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Abstract
The number of people with hand disabilities caused by stroke is increasing every year. Developing a low-cost and easy-to-use 
data glove to capture the human hand motion can be used to assess the patient’s hand ability in home environment. While a 
majority of existing hand motion capture methods are too complex to be used for patients in residential settings. This paper 
proposes a new sensor layout strategy using the inertial and magnetic measurement units and designs a multi-sensor Kalman 
data fusion algorithm. The sensor layout strategy is optimized according to the inverse kinematics and the developed hand 
model, and the number of sensors can be significantly reduced from 12 in conventional systems to 6 in our system with the 
hand motion being completely and accurately reconstructed. Hand motion capture experiments were conducted on a healthy 
subject using the developed data glove. The hand motion can be restored completely and the hand gesture can be recognized 
with an accuracy of 85%. The results of a continuous hand movement indicate an average error under 15% compared with 
the common glove with full sensors. This new set with optimized sensor layout is promising for lower-cost and residential 
medical applications.
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1 Introduction

Stroke is a major cause of serious disability. The biome-
chanical function and neurophysiological characteristics of 
the external hand muscles responsible for individual finger 
coordination may change, lead to decreased finger independ-
ence and changes in muscle interaction (passive coupling 
between muscle structure and neural control) (Alexanderson 
and Beskow 2016, Alexanderson et al. 2017). In China, more 
than 2.5 million people suffer from stroke every year. More 
than half of them need help to carry out their daily activi-
ties due to hand disabilities. Intensive training is desired 
for hand disability treatment. Most stroke patients will back 

home after they leave the hospital for long-term rehabilita-
tion training with family members and professional medical 
staff. Comparing the motion characteristics of the hands at 
different ages and different states can help us understand the 
impact of human hands in these situations better and conduct 
an effective assessment. If patients can use portable equip-
ment at home for recovery assessment, it will greatly reduce 
the time and energy of patients and therapists, and reduce 
the cost of rehabilitation (Aristidou 2016).

Common techniques used in hand motion capture include: 
data glove (Aristidou and Lasenby 2009; Buchholz and 
Armstrong 1992; Chen et al. 2016), additional force (Cole 
et al. 2010; da Silva et al. 2011), surface electromyogra-
phy (SEMG), and image based vision system (Denavit 
and Hartenberg 1955; Dong et al. 2015; Erol et al. 2007, 
Fang et al. 2017a). Image-based systems usually use opti-
cal motion capture systems or computer image recognition. 
However, the equipment is large in scale and un-portable. 
Data gloves based on various sensors are more mature, 
including commercial products such as cyberGlove and 
5DT Data glove. But these devices are usually expensive 
and costly. In 2011, da Silva et al. (Fang et al. 2017b; da 
Silva et  al. 2011) proposed a wearable induction glove 
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based on fiber Bragg grating (FBG) sensor for monitoring 
hand posture, but there is a problem in real-time analysis 
of fiber sensor data, and fibers are easy to worn or damage 
during large movements. In 2014, Kortier et al. (Aristidou 
and Lasenby 2009; Kortier et al. 2014) proposed a new 3D 
measurement system with multiple miniature inertial sensors 
(PowerGlove) to understand hand function and quantify the 
symptoms of hand movement in clinical practice.

An equipment for patients at home for recovery assess-
ment should not be costly, besides, its lightness is also an 
important factor. Too complicated equipment is not easy to 
carry and not suitable for daily use, too heavy equipment 
will affect the accurate acquisition of hand movements and 
may cause secondary damage to the limb in the healing pro-
cess. The availability of micro electro mechanical system 
(MEMS) technology enables inertial sensors to be integrated 
into a single chip. It reduces the volume of the inertial sen-
sor and greatly reduces the power, which can thus be used 
for dynamic motion analysis (Guanglong and Zhang 2014). 
Inertial and magnetic measurement unit (IMMU) has proven 
to be an accurate approach in estimating body segment 
orientations without external actuators or cameras (Hoyet 
et al. 2012). It is non-obtrusive, comparably cost-effective 

and easy to set up. Here, we will use the MPU9250 which 
deploys System in Package technology and combines 9-axes 
inertial and magnetic sensors in a very small package. This 
results in the design and development of low-cost, low-
power and light-weight IMMU. This again enables powering 
of multiple IMMUs by a micro control unit (MCU), which 
reduces the total weight of the system. Moreover, small 
IMMU can be fastened to the glove easily, making it much 
easier to use.

The IMMU based data gloves are composed of micro 
accelerometers and microgyroscopes, magnetometers and 
microprocessors to improve the measurement accuracy, bas-
ing on it, many data gloves have been developed. However, 
due to the complexity of hand movement, they arranged each 
joint with a micro inertial sensor to restore the hand motion 
(Aristidou and Lasenby 2009; Jarrasse et al. 2013; Van Den 
Noort et al. 2018; Kortier et al. 2014), as shown in Fig. 1a–c. 
This method of deploying sensors will not only lead to a 
huge amount of computation, but also more complex wir-
ing that may affect the normal movement of the hand. In 
order to make a light and portable data glove for patients 
using at home, the number of the sensors need to be reduced 
and the sensor layout strategy must be optimized. In the 

Fig. 1  a Aristidou and Lasenby (2009), Jarrasse et al. (2013), b Van Den Noort et al. (2018) and c Kortier et al. (2014) are existing complex sen-
sor layout methods; d Li et al. (2011) the method to reduce the markers in optical motion capture system
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optical motion capture, in order to restore the physical and 
hand motion simultaneously, some studies have proposed 
methods trying to reduce the number of markers (Lambrecht 
and Kirsch 2014; Latash et al. 2006; Lathuiliere and Herve 
2000; Li et al. 2011; Maycock and Botsch 2015; Phillips 
et al. 2006; Pisharady and Saerbeck 2015; Rijpkema and 
Girard 1991), which inspired us to propose an optimized 
sensor layout strategy.

In this paper, the forward and inverse kinematics models 
of human hand are constructed, basing on the inverse kin-
ematics, an optimized sensor layout strategy of the IMMU-
based data glove is proposed. In order to obtain reliable hand 
transportation and simplify the device at the same time, the 
number of sensors is reduced and the data of multiple sen-
sors are fused based on Kalman filtering. This optimized 
sensor layout strategy that reduces the number of sensors not 
only reduces the cost of data gloves, but also successfully 
captures hand movements while reducing the burden of the 
data glove. In addition, the results of different placement 
strategies are brought into our hand kinematics model to 
compare the accuracy of hand movements. The results show 
that the data glove based on optimized sensor layout strategy 
is within acceptable range compared with the data glove 
based on traditional sensor layout strategy. The developed 
data glove is expected to provide hand capability assessment 
for stroke patients in residential environment.

2  Methods

2.1  Hand modelling

Hand movement is determined by its anatomical structure. 
Human hand is composed of bones and soft tissues such as 
ligaments and muscles. As shown in Fig. 2, the structure of 
human hand is complex. The wrist is composed of 8 bones 
arranged in almost 2 rows. The thumb sticks out from the 
large angle of the wrist, including 1 metacarpal and 2 pha-
lanx; index finger, middle finger, ring finger and little finger 
each include 1 metacarpal and 3 phalanx (referred to as root 
bone, interphalangeal bone, finger end bone) (Samadani 
et al. 2012). The joint is divided into palm joint and finger 
joint. The joints of the thumb are interphalangeal joint (IP), 
metacarpophalangeal joint (MCP), and trapeziometacarpal 
joint (TMC); the remaining four-finger joints include: meta-
carpophalangeal joint (MCP), proximal interphalangeal joint 
(PIP), and distal interphalangeal joint (DIP). Some studies 
indicated that the model of the ring finger and the little fin-
ger should add another joint, carpometacarpal joint (CMC) 
(Schröder et al. 2015). This section describes the finger mod-
els and their corresponding forward kinematics and inverse 
kinematics in the Denavit–Hartenberg (D–H) coordinate 
system (Schroeder et al. 2014).

(a) (b)

Fig. 2  Complete human hand joint model. a The model that will be used in this article; b The model which the ring finger and the little finger 
add carpometacarpal joint (CMC)
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2.1.1  Forward kinematics

The forward kinematic solution of each finger will be 
assigned using homogeneous matrices and is used to deter-
mine the position and orientation of fingertips relative to 
the base coordinate system located in the center of wrist 
(Stoppa et al. 2015). The model equation is calculated by 
D–H parameter. The derivation of forward kinematics is as 
follows.

Let

�i,j:  joint angle of the finger
di, j:  joint distance of the finger
�i,j:   link length of the each joint
�i,j:   link twist angle

where i and j indices represents, respectively, the corre-
sponding finger and joint (Table 1).

1. Thumb finger

The model of the thumb finger can be seen in Fig. 3a, 
based on which we can get D–H parameters:

The forward kinematic for the thumb finger is defined

When k = 0, k−1 = w representing the center of the wrist.
So, each of the matrices TT are given by:

where s = 1, 2, v = MCP and j = TMC, MCP, in this order,

2. Other fingers

As shown in Fig. 2b, the D–H parameters for other fingers 
can be obtained just like the thumb finger (Table 2).

The forward kinematic for the other fingers is defined

(1)
PT = w

0
TT

(
�T,w
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0
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(
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)
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Table 1  D–H parameters for the thumb

Joint θi,j di,j ℓi,j αi,j

w 0 0 ℓT,w 0
TMC θT,TMC 0 �T,MC �T,MC

MCP �T,MCP 0 �T,P �T,P

IP �T,IP dT,P 0 0
Fingertip 0 dT,D 0 0

(a) (b)

Fig. 3  Finger models a thumb finger; b index finger, middle finger, 
ring finger and little finger

Table 2  D–H parameters for the other fingers

Joint �i,j di,j �i,j �i,j

w 0 0 ��,w 0
MCP ��,MCP

0 ��,MC
��,MC

PIP ��,PIP d�,P 0 0
DIP ��,DIP d�,M 0 0
Fingertip 0 d�,D 0 0
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where β = I, M, R, L (index, middle, ring, little), T� are the 
matrices like that showed in Eq. (8), given by:

where s = 2, 3, j = PIP, DIP and v = P, M,

2.1.2  Inverse kinematics

Inverse kinematics (IK) is a method to calculate postures 
by estimating each individual degree of freedom to satisfy 
a given task; it plays an important role in computer anima-
tion and simulation of personage simulation (Unzueta et al. 
2008). The demand for accurate biomechanical modeling 
and body size based on anthropometric data makes the IK 
method a popular method for fast and reliable solutions. 
Inverse kinematics can determine joint configuration in the 
case of a given pose or end position. There are two main 
methods in IK: analysis-based and differential-based (Wang 
et al. 2016). The analysis IK is obtained by finding the closed 
form solution for the inverse of the forward kinematic func-
tion, and is applicable only to the specific structure studied. 
The differential IK uses the Jacobian determinant to map 
the Descartes velocity along the point of the motion chain 
to the speed of the chain along the chain, and it has univer-
sal applicability (Unzueta et al. 2008; Wang et al. 2010).
The differential IK of the simplified index finger shown in 
Fig. 4 as an example is discussed in this paper, which is also 
applicable to other fingers according to the characteristics 
of differential IK.
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The Jacobian matrix is a partial derivative matrix of the 
determined joint position ( �i ) relative to the joint angle of 
the structure ( �i):

The link position of the finger �i can be represented 
by a matrix containing fingers position coordinates and 
orientations:

(12)J =
��i

��i
.

Fig. 4  Simplified index finger model

According to Eqs. 12 and 13, The Jacobian matrix is 
given as:

where,
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where �1,�2,�3 are defined in Fig. 3, indicating the link 
length between MCP and PIP, PIP and DIP, DIP and finger-
tip, respectively.

Hence,

By substituting of Eqs. (18–24) into Eq. 14, the Jacobian 
matrix becomes:

2.2  Data glove with optimized sensor layout

2.2.1  Sensor layout strategy

As shown in Fig. 1d, in animation production, due to the 
complexity of the anatomical structure of the hand and the 
subsequent difficulties in capturing all its subtle movements, 
actions in animation are usually omitted or created manu-
ally by the animator. When using motion capture system 
to capture the whole body motion of an actor, due to the 
complexity of the hand and the small size of the marker 
used (for example, the size of the projection surface of the 
6 mm marker is less than five times of the 14 mm marker), 
there will be a large number of occlusion and marking errors 
in the manual post-processing process, which significantly 
increases the workload of the animator. Researchers found 
that finger movements using inverse kinematics reconstruc-
tion from a simplified set of 8 markers per hand were thought 

(17)� = �PIP + �MCP + �DIP
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= −�1S1 − �2S12 − �3S123,
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�y
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��
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= 1,
��

��PIP
= 1,

��

��DIP
= 1.

(25)
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⎡
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−�1S1 − �2S12 − �3S123 −�2S12 − �3S123 −�3S123
−�1C1 − �2C12 − �3C123 −�2C12 − �3C123 −�3C123

1 1 1

⎤
⎥⎥⎦
.

to be very similar to the corresponding movements using a 
full set of 20 markers. The data obtained from reduced mark-
ers can be calculated by IK to reconstruct the completed 
hand movement, which inspires us to use the same strategy 
of reducing the number of sensors on IMMU-based data 
gloves.

A hand sensor placement strategy based on inverse kin-
ematics is proposed allowing for the reconstruction of hand 
motion from a limited number of sensors. The reduced sen-
sor layout can be determined by using a priori knowledge. 
The researchers performed principal component analysis 
(PCA) through the hand movement database to find that 3–6 
hand joint subspaces were sufficient to restore 90% of the 
hand movements (Phillips et al. 2006).

A set of eigenvectors and eigenvalues can be obtained 
by performing PCA on the hand movement posture data-
base, which can be used to construct a 26 × (6 + l) matrix of 
principal components M. Given the PCA matrix M, the full 
parameter vector � ∈ R26 can be computed from the reduced 
subspace parameters � ∈ R6+l as

where � ∈ R26 is the mean of the database postures.
In this way, we can represent the forward kinematics of 

the effect points �i according to the subspace parameters:

Based on this representation, the IK problem can also be 
represented by subspace parameters:

(26)� = M� + �,

(27)� = �(�) = �(�(�)),

(28)Js =
��

��
=

��

��
⋅
��

��
= J ⋅M.

Fig. 5  Comparison of the layouts of the sensors on the hand: a tradi-
tional full sensor set (with 12 sensors) covering all joints of the hand; 
b The optimized sensor layout strategy with fewer sensors (6 sensors)
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The IK of subspace constraints enables us to restore the 
complete hand model from a limited number of points, but 
the selection of the sensor location is not arbitrary, two dif-
ferent layout methods (Fig. 5) were compared.

No sensors were placed in PIP joints because it is almost 
impossible to move the PIP joints without moving the DIP 
joint, and vice versa (Wheatland and Zordan 2013). The 
joint angle-dependent relationship between PIP and DIP 
joints can be expressed as (Xu et al. 2012):

2.2.2  Attitude solution

There are many methods for calculating and representing the 
attitude information of the carrier in space motion, such as 
the Euler angle method, the direction cosine method and the 
quaternion method (Xue et al. 2018; Yoshimoto et al. 2015). 
The quaternion method has only four unknown numbers, so 
the amount of calculation is smaller, and there is no influ-
ence on the angle constraint without solution. By updating 
the number of four elements, the attitude information of the 
carrier can be reacted in real time, which is very suitable 
for the attitude calculation of the low dynamic performance 
carrier.

The quaternion can take advantage of the nature of the 
hyper complex number to completely rotate the reaction vec-
tor, and can be expressed as

where i, j, k are mutually orthogonal unit vectors, q0 , q1 , 
q2 , q3 are real numbers. Let Cn

b
 be the attitude transforma-

tion matrix of the sensor’s own coordinate system and the 
navigation reference coordinate system, using the calculation 
property of the quaternion, we can get the attitude transfor-
mation matrix:

The quaternion update equation over time is:
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, the amount of ingredi-

ents is as follows:
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(32)q̇ =
1

2
q ⋅ 𝜔b

nb
,

where �x , �y , �z are the angular velocity of the three axes 
of the sensor coordinate system.

In order to obtain more accurate measurement of the hand 
motion, the data from different sensors in different locations 
needs to be integrated. Here Kalman filtering method is used 
for signal processing and filtering (Zheng et al. 2016). This 
recursive algorithm realizes that the previous observation 
information is concentrated in the estimated value, and does 
not need to record all the historical information. It is an effi-
cient autoregressive processing algorithm, which can handle 
multidimensional and non-stationary random processes.

Let x̂k|k be the state estimation at time k, Pk|k be the error 
correlation matrix, in the prediction phase

 

In the update phase:
Measuring margin:

The covariance of the measure margin:

Optimal Kalman gain:

Kalman filter is mainly used in linear systems, the vast 
majority of the systems are nonlinear in practice. There are 
nonlinear factors in differential equations of micro inertial 
measurement system. In addition, not all observation mod-
els are linear. Therefore, in order to adapt to the nonlinear 
realistic environment, an extended version of Kalman filter 
is designed, in which the state transition and observation 
model is replaced by a differentiable function:

Calculating the partial derivative matrix gives:

(33)
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(
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k
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(37)Sk = HkPk|k−1HT
k
+ Rk.

(38)Kk = Pk|k−1HT
k
S−1
k
,

(39)x̂k|k = x̂k|k−1 + Kkỹk,

(40)Pk|k =
(
I − KkHk

)
Pk|k−1.

(41)xk = f
(
xk−1, uk,wk

)
,

(42)zk = h
(
xk, vk

)
.
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Therefore, the extended Kalman filter equation is:
The prediction phase:

The update phase:

(43)Fk =
𝜕f

𝜕x
|x̂k−1|k−1,uk , Hk =

𝜕h

𝜕x
|x̂k|k−1 .

(44)x̂k|k−1 = f
(
xk−1, uk, 0

)
,

(45)Pk|k−1 = FkPk−1|k−1FT
k
+ Qk.

(46)

ỹk = zk − h
(
x̂k|k−1, 0

)
,

Sk = HkPk|k−1HT
k
+ Rk,

Kk = Pk|k−1HT
k
S−1
k
,

x̂k|k = x̂k|k−1 + Kkỹk,

Pk|k−1 = FkPk−1|k−1FT
k
+ Qk.

To denoise the collected data, the angle value and acceler-
ation value of the sensor output was filtered, the data before 
and after filtering was compared. it shows that our extended 
Kalman filtering method can filter out the noise and error 
generated by IMMU in data acquisition and transmission. 
The results of comparison are shown in Fig. 6. Acceleration 
and Euler angle keep the trend of original data after Kalman 
filter, but filter out unreasonable mutation and noise, and 
reduce the error effect. There are many choices of observ-
ing object and state object in Kalman filtering algorithm. In 
the calculation of inertial navigation attitude, Euler angle is 
selected as observing object and quaternion is state object. 
The attitude angle is calculated by output value of gyroscope 
sensor, acceleration sensor and magnetic sensor respectively. 
Then the optimal attitude information can be obtained by 
filtering and fusing the data with Kalman filtering algorithm.

(a) (b)

(c) (d)

Fig. 6  Comparison of output angle and acceleration of IMMUs before and after filtering: a acceleration before filtering; b acceleration after fil-
tering; c Euler angle before filtering; d Euler angle after filtering
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3  Experiments and results discussion

Several experiments were carried out to illustrate the supe-
rior performance of the data glove. In order to ensure the 
normal and stable operation of the system and reduce the 
interference caused by the production process and the use 
environment, the sensors including gyroscopes, magnetome-
ters and accelerometers were calibrated before being used. In 

order to adjust the position of the sensors flexibly, IMMUs 
were attached to a right-hand glove using velcro according 
to the position of the red dot in Fig. 5. The developed data 
glove based on IMMU is shown in Fig. 7. Figure 7a is a 
conventional full sensor set. Figure 7b is the glove based 
on our optimized sensor placement strategy with fewer sen-
sors. It is obvious that the decrease of the number of sensors 
greatly reduces the burden of the data glove on the hand, 
and can reduce its effect on the motion of hand. In addition, 
the reduction in the number of sensors will directly reduce 
the cost of data gloves. An MCU was used to obtain data 
from multiple IMMUs, and then sent the obtained data to 
the computer for processing by MATLAB.

From the Euler angle and acceleration obtained by the 
sensor, the angles of the joints can be calculated according 
to the inverse kinematics. The angles of the joints calculated 
when the hand remains still are shown in Table 3.

To verify the ability of the data glove to decode the hand 
gesture, more experiments were performed. During the 

Fig. 7  The developed data 
gloves: a traditional full sensor 
set; b Our optimized sensor 
layout strategy with reduced 
sensor set

Table 3  The calculated joint angles at the given moment

Finger IP MCP TMC PIP PIP

Thumb 0.263 − 0.026 0.834 – –
Index – − 0.024 – 0.283 0.132
Middle – − 0.153 – 0.071 − 0.051
Ring – − 0.492 – 0.164 − 0.104
Little – − 0.537 – − 0.047 − 0.08

Fig. 8  Comparison of real hand motions and models: only extend the index finger with a data glove with fewer sensors and b with full sensor 
set; and make a fist with c data glove with fewer sensors and d with full sensor set
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experiment, the subjects were asked to do make some ges-
tures common in daily life. The subjects sat near the edge of 
the table and put their right arm on the table in a comfort-
able position. They were instructed to make two common 
gestures, the gesture of the number one and the gesture of 
fist clench. At the beginning of each experiment, the sub-
jects extended their right hand into a natural full exten-
sion. Hearing the “go” command (in Chinese), the subjects 
began to complete gestures at a fixed speed. The IMMUs 
obtained data every 0.02 s and then sent to MCU. After the 

experiment, the data collected by MCU were sent to the 
computer, processed by MATLAB, and the calculated joint 
angle was sent to the visual hand model. As shown in Fig. 8, 
the restoration accuracy can be evaluated by comparing the 
real motion with the model posture. Based on the optimized 
sensor layout method, the hand motion can be accurately 
reconstructed with the reduced number of sensors.

The same experiment was repeated 50 times. Comparing 
the real hand with the reconstructed gestures in the model, 

Fig. 9  Comparison of angles (radian) calculated by the two methods in two similar moves
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the recognition rate of the optimized sensor layout method 
is nearly 85% compared with 90% of the 12 sensor methods.

At the same time, another experiment was carried out 
to compared the continuous joint angles calculated by the 
two methods. Firstly, the subjects were asked to wear the 
data gloves with full sensor set, extended their right hand 
into a natural full extension, and then began to complete the 
gesture of clenching fist at a fixed speed, the acquired data 
was processed with MATLAB as shown in the red curve in 
Fig. 9. Secondly, the subjects were asked to wear the data 

gloves with fewer sensors, and then began to complete the 
gesture of clenching fist at a fixed speed under the same 
conditions. The acquired data was processed with MATLAB 
as shown in the blue curve in Fig. 9. As shown in Fig. 9, 
the trend of the joint angles during the whole movement 
calculated by the two methods are almost the same. Large 
errors in some joints (such as T_MCP, I_PIP, I_MCP) have 
been noticed. We speculate that these errors may be caused 
by the following reasons: (1) The data calculated by the two 
methods were obtained from two experiments, we cannot 

Fig. 9  (continued)
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guarantee that the actions in the experiments are exactly 
the same. In the follow-up study, we should add more con-
vincing methods to obtain joint angles for verification, such 
as using the data obtained by motion capture system as a 
standard, compare the data obtained by two different sensor 
combinations with the standard, and then compare their dif-
ferences after calculating. (2) When several specific joints 
with larger errors are in motion, the position of IMMUs may 
be offset because they are not firmly fixed on the glove. (3) 
For the thumb, because the thumb joint is more complex, 
and we adopt the simplified model to calculate, the data may 
have larger errors.

Compared with the full sensor set, the mean and standard 
deviation (SD) of error of the angles of the joints calculated 
by our method are shown in Table 4, the error is within 15%.

4  Conclusion

To reduce the effect of the data glove on the hand and make 
a low-cost data glove suitable for using at home, a sensor 
layout method is proposed in this paper based on the inverse 
kinematics so that the hand motion can be captured with 
fewer sensors. The hand motion is reconstructed by using 
space constraints. For the data collected from the hand sen-
sor network, the extended Kalman filtering methods are used 
to solve the data fusion. An experimental evaluation was 
carried out and reconstructed several hand motions under 
the two sensor configurations. Experimental results showed 
that our hand sensor layout method can reconstructed hand 
motion accurately and completely. Compared with the tra-
ditional gloves with full sensor set, the error generated by 
the new set was acceptable. In the future, real-time process-
ing algorithm will be investigated to enable online motion 
capture. Also, an objective and universal method will be 
studied to evaluate the degree of hand motion reconstruc-
tion. Data glove calibration methods were also studied to 
improve the accuracy of reconstruction by determining the 
joint bone length of the individual through several sets of 
movements. The captured hand data will be used in a reha-
bilitation system which can help the impaired hand perform 
training using the data of another healthy hand.
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