published for 
comparison of PSO and DE for general benchmark prob-
lems (Iwan et al. 2012; Civicioglu and Erkan 2013; Kachit-
vichyanukul 2012; Ülker and Haydar 2012) and other specific 
applications (Deb et al. 2014; Ugolotti et al. 2013; Konar 
and Aytekin 2016; Basgumus et al. 2015). In those works 
for general benchmark problems, it is shown that DE outper-
forms PSO in terms of repeatability and convergence rate 
in Iwan et al. (2012), Civicioglu and Erkan (2013), Kachit-
vichyanukul (2012), and it is shown in Ülker and Haydar 
(2012) that DE has better performance for most benchmark 
problems than PSO and GA, while for two problems PSO 
has faster convergent speed. In the applications (Deb et al. 
2014; Ugolotti et al. 2013; Konar and Aytekin 2016; Basgu-
mus et al. 2015), DE achieves better performance for design 
of antennas (Deb et al. 2014), system modeling (Konar and 
Aytekin 2016), optical communication systems (Basgumus 
et al. 2015), while PSO has better performance for object 
detection (Ugolotti et al. 2013). Thus, it is necessary to inves-
tigate the performance of DE with respect to other algorithms 
for visual camera sensor networks.

To summarize, the greedy algorithm achieves the fast-
est computational speed while sacrificing coverage perfor-
mance; the BIP algorithm is NP-hard, yet it presents the best 
coverage performance while the time cost increases dramati-
cally as the problem scale increases including the number of 
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cameras and the size of the 3-D object model. GA, PSO and 
DE are metaheuristic optimization algorithms which achieve 
a compromise between greedy algorithm and BIP, yet com-
parative performance analysis among them still needs to be 
explored for the task of visual coverage optimization.

2.3 � Contribution of this paper

According to the previous survey, it is seen that parallel 
visual occlusion detection needs to be studied as a common 
computational issue to improve the efficiency of the cover-
age optimization algorithm. In addition, fair comparative 
analysis of these five typical approaches needs to be con-
ducted in the context of visual coverage optimization for 
3-D scenarios. Compared with related works in the previous 
survey, the main contribution of this paper can be summa-
rized as follows:

1.	 We conduct a survey of the five typical visual coverage 
optimization approaches including the greedy algorithm, 
GA, PSO, differential evolution (DE), and binary integer 
programming (BIP).

2.	 To improve the time efficiency of occlusion detection, 
this paper designs a parallel implementation to increase 
the computational efficiency and utilizes the field of 
view constraint to reduce the amount of computation.

3.	 An open-source GUP-based C++ implementation of the 
algorithms including the greedy approach, GA, PSO, 
DE, and BIP is provided, and these five approaches are 
compared in terms of the time efficiency, coverage per-
formance, and so on.

It should be noted that the paper aims to provide more gen-
eral guidelines and interpretation of existing algorithms, 
thus we use the standard version of PSO, GA and DE, while 
various variants of them are not involved in this paper.

3 � Problem statement

In this section, the environment model and the camera model 
will be introduced and the criteria of coverage will be pre-
sented. Then, the general idea of camera network deploy-
ment for visual coverage optimization will be stated.

3.1 � Environment (object) model and camera model

In this paper, the object model is expressed with a triangle 
mesh, wherein each triangle is described by three vertices. 
The coordinate of each vertex and the vertices of each trian-
gle face are provided by a 3-D model file.

The camera model is described by its intrinsic parameters 
and external parameters. Its intrinsic parameters include 

the focal length f ∈ ℝ
+ in mm, the horizontal and verti-

cal pixel dimensions su ∈ ℝ
+and sv ∈ ℝ

+ in mm/pixel, the 
principle point o = [ou ov] ∈ ℝ

2 in pixel coordinates, the 
image width w ∈ ℕ

+ and the image height h ∈ ℕ
+ in pixel. 

A ∈ ℝ
+ denotes the effective aperture diameter of the optical 

lens in mm, Zs ∈ ℝ
+ represents its subject distance. Its exter-

nal parameters include its position and orientation relative 
to the world coordinate system. In this paper, we assume the 
intrinsic camera parameters are calibrated and the camera 
network deployment problem is to compute the extrinsic 
parameters to maximize the overall coverage area.

3.2 � Criteria of visual coverage

To judge if a triangle is covered by a camera, four crite-
ria which are discussed in the last section are considered 
including the field of view, the blur, the resolution and the 
occlusion.

•	 Field of view: let xci , yci , zci represent the coordinate of a 
triangle center under camera ci . �l , �r , �t , �b are respec-
tively the left, right, top and bottom view angle of a cam-
era. The field of view rule can be described as 

•	 Image blur: let ca represent the largest degree of blur 
that can be accepted, with zn , zf  respectively denoting the 
nearest and farthest distance a camera can inspect with 
blur less than ca , then the image blur rule is 

 where zn , zf  is computed as 

 The field of view and image blur criteria mean that a 
triangle has to be in the view frustum of a camera, or it 
is not covered. A more vivid explanation can be seen in 
Fig. 1 where the view frustum degenerates into a trap-
ezoid on the XOZ plane.

•	 Resolution: resolution is represented by the number of pix-
els on the image plane occupied by the unit length on the 
object surface. Figure 2 shows the resolution of the object 
in the Y direction, where r(Pci

) is the resolution and �i is the 
angle between the opposite direction of the normal vector 

(1)

− tan�l ≤
xci

zci

≤ tan�r,

− tan�t ≤
yci

zci

≤ tan�b.

(2)zn ≤ zci ≤ zf

(3)
zn =

Zs ⋅ f ⋅ f

f ⋅ f + A ⋅ ca ⋅ Zs
,

zf =
Zs ⋅ f ⋅ f

f ⋅ f − A ⋅ ca ⋅ Zs
.
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of a triangle and the Z axis. According to the principle of 
triangle similarity, the following formula can be obtained 

 The resolution constraint is satisfied only if the mini-
mum required resolution in both X and Y directions is 
satisfied. Let ra denote the minimum required resolution 
of the triangle, the resolution rule can be described as 

•	 Occlusion: if the line segment which connects a vertex 
with a camera intersects with a triangle at an interior 
point of this triangle, then the vertex is occluded under 
the view of the camera. If one or more vertex of a triangle 
is occluded, then the triangle is occluded.

(4)
f

zci

=
r(Pci

)

cos �i
.

(5)r(Pci
) =

f ⋅ cos�i

zci ⋅ max(su, sv)
≥ ra.

3.3 � General idea to solve the problem

In this paper, we refer to the work in Alarcon-Herrera et al. 
(2014b) and solve the deployment problem with a set cover 
approach. It consists of two parts. In the first part, a can-
didate camera will be generated in the right above of each 
triangle with appropriate distance to form a coverage matrix. 
Let CF denote the matrix consisting of n rows and n col-
umns. Its F(j) covby C(i) means the jth triangle is covered 
by the ith camera. F(j) uncovby C(i) means the jth triangle 
is not covered by the ith camera ( i = 1, 2⋯ n;  j = 1, 2⋯ n ). 
Matrix CF describes the coverage relationship as follows:

In the second part, a number of D cameras will be selected 
from the n candidate cameras so that the covered set of tri-
angles is maximized (D is the given number of cameras to 
be placed).

To summarize, the first part is to generate discrete solu-
tion space (GDSS) and the second part is to select cameras 
(SC) by coverage optimization, which will be described in 
Sects. 4 and 5, respectively.

4 � Different gdss approaches

This section will give the existing serial GDSS (S-GDSS) 
approach and propose a GPU-based parallel GDSS 
(P-GDSS) approach, wherein the visual occlusion detection 
is conducted in a parallel way with field of view detection 
being implemented first to suppress the computation burden.

4.1 � Serial GDSS approach

In existing works, the GDSS procedure is conducted with a 
serial approach. It detects all the triangles respectively with 
the four coverage criteria presented in Sect. 3 to get the cov-
erage matrix. The former three criteria are used to get a cov-
erage matrix first. And then all the triangles will be detected 
by the occlusion criterion to renew the matrix and thus the 
final coverage relationship is obtained. Let F(i) denote the 
ith triangle. T(i) ∈ ℝ

3×3 and R(i) ∈ ℝ
3×3 represent the trans-

lation (position) vector and orientation matrix of the ith cam-
era in the world coordinate system, respectively. T and R are 
the discrete solution space of translation vector and orienta-
tion matrix. F(j) < F(i) means F(j) is occluded by F(i) . The 
S-GDSS approach can be described as Algorithm 1. 

(6)CF(i, j) =

{
0, F(j) uncovby C(i)

1. F(j) covby C(i)
Fig. 1   Camera field of view and image blur

Fig. 2   Sensing resolution
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4.2 � Parallel GDSS approach

In Algorithm 1, the occlusion detection is a high time con-
suming step. For a model consisting of n triangles, n can-
didate cameras need to be generated. For camera C(i) , to 
detect whether a triangle F(j) is occluded by other triangles, 
we need to calculate if the line segment links C(i) with F(j) 
intersects with the triangle F(k) ( i = 1, 2⋯ n;  j = 1, 2⋯ n

; k = 1, 2… n ). Therefore, the time complexity of the algo-
rithm is O(n3) , and the computational efficiency for the pro-
cess of forming CF matrix is rather low. This paper improves 
the time efficiency from following two aspects:

Parallelization: A parallel approach through GPU is pro-
posed in this paper to improve the computation efficiency. 
In this approach, n blocks are divided with each block con-
taining n threads. The n2 threads fulfill the whole task of 
occlusion detection in the field of view of one camera. As 
these threads can be seen as running at the same time, which 
means n2 of calculation is done at one time, the whole time 
complexity will drop from O(n3) to O(n). It should be noted 
that this paper only take small scaled models into account 
so the computer is able to allocate n2 threads. Parallelization 
can also be applied to the occlusion detection of large scaled 

models but the acceleration effect depends on the Parallel 
capability of the computer.

Reducing the computation cost: In the mentioned serial 
approaches above, we detect the occlusion relationship 
between each pair of triangles of the n triangles. However, 
if a triangle is not in the field of view of the camera, it is not 
necessary to detect whether it is occluded, meanwhile, it 
can not occlude any other triangles. Thus, we can utilize the 
field of view detection to screen out some triangles first and 
only detect these remaining triangles with other constraints 
including resolution, blur and view angle. In this way, the 
time efficiency of visual occlusion can be further improved.

Let CF2 denote the n × n matrix formed by n blocks with 
each block containing n threads in GPU, it describes the 
occlusion relationship in the view of one camera. record is an 
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array that records the indices of triangles which are in the field 
of view of a camera. k and s are used to count. Algorithm 2 
shows the pseudo code of the parallel GDSS approach.

It can be seen that the dual loop of occlusion detection 
in Algorithm 1 is replaced by a GPU-based implementation 
in line 26–30. Then an extra logical AND operation is used 
to renew the CF matrix. As the AND operation is very fast, 
the time consumption of the extra part is little and can be 
ignored. Thus the time consumption of occlusion detection 
is reduced from O(n3) to O(n).

It can also be seen in Algorithm 2 that the field of view 
constraint is first detected and resultant triangles satisfying 
this constraint are recorded in an array. Then the occlusion 
detection is only conducted in a parallel way for triangles in 
the array. If only minority part of the object model satisfy 
the field of view constraint, it will largely reduce the com-
putational complexity.

5 � Different SC approaches

In this section, the greedy SC approach (G-SC) and two 
heuristic algorithms including genetic algorithm (GA) and 
particle swarm optimization (PSO), will be applied to the 
SC problem. After that, differential evolution (DE) will be 
adopted for visual coverage optimization, which has not 
been reported in the previous works. Finally, the SC prob-
lem will be reformulated into a binary integer programming 
(BIP) problem and solved by a commercial optimizer.

5.1 � Greedy SC approach

To select D cameras from n candidate cameras, the work 
in Alarcon-Herrera et al. (2014b) gives a greedy approach 
as follows:

1.	 Search the row of CF whose sum is the largest, and 
choose the corresponding candidate camera with index k.

2.	 Renew the CF matrix: for 1 ≤ s ≤ n , if CF(k, s) = 1 , then 
CF(∶, s) = 0 , where s represents the index of triangles 
which the kth camera covers.

3.	 If the total number of chosen cameras is less than D, go 
to the first step. Otherwise, stop and return indices of the 
chosen cameras.

Let Tc and Rc denote the solution group of translation vec-
tor and orientation matrix. Each element of Tc denotes the 
translation vector of one camera. The corresponding ele-
ment of Rc is the orientation matrix of the corresponding 
camera. nCov(i) represents the number of triangles that 
C(i) covers ( i = 1, 2⋯ n ). N is the total number of trian-
gles covered by the D placed cameras. Then the greedy 
approach can be described as Algorithm 3. 

The time cost of this algorithm is very low because of 
its simple process, but its coverage performance is often 
not satisfactory. As a greedy algorithm, it chooses the 
camera that covers maximum triangles every time, which 
may be the best choice every single time. However, it 
ignores the fact that the combination of D single optimal 
solutions does not equal to the optimal overall solution. 
Therefore, new algorithms needs to be explored to improve 
the coverage performance.

5.2 � GA‑SC and PSO‑SC approaches

As relatively mature algorithms, GA and PSO are often 
applied to solve the coverage problem of WSNs or VSNs. 
In this paper, these two algorithms are also used for the SC 
procedure. GA is one of the most powerful meta heuristic 
methods to solve optimization problems. It is based on 
inherent selection, which drives biological evolution. It 
can reach near optimal solution with sufficient generations 
of evolution. As the steps of GA have been introduced by 
lots of previous works, in this paper we only give a brief 
introduction of our design in every step as follows:

Initialization: among numerous encoding strategies, 
this paper chooses the integer coding approach which is 
more suitable for the SC problem because the camera indi-
ces are integers. Genes are represented by integers whose 
range are from 1 to n. Each individual consists of D genes 
and one generation is made up of pop genes.

Selection: The number of triangles covered by each 
camera is computed as the fitness value and the roulette 
method is used for selection.

Crossover: Uniform crossover is used in this paper 
which means every gene in the individual has the same 
probability to cross.

Mutation: Uniform mutation is applied, which means 
every gene in the individual has the same probability to be 
replaced by a random integer ranged from 1 to n.
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PSO is another meta heuristic method, which is based on 
flocks of birds. A set of particles are sprinkled in the solu-
tion space with thier initial velocities. Then, the position 
and velocity of every particle will be updated again and 
again according to the position of the best particle at present 
and the best particle in the whole procedure. As PSO has 
also been introduced by many previous works, this paper 
will not introduce the detailed operation procedures of PSO 
and only focus on what is designed in our PSO approach 
for the specific visual coverage tasks. In this paper, each 
particle is an array made up of D integers with each inte-
ger represents the index of a camera. There are D initial 
velocities for the D elements in each particle which are all 
randomly generated from −vmax to vmax . vmax is the speed 
limit for elements in the particle, which means the velocity 
of an element can not exceed vmax in the updating procedure.

Through lots of trials on the models used in this paper, 
crossover probability is chosen as 0.4 in GA because with 
this crossover probability the GA approach has the best 
convergence property. As the mutation probability of GA is 
usually low, mutation probability is chosen as 0.001 in this 
paper. In PSO, vmax is chosen as 20. As the population size 
influences the performance of GA and PSO, a lot of trials 
are made and the population size of GA and PSO are chosen 
as 30 and 20, respectively.

5.3 � DE‑SC approach

As a very effective global search algorithm with a quite sim-
ple mathematical structure, DE gains its popularity in vari-
ous application in recent years. However, DE has not been 
reported to be adopted to solve the visual sensor deployment 
problem, and this paper makes an attempt. It contains four 
steps: initializing, mutation, crossover and selection. Though 
modules of DE and GA are similar, in fact these two algo-
rithms are quite different. The essential difference is that the 
DE algorithm generates new individuals mainly by mutation, 
while GA mainly use crossover to generate new individuals 
with mutation playing a role of assistance. In addition, the 
strategies of DE and GA are also different in the modules of 
mutation and selection.

For the DE algorithm, its individual is an array made up 
of D integers. Each integer ranges from 1 to n, representing 
the index of a camera. pop is an integer which represents 
the population size. Let xi(0) be the ith individual of the 0th 
generation. xi,j(0) denotes the jth gene of xi(0). vi represents 
the ith individual after mutation. ui denotes the ith individual 
after crossover. A brief introduction of the adopted DE algo-
rithm is as follow.

Initializing the population:

(7)
{xi(0)|1 ≤ xi,j(0) ≤ n, i = 1, 2⋯ pop; j = 1, 2⋯D}

xi,j(0) = randint(1, n)

where randint(1, n) is an uniformly distributed random inte-
ger from 1 to n.

Mutation: in this step, the individual vi is generated by 
mutation

where F is a zoom factor, and xi(g) is the ith individual of gth 
generation. r1 , r2 , and r3 are uniformly distributed random 
integers from 1 to n. In the process of evolution, if a gene of 
vi(g) is smaller than 1 or larger than n, it will be reproduced 
by the same random way as the population is initialized in 
(6).

Crossover: In this step, the individual ui is generated by 
crossover between vi and xi.

where pc is the crossover probability and rand(0, 1) is an 
uniformly distributed random decimal between 0 and 1. jrand 
is a randomly distributed integer between 1 and D. In this 
paper, pc = 0.3 . To ensure at least one gene of vi,j(g) delivers 
to the next generation, let the jrandth gene pass to ui,j(g) . The 
process is as Fig. 3. As is shown in the Fig. 1, the crossover 
procedure is started at the jrand gene and the 4th gene of ui(g) 
is delivered to vi as jrand is 4. Then, the next gene of ui comes 
from vi as the random decimal r1 is less than or equal to pc . 
This procedure repeats until ui(g) is completely generated.

Selection: this step decides which one between ui(g) and 
xi(g) comes into the next generation as

where f (xi(g)) is the number of triangles covered by indi-
vidual xi(g) . The condition to be left is that the individual 
covers more triangles.

(8)
vi(g) = xr1 (g) + F ⋅ (xr2 (g) − xr3 (g))

i ≠ r1 ≠ r2 ≠ r3

(9)ui,j(g) =

⎧
⎪⎨⎪⎩

vi,j(g) rand(0, 1) ≤ pc or

j = jrand
xi,j(g) otherwise

(10)xi(g + 1) =

{
ui(g) f (ui(g)) ≤ f (xi(g))

xi(g) otherwise

Fig. 3   Crossover
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Let gbest represent the number of triangles covered by 
the best individual in the whole process, r1 , r2 and r3 repre-
sent random integers from 1 to n. maxGeneration represents 
for which times the generation will evolve. The differential 
evolution approach for selecting cameras (DE-SC) can be 
described as Algorithm 4. 

5.4 � BIP‑SC approach

In this subsection, the deployment problem is formulated 
as a binary integer programming problem and solved by a 
commercial optimizer ‘Gurobi’.1 The aim of optimization 
is to maximize the number of covered triangles, which is 

equivalent to minimizing the number of uncovered triangles. 
Let ai represent whether the ith camera is selected and bi 
denotes whether the ith triangle is covered, where

ei,j is the ith row jth column element of matrix CF . Then 
the set cover problem can be formulated into the following 
binary integer programming problem:

The optimization software Gurobi is used to solve this BIP 
problem due to its internal powerful numerical algorithms 
for mixed-integer problems with linear constraints.

6 � Performance evaluation

This section will compare the two GDSS approaches pre-
sented in Sect. 4 and the five SC approaches in Sect. 5.2

6.1 � Comparison for two GDSS approaches

To compare the time performance of the S-GDSS and 
P-GDSS, we employ 3-D models with increasing amount 

(11)ai =

{
0, the ith camera is not selected

1. the ith camera is selected

(12)bi =

{
0, the ith triangle is covered

1. the ith triangle is not covered

(13)min

n∑
i=1

bi

(14)s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

ai = D

n∑
i=1

ai ⋅ ei,1 + b1 ≥ 1

n∑
i=1

ai ⋅ ei,2 + b2 ≥ 1

⋯

n∑
i=1

ai ⋅ ei,n + bn ≥ 1

Table 1   Time cost of different 
GDSS methods

Triangles 100 200 300 400 500 600

S-GDSS (ms) 69 533 1739 4102 8055 13723
P-GDSS (ms) 131 223 382 476 610 724

1  The optimizer Gurobi can be found at http://www.gurob​i.com.

2  An open source implementation of these approaches could be found 
at https​://githu​b.com/MobFl​yRobL​ab/COVSN​ for interested readers 
to repeat the evaluation results.

http://www.gurobi.com
https://github.com/MobFlyRobLab/COVSN
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of triangles from 100 to 600. For each triangle in the model, 
a viewpoint is generated in the way stated in Sect. 3.3. The 
program is running on a computer of i5-6300HQ CPU and 
NVIDIA Geforce GTX950M GPU.

Table 1 shows the comparison of the S-GDSS approach 
and the P-GDSS approach. Figure 4 visualizes the data in the 
Table 1. It is seen from Fig. 4 that when the number of tri-
angles is 100, the S-GDSS approach is faster than P-GDSS. 
This may result from the time cost of the data exchange 
between GPU and CPU in P-GDSS. But soon the time con-
suming of S-GDSS exceed that of P-GDSS. And the differ-
ence of efficiency between these two approaches becomes 
larger and larger as the amount of triangles grows. It is 
shown in Fig. 4 that the time cost of P-GDSS is roughly lin-
ear to the scale of the model while the time cost of S-GDSS 

Fig. 4   Comparison of efficiency: the vertical axis indicates the time 
cost in ms, the horizontal axis denotes the amounts of triangles in 
object models
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increases sharply. It can be found from Table 1 that when the 
number of triangles in the used 3-D model grows to 600, the 
time cost of P-GDSS approach is still less than 1 s while the 
S-GDSS costs more than 13 s. Note that these approaches 
are running on the release mode of VS2013 which means the 
program has been optimized in time cost. Otherwise, the gap 
between these two approaches will be even larger.

6.2 � Comparison for five SC approaches

To compare the performance of the the five SC approaches 
stated in Sect. 5, three models with different shapes but 
almost the same number of triangle faces are adopted. As 
shown in Fig. 5, the three models are door, hood and bowl. 
And then, bowl models with the same shape but higher reso-
lutions are also used. A comparison of time efficiency and 
coverage results is depicted in Tables 2 and 3, where the 
number of cameras are set as D = 7 . The coverage results 

of five SC approaches on one model is shown in Figs. 6, 7, 
8, 9 and 10, where the blue areas denote covered triangles 
and the green areas denote those uncovered.
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Fig. 6   Simulation result of G-SC
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Fig. 8   Simulation result of PSO-SC
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worse performance than BIP-SC. To compare the perfor-
mance among GA-SC, PSO-SC and DE-SC, we set termina-
tion conditions to make the three methods take roughly the 
same time and the average number of triangles covered by 
DE-SC is always the largest, which means DE-SC is the best 
heuristic approach for the visual coverage task.

6.2.2 � Time cost

Table 3 shows time costs of different approaches with dif-
ferent models. It can be seen that the time cost of BIP-SC 
approach increases fast as the number of triangles grows. 
With a number of 1600 triangles, the time cost is nearly 3 
min. It is also shown that BIP-SC approach can take much 
time even on a model with small triangles such as the hood 
model. Meanwhile, the three heuristic algorithms hold rea-
sonable time costs which increase steadily as the amount of 
triangles grows. Therefore, regarding the time complexity, 
the three heuristic algorithms are better than BIP-SC.

6.2.1 � Coverage performance

In Table  2, the coverage performance of the five SC 
approaches are presented. The first row of this table is the 
model name and the second row shows the numbers of tri-
angles of different 3-D models, while other rows show the 
number of covered triangles by different approaches listed in 
the second column. Each approach runs ten times on every 
model and the best case, worst case, average and standard 
deviation are recorded.

It is seen that, among these five approaches, the G-SC 
approach possesses the worst coverage performance, which 
cannot satisfy the requirement of many practical applica-
tions. Thanks to the powerful Gurobi optimizer, BIP-SC 
holds the best coverage performance on all the models. Yet, 
since the problem is essentially NP-hard, the numerical algo-
rithm cannot achieve the optimal solution in finite time when 
the size of the 3-D model is too large. The three heuristic 
approaches, GA-SC, PSO-SC and DE-SC achieve a compro-
mise between the BIP-SC and G-SC, and they have slightly 

Table 2   Number of triangles 
covered by different methods

Model hood door bowl1 bowl2 bowl3 bowl4 bowl5 bowl6 bowl7
Total triangles 378 380 380 600 800 1000 1200 1400 1600

Mean
   G-SC 370 350 331 535 722 937 1098 1314 1495
   GA-SC 370.5 362.7 352.3 575 771.6 975.1 1167.7 1360.2 1558.7
   PSO-SC 361.8 359.2 341.9 564 760.2 957.1 1141.6 1333.7 1539.4
   DE-SC 372.2 364.6 357.2 574.7 776.5 977.2 1171.6 1371.1 1569.3
   BIP-SC 373 366 360 579 781 985 1180 1380 1579

Best
   G-SC 370 350 331 535 722 937 1098 1314 1495
   GA-SC 373 364 360 579 778 981 1176 1373 1572
   PSO-SC 369 363 348 573 774 965 1164 1356 1561
   DE-SC 373 366 359 576 779 982 1175 1378 1571
   BIP-SC 373 366 360 579 781 985 1180 1380 1579

Worst
   G-SC 370 350 331 535 722 937 1098 1314 1495
   GA-SC 368 361 344 570 761 970 1162 1341 1535
   PSO-SC 356 352 335 559 743 947 1106 1304 1510
   DE-SC 371 363 353 571 774 974 1167 1367 1567
   BIP-SC 373 366 360 579 781 985 1180 1380 1579

Std dev.
   G-SC 0 0 0 0 0 0 0 0 0
   GA-SC 1.74 1.00 5.36 2.52 6.08 4.50 4.71 10.71 9.48
   PSO-SC 3.73 3.21 3.70 3.76 8.57 5.59 14.98 17.68 14.07
   DE-SC 0.87 0.80 1.77 1.41 1.50 2.56 2.05 2.77 1.18
   BIP-SC 0 0 0 0 0 0 0 0 0
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6.2.3 � Convergence speed of DE‑SC, GA‑SC and PSO‑SC

Unlike the G-SC approach and BIP-SC approach, the three 
evolution algorithms (GA-SC, PSO-SC and DE-SC) produce 
different results at different time instants. Tables 2 and 3 
only display those results at a specific time instant, which 
is not fully enough to demonstrate the comparative perfor-
mance of them. Therefore, we record number of triangles 
covered by each of the three approaches as the time increases 
with the bowl models of different number of triangles, and 
the final results are provided in Fig. 11. It can be seen from 
Fig. 11 that the lines of DE-SC are on the top of GA-SC and 
PSO-SC in every subfigure, which means it can reach the 
best coverage performance with fixed given time or achieve 
the best time efficiency for a fixed coverage rate. Therefore, 
DE-SC is best among the three approaches.

To summarize, among these approaches, the G-SC 
approach holds the fastest speed at the cost of coverage rate; 
BIP-SC sacrifices the time efficiency and maintains the best 
coverage performance; GA-SC, PSO-SC, DE-SC reach com-
promises between time and coverage performance, wherein 
DE-SC outperforms GA-SC and PSO-SC.

7 � Conclusions

In this paper, we give a survey and comparison of five typi-
cal visual coverage optimization approaches for observing 
3-D objects, including the greedy algorithm, GA, PSO, DE, 
and BIP. In order to improve the computational efficiency, a 
parallel visual occlusion detection approach is proposed and 
implemented with graphic processing units (GPUs), which 
are then integrated into all of the aforementioned optimiza-
tion approaches for a fair comparison. Evaluation results 
show that (1) the proposed parallel occlusion detection 
algorithm largely improves the computational efficiency; (2) 
among the five typical approaches, BIP has the best cover-
age performances yet with the highest time cost, and greedy 
algorithm is the fastest approach at the price of coverage per-
formance; GA, PSO, and DE achieve a compromise between 
the performance and the time cost, while DE has better cov-
erage performance and less time cost than PSO and GA. 
In the future, visual coverage of large-scale 3-D scenarios 
and distributed visual coverage algorithms still needs to be 
explored as a rather immature research field.

Table 3   Time cost of five SC 
methods (unit: ms)

Model hood door bowl1 bowl2 bowl3 bowl4 bowl5 bowl6 bowl7
Total triangles 378 380 380 600 800 1000 1200 1400 1600

Mean
   G-SC 370 350 331 535 722 937 1098 1314 1495
   GA-SC 3080 2220 2068 3176 4423 5931 6594 7395 8335
   PSO-SC 3282 2398 1993 3152 4236 5503 6123 7044 7872
   DE-SC 3203 2275 1920 3197 4296 5424 6038 6956 7786
   BIP-SC 28,493 289 746 9419 15,891 26,312 60,301 114950 175257

Best
   G-SC 2.8 2.9 2.9 6.6 11 19 27 39 53
   GA-SC 2797 2065 2010 3060 4100 5571 6365 7158 8102
   PSO-SC 3083 2266 1921 3035 4026 5156 5716 6835 7758
   DE-SC 3103 2141 1865 3149 4099 5195 5941 6797 7709
   BIP-SC 28,403 285 740 9388 15,756 25,549 60,118 114146 174869

Worst
   G-SC 3.0 3.2 3.3 7.2 12 22 33 46 58
   GA-SC 3405 2389 2153 3391 4685 6216 7024 7697 8803
   PSO-SC 3458 2602 2120 3368 4544 5737 6487 7362 7984
   DE-SC 3336 2454 1987 3366 4794 5732 6198 7243 7891
   BIP-SC 28,782 297 763 9490 16,150 27,118 60,648 117530 176146

Std dev.
   G-SC 0.05 0.07 0.12 0.19 0.34 1.00 2.05 2.29 1.53
   GA-SC 157 88 35 102 208 197 177 176 213
   PSO-SC 111 104 54 89 189 194 227 176 78
   DE-SC 82 84 39 62 223 164 84 144 66
   BIP-SC 120 3.7 6.4 34 138 448 172 970 360
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